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CHAPTER - 3 

AUDIO WATERMARKING USING BASIC NEURAL NETWORK 

AND DEEP LEARNING TECHNIQUES 

3.1 Chapter Introduction: 

This research introduces an advanced digital audio watermarking system to enhance 

the security of digital data, particularly in the context of ownership and copyright 

protection. Traditional extracting processes in audio watermarking often face 

limitations and low reliability against various attacks. To address these challenges, a 

deep learning-based approach is proposed, integrating the DWT and an optimized 

deep Convolutional neural network (DCNN). The notable contribution lies in the 

DCNN role in selecting optimal embedding locations, a task crucial for robust 

watermarking. Hyper parameter tuning, achieved through search location 

optimization, minimizes errors in the classifier. Experimental results demonstrate 

superior performance, with the proposed model achieving a Bit Error Rate (BER) of 

0.082, Mean Square Error (MSE) of 0.099, and Signal-to-noise ratio (SNR) of 45.363. 

This outperforms existing watermarking models and showcases the effectiveness of 

neural network architectures, particularly the DCNN, in optimizing watermark 

embedding and extraction with minimal bit error. The research also discusses various 

hybrid and novel techniques in digital audio watermarking, emphasizing the utility of 

neural networks in advancing the field. 

3.1.1 Research motivation: 

The motivation behind this research stems from the critical need for advanced and 

effective digital audio watermarking techniques that prioritize imperceptibility, 

security, and robustness in an era where digital content faces increasing threats of 

unauthorized use and piracy. As the ubiquity of digital audio continues to grow, 

ensuring the integrity and protection of intellectual property becomes paramount. The 

proposed hybrid approach, combining human locating characteristics and creature 

searching behavior in the optimization process, aims to enhance the precision of 

watermark embedding, addressing a gap in existing methodologies. By leveraging 

DWT for preprocessing and extraction, the research seeks to contribute to the 
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development of sophisticated and resilient digital audio watermarking systems, 

fostering trust in the secure transmission and utilization of audio content across 

various platforms and applications. Ultimately, this work strives to offer innovative 

solutions to the challenges posed by unauthorized access and distribution of digital 

audio, thereby safeguarding the intellectual property rights of content creators and 

providers.  

i) Audio watermarking: 

Audio watermarking is essential for several reasons in the digital landscape. Firstly, it 

serves as a robust mechanism for copyright protection, allowing content creators and 

owners to assert ownership of their intellectual property. By embedding imperceptible 

watermarks into audio signals, creators can trace and prove ownership, deterring 

unauthorized use and protecting against piracy. Additionally, audio watermarking 

enhances content authentication and ensures the integrity of audio files. In the era of 

digital distribution and online streaming, where content can be easily replicated and 

disseminated, watermarking becomes a crucial tool for maintaining the 

trustworthiness and authenticity of audio content. This technology also facilitates 

ownership verification, supporting legal claims in cases of copyright infringement. 

Overall, audio watermarking is indispensable for safeguarding intellectual property, 

maintaining content integrity, and reinforcing the security of digital audio in diverse 

applications and industries.  These watermarks are typically encoded as subtle 

modifications in the audio data, ensuring that they remain perceptually 

indistinguishable to human listeners. The process involves dividing the audio signal 

into segments, applying mathematical transformations like DWT for efficient 

manipulation, and utilizing advanced algorithms, often based on neural networks, to 

embed and extract the watermark. The embedded information serves as a digital 

signature, enabling the tracking and authentication of the audio content throughout its 

lifecycle. Audio watermarking plays a crucial role in addressing intellectual property 

concerns, enabling content owners to assert ownership, trace unauthorized use, and 

maintain the integrity of digital audio in a variety of applications, from broadcast 

media to online streaming platforms. 
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ii) Purpose of audio water marking: Audio watermarking serves a crucial role in the 

realm of digital audio content by embedding imperceptible information within audio 

signals. The primary purpose is to address issues related to copyright protection, 

content authentication, and ownership verification. By incorporating unique 

identifiers or codes into the audio data, audio watermarking enables content creators 

to assert ownership and trace the origin of their work. This technology is particularly 

valuable for combating piracy, as it deters unauthorized copying and distribution 

while providing a means to identify and take action against infringing activities. 

Additionally, audio watermarking finds applications in broadcast monitoring, forensic 

analysis, and metadata embedding, contributing to a range of functionalities such as 

tracking the usage of audio content, ensuring its authenticity, and enriching associated 

metadata for improved management. Overall, audio watermarking plays a pivotal role 

in safeguarding intellectual property, enhancing content integrity, and supporting 

various aspects of audio content management and distribution. 

 

3.2 Basic Neural Network Model for audio watermarking: 

Machine learning and neural network based methods play a crucial role in audio 

watermarking, contributing to the development of robust and adaptive techniques for 

embedding and extracting watermarks in digital audio signals. The process begins 

with the extraction of relevant features from both the host audio signal and the 

watermark, forming the basis for the machine learning model. This model, often 

implemented as a neural network, undergoes training using a dataset containing paired 

audio signals and corresponding watermarks. During the embedding phase, the trained 

model seamlessly integrates the watermark into the audio while preserving its quality. 

In the extraction phase, the same model is employed to accurately detect and retrieve 

the embedded watermark from the watermarked audio. Machine learning enables the 

watermarking system to adapt to diverse conditions and resist common attacks, 

ensuring robustness against signal processing operations and compression. The 

performance of the system is assessed through metrics such as imperceptibility and 

security. Overall, machine learning enhances the sophistication and efficiency of 

audio watermarking, offering an intelligent and adaptive solution for protecting 

intellectual property and maintaining content integrity. 
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3.2.1 Methodology: 

In the audio watermarking framework, the process is conducted in two essential steps: 

Embedding and Extraction. Here utilized a 90-minute lecture audio file as the host 

signal and a binary image of size 180x180 as the watermark. Employing a Back 

propagation Neural Network (BPNN) in conjunction with the DWT, the framework 

takes two input sources: the binary water mark image and the host audio signal. To 

enhance processing speed, the 90-minute audio file is segmented into smaller chunks, 

allowing flexibility in size ranging from 10 seconds to 5 minutes. The 2D binary 

watermark image undergoes preprocessing using Open CV, ensuring compatibility 

with the system. For the host audio signal, apply DWT as a standard and efficient 

preprocessing technique to extract lower frequency components. The DWT is 

individually applied to these chunks, and frame-wise analysis is performed. Our 

custom-built back propagation neural network (BPNN) then embeds the binary bits of 

the watermark into the audio signal. During decoding, a second neural network 

extracts the watermark, and DWT is reapplied to the 10-second chunks. These chunks 

are subsequently converged, reconstructing the original audio file. 

 

 

  

 

 

 

 

 

 

Figure 3.1: illustrative representation of the working of NN in watermarking 
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i) Input: The first step in the system is to process the watermark image. For the 

proposed approach here taken the JPG image as sample watermark with the 

dimensions of 180 x 180 pixels. The JPG image is converted into binary format which 

is embedded in the audio signal. First convert it into Grayscale by setting a threshold 

of 128. Further, we had converted the image into binary of size 50 by 50 to use as the 

watermark. All these preprocessing steps are carried out using cv2 and numpy. Hence 

the watermark is hereby converted into a numpy array of 50 x 50 dimensions. The 

audio file that has to be watermarked is first sampled at rate of 44.1 KHz. We down 

sample the given audio file to 16 KHz using an external library librosa. We divided 

the whole input audio file of 90 mins into chunks of length 10 seconds to 5 minutes 

for testing the experimental results. Hence we have the input watermark in the binary 

form and the audio down sampled into 16 KHz. 

ii) Embedding and DWT methods: 

In the context of audio watermarking, embedding methods and the DWT are 

instrumental techniques used to seamlessly integrate imperceptible information into 

audio signals. 

a) Embedding Methods: Embedding involves the incorporation of a watermark into 

the host audio signal. One common method is to modify the amplitudes or phase of 

the audio samples to encode the watermark. Spread spectrum techniques distribute the 

watermark across the entire frequency spectrum, making it less susceptible to removal 

or distortion. Frequency domain methods, such as modifying coefficients in the 

Fourier transform domain, are also employed. The goal is to introduce changes that 

are imperceptible to the human ear while allowing for reliable extraction during 

watermark detection. 

b) DWT: The DWT is a widely used signal processing technique that decomposes a 

signal into different frequency components through a series of wavelet 

transformations. In audio watermarking, DWT is often employed to enhance 

robustness and security. The audio signal is decomposed into approximation and 

detail coefficients across multiple scales. Watermark information is then embedded in 

these coefficients, typically in the lower-frequency and less perceptually sensitive 

bands. This allows the watermark to be robust against various signal manipulations 
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and attacks. The multi resolution analysis provided by DWT facilitates a more 

effective balance between imperceptibility and robustness in the embedded 

watermark. The combination of embedding methods, such as spread spectrum or 

frequency domain techniques, with the transformative power of DWT enhances the 

overall performance of audio watermarking systems. It enables the incorporation of 

imperceptible watermarks while providing resilience against common signal 

processing operations and attacks, making the watermarking process effective for 

purposes such as copyright protection and content authentication in the audio domain. 

iii) Decoding methods:  Decoding methods in the audio watermarking refer to the 

techniques employed to extract the embedded watermark from a watermarked audio 

signal. These methods are crucial for verifying ownership, ensuring content 

authenticity, and detecting any alterations or unauthorized use. Two common 

decoding methods involve correlation-based detection and extraction through the 

DWT. 

a) Correlation-Based Detection: In correlation-based decoding, the watermarked 

audio signal undergoes correlation with a reference watermark. The reference 

watermark is a copy of the original watermark that is known to the decoding system. 

By comparing the correlation values at different points in the audio signal, the system 

can identify the presence of the watermark. A high correlation indicates a match and 

suggests that the watermark is present in that portion of the audio. This method is 

straightforward and often used in scenarios where the watermark is directly 

recognizable, but it may be sensitive to noise and signal variations. 

b) DWT Extraction: The decoding process can also leverage the DWT, especially 

when DWT was used for embedding. In this method, the watermarked audio signal is 

subjected to the reverse DWT, known as the inverse DWT or IDWT. By performing 

this inverse transformation, the original signal is reconstructed while preserving or 

enhancing the embedded watermark in the process. The watermark information is 

then extracted from specific frequency bands or coefficients in the transformed signal. 

This method is advantageous because it aligns with the multi resolution structure of 

the DWT, enabling selective extraction from different frequency scales and offering 

robustness against common signal processing operations. Both correlation-based 
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detection and DWT-based extraction methods contribute to the effectiveness of 

decoding in audio watermarking. The choice of decoding method often depends on 

the characteristics of the embedded watermark, the robustness requirements, and the 

specific applications for which the audio watermarking system is designed. 

iv) Justification for various neural network and machine learning models in 

audio watermarking: 

The incorporation of machine learning and neural network models in audio 

watermarking is justified by the need for robust and effective techniques to embed 

and extract imperceptible information in audio signals, especially for applications 

such as copyright protection and content authentication. Machine learning models can 

adaptively learn complex patterns, enhancing the security and resilience of the 

watermarking process against various attacks and signal processing operations. 

Various machine learning models find application in different stages of audio 

watermarking: Machine learning models can be employed during the embedding 

process to determine optimal locations for watermark insertion, ensuring minimal 

perceptual impact. Reinforcement learning algorithms, for instance, can adaptively 

adjust embedding parameters based on perceptual models and signal characteristics, 

optimizing imperceptibility. During the decoding or watermark extraction phase, 

machine learning models are crucial for accurately and robustly identifying the 

embedded watermark. Neural networks, such as deep neural networks (DNNs) or 

Convolutional neural networks (CNNs), can be trained to recognize watermark 

patterns, offering improved reliability and resistance to attacks. The adaptive nature of 

machine learning models allows them to evolve with emerging threats or changes in 

the audio signal characteristics. Online learning algorithms can continuously update 

models based on new data, ensuring the watermarking system remains effective over 

time. Hybrid models, combining traditional signal processing techniques with 

machine learning, offer a comprehensive solution. For instance, combining the DWT 

with machine learning models can provide both frequency domain representation and 

adaptive learning for enhanced performance. In summary, the justification for 

incorporating various machine learning, deep learning models in audio watermarking 

lies in their ability to adaptively learn from data, enhance robustness, and improve 

overall system performance. The diverse array of machine learning models, including 
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reinforcement learning, neural networks, and hybrid approaches, contributes to the 

effectiveness of audio watermarking for purposes such as copyright protection, 

content authentication, and ensuring the integrity of audio content. 

3.2.3 Neural network – A basic learning model for watermarking: 

For the successful embedding of the watermark within the audio file, the Neural 

Network employs a strategic approach, utilizing the least significant bits (LSBs) of 

the audio data. Essentially, during the embedding process, the Neural Network 

adeptly substitutes the LSB of each byte in the audio file with the corresponding bits 

from the binary watermark data. This substitution is achieved through a combination 

of logical AND and logical OR operations, providing an efficient means to conceal 

the secret data, i.e., the watermark, seamlessly within the audio file. General training 

in neural networks serves the fundamental purpose of enabling the model to learn and 

adapt to patterns within data. Through a multi-step process, the network adjusts its 

internal parameters based on the input-output relationships present in a given dataset. 

This involves forward propagation, where input data passes through the network to 

produce predictions, and backward propagation, where the model's parameters are 

updated by minimizing the disparity between its predictions and actual outcomes. The 

iterative nature of training refines the network's ability to generalize its learned 

patterns, allowing it to make accurate predictions on new, unseen data. The ultimate 

objective is to equip the neural network with the capacity to understand the 

underlying complexities of diverse datasets, fostering its versatility and effectiveness 

in real-world applications such as image recognition, natural language processing, and 

other machine learning tasks. In the watermarking process, the neural network 

performs intricate logical calculations to achieve embedding. With two input features 

and one output feature, the neural network is designed with a learning rate of 0.01. 

Employing the Sigmoid function as the activation function, the model undergoes 

training for 100,000 epochs. This meticulous training regimen ensures the neural 

network's capacity to adeptly embed the watermark into the audio file, leveraging its 

learned patterns and logical computations for effective and robust watermarking. 

Following the encoding process, the audio is decoded to extract the watermark. 

Initially, the encoded audio is transformed into a byte array. Subsequently, the LSBs 

are extracted from this byte array, forming a matrix of pixel values representing our 
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watermark image. By visualizing this matrix through plotting, the watermark image 

can be effectively reconstructed and extracted from the audio, completing the 

decoding process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Figure 3.2: Layer details for the NN model 
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3.3 DCNN with SLOA: Deep learning model for Watermarking. 

Deep learning methods play a crucial role in watermarking by offering advanced 

techniques for embedding and detecting digital watermarks in multimedia content. 

These methods leverage the CNN model, to enhance the robustness and security of 

watermarking processes. Deep learning enables the creation of intricate and 

imperceptible watermarks that can withstand various attacks, ensuring the integrity 

and ownership of digital content. Additionally, deep learning models can efficiently 

extract and verify these watermarks, even in the presence of distortions or attempts at 

removal. The adaptability and learning capabilities of deep learning algorithms make 

them valuable tools in the development of sophisticated and resilient watermarking 

solutions, contributing to the protection of intellectual property in the digital domain. 

In digital audio watermarking, deep learning techniques can be employed for various 

purposes, including embedding, detecting, and extracting watermarks from audio 

signals. Deep learning models, offer advantages in terms of robustness, security, and 

adaptability. Here's an example of how deep learning might be used in digital audio 

watermarking: 

i) Embedding Watermarks:  Deep learning models can learn to embed 

imperceptible watermarks within audio signals. A neural network, possibly a type of 

auto encoder or a model with specific attention mechanisms, can be trained on pairs 

of original and watermarked audio samples. The network learns to embed the 

watermark in a way that minimally affects the perceptual quality of the audio. 

ii) Detecting Watermarks: Another application involves using deep learning for 

detecting the presence of watermarks in audio. A neural network can be trained to 

distinguish between watermarked and non-watermarked audio signals. This trained 

model becomes capable of identifying the embedded watermark, even in the presence 

of various distortions or attempts at removal. 

iii) Resistance to Attacks: Deep learning methods contribute to enhancing the 

robustness of audio watermarking systems. They can learn to withstand common 

attacks like compression, noise addition, and signal processing manipulations. This 

adaptability is particularly valuable in real-world scenarios where watermarked audio 

might undergo unintended alterations. 
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iv) Content Authentication: Deep learning models can assist in authenticating the 

integrity of audio content. By learning the unique features of the watermarked signal, 

these models can verify the presence and correctness of the watermark, ensuring that 

the audio has not been tampered with. The use of deep learning in digital audio 

watermarking represents a powerful approach to address challenges related to 

security, robustness, and anti-tampering in the context of audio content protection. 

3.3.1 Methodology: This section provides a comprehensive overview of the pivotal 

steps within the digital audio watermarking system, with Figure 3.3 illustrating the 

underlying watermarking models. The research places emphasis on device 

watermarking techniques aimed at enhancing imperceptibility, security, and 

robustness. The audio watermarking process unfolds in two distinct phases: the 

embedding phase and the extraction phase. Initially, the audio signals slated for 

watermarking undergo segmentation into different signal blocks. The optimal signal 

within each block is determined through a novel optimization approach called search 

location optimization, which hybridizes human locating characteristics [41] and the 

searching behavior [42] of a creature. Subsequently, the smallest block in the audio 

signal is identified for watermark embedding. Utilizing DWT decomposition, the 

watermark is seamlessly embedded into the audio signals. During the extraction 

phase, a 2-level Inverse DWT method is employed to retrieve the hidden message 

from the watermarked audio file. This methodology ensures a robust and efficient 

audio watermarking process. 
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Figure 3.3: Flow architecture of the proposed digital audio watermarking model 
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accuracy. The embedding and extraction phases employ a two-level DWT and a two-

level Inverse DWT, respectively, ensuring the secure extraction of the secret message 

without compromising size and quality. The embedding location is determined by a 

DCNN classifier, leveraging the proposed search location optimization to minimize 

errors in classification. This approach ensures a robust and accurate process for 

concealing the brain tumour images within the audio signal. 

3.3.1.2 Embedding phase 

During the embedding phase, the watermarked digital signal is meticulously 

generated by incorporating both the host signal and the input watermarks. This 

process involves the formation of audio signal blocks and the subsequent embedding 

of secret data, which are thoroughly detailed in the following sections. The host 

signal, enriched with the concealed watermark, is strategically crafted to ensure the 

seamless integration of the secret information into the digital signal. These steps 

contribute to the robust and effective generation of the watermarked digital signal, 

marking a crucial stage in the overall digital audio watermarking process. 

i) Formation of audio signal blocks 

In the context of embedding a secret medical image within an audio signal, let's 

designate the audio signal as audioT , serving as the cover signal. To initiate the 

embedding process, the carrier audio signal undergoes a random interval partitioning. 

During this step, the cover signal is segmented into a set of i  frames. 

( ) ( )( )tottottaudioaudio UiTtiTT ≤≤≤≤= 11;,                                        (3.1) 

 
Where, totT  signifies the entire signal duration, while totU represents the total time 

interval. The 
tht signal undergoes a random interval split-up during block formation, 

denoted as: 

( ) { }( )tot

t

a

tt

taudio autblockblockblockiT
tot

≤≤= ,....., 21,                           (3.2) 

Here, tota  signifies the total number of signal blocks, and the Wavelet transform is 

employed with two-level decomposition. 
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3.3.1.3 Secret data embedding using DWT 

The DWT is harnessed in the embedding and extraction of audio signals as secret data 

during the data transaction process. Leveraging its fast computational capabilities and 

ability to capture intricate details about the data, the DWT proves to be an effective 

tool. Once the optimal embedding location is determined through the search location 

optimization process, the DWT is employed to execute the embedding and extraction 

actions, utilizing the wavelet coefficients to seamlessly conceal and retrieve 

information from the audio signals. This integration of DWT ensures a robust and 

efficient process for embedding and extracting secret data within the audio signal. 

DWT in the embedding process 

At the onset of the embedding process, the original audio signal, sized a b× , is 

encapsulated by the secret signal, denoted as ecδ with the size c d× . To initiate the 

process, the band information of the audio signals is extracted using the wavelet 

transform. The wavelet transforms are obtained at two levels, distinguishing between 

High and Low bands. These bands further break down into sub-bands: High-High 

(HH), High-Low (HL), Low-High (LH), and Low-Low (LL). These sub-bands serve 

to capture the edge information of the image. The sub-bands at the initial level are 

designated as 

                                   
{ }, , ,sub sub sub sub

sig L L LLCov ΗΗ Η Η= Β Β Β Β              (3.3) 

Here, sigCov  represents the cover signal, and , , ,
sub sub sub sub

L L LLΗΗ Η ΗΒ Β Β Β  signifies the sub-

band in the image with , , ,L L LLΗΗ Η Η coefficients. The dimensions of these sub-

bands are denoted as 
2 2

c d ×  
 following this, these initial sub-bands undergo further 

processing, progressing to the second level, ultimately generating 16 sub-bands 

represented by: 

{ }1, 1 1 1, ,sig

L L LLCovΗΗ ΗΗ Η Η= Β Β Β Β      (3.4) 

{ }2, 2 2 2, ,sig

L L L LLCovΗ ΗΗ Η Η= Β Β Β Β                (3.5) 



49 

 

{ }3, 3 3 3, ,sig

L L L LLCov Η ΗΗ Η Η= Β Β Β Β    (3.6) 

The sub-band dimension is determined by
4 4

a b ×  
, and utilizing the wavelet 

coefficients ΗΗΒ and LLΒ , the data embedding process is executed. The representation 

of the embedding process is as follows: 

                                      
( ) ( ) ( ), , Sec ,sig

tl tl str mbitsωΕ Α Χ = Α Χ +Ε ∗ Α Χ  (3.7) 

Where, ( ),tlΕ Α Χ represent the signal embedding process, illustrating the 

watermarked audio signals. tl denotes the total wavelet bands, and mbits denotes the 

total message bits ranging from 1 to 8. The Sec represents the secret message signals, 

and its wavelet band is denoted as ( ),tlω Α Χ , with the variable denoting the 

embedding strength as E . The embedding process is visually depicted in Figure 3.4 
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Figure 3.4: The secret data embedding process 
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( )( ) { }*, , , ,tl LL L LIDWT ∗ ∗ ∗

Η Η ΗΗΕ Α Χ = Β Β Β Β            (3.8) 
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The inverse wavelet transforms encapsulate information regarding sub-bands and are 

denoted as ( )( ),tlIDWT Ε Α Χ . The expression ( ),tlΕ Α Χ signifies the second-level 

decomposition of the audio signals. 

ii) Data extraction: The extraction phase is the inverse process of the embedding 

phase, aiming to recover the original audio signal from the cover signals. This process 

relies on key information such as the wavelet-embedded image, optimal point 

location, and the cover signal. The extraction of secret data is accomplished through 

the inverse Discrete Wavelet Transform (IDWT). The secret data extraction unfolds in 

two distinct decomposition levels, as illustrated by: 

                                  
( ) *1 , , ,LL L LDWT ∗ ∗ ∗ ∗

Η Η ΗΗ− Ε = Β Β Β Β   (3.9) 

Where, 1DWT − represents the initial level decomposition, while Ε  denotes the 

representation of the embedded signals.
                                  

 

                                 
( ) * *

1 1 1 1, , ,inv

L L LLDWT ∗ ∗
ΗΗ ΗΗ Η ΗΒ =Β Β Β Β                         

(3.10) 

                                   
( ) * *

2 2 2 2, , ,inv

L L L LLDWT ∗ ∗
Η ΗΗ Η ΗΒ = Β Β Β Β              (3.11) 

                                     
( ) * *

3 3 3 3, , ,inv

L L L LLDWT ∗ ∗
Η ΗΗ Η ΗΒ =Β Β Β Β    (3.12) 

                                    
( ) * *

4 4 4 4, , ,inv

LL L L LLDWT ∗ ∗
ΗΗ Η ΗΒ = Β Β Β Β    (3.13) 

The optimal location is identified, and the secret data is extracted from the cover 

audio signal through a mathematical determination process. 

                                             
( ) ( ) *

sec , ,tl LLE ω ω∗Α Χ = Α Χ −   
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3.4 Existing Deep learning and optimization Models: Discussion and comparison. 

In the realm of audio watermarking, the comparison between deep learning, 

specifically LSTM networks, and existing models highlights the advantages that deep 

learning architectures bring to this domain. While LSTM models excel in capturing 

temporal dependencies within sequential audio data, the broader spectrum of deep 

learning, encompassing CNN and other architectures, introduces additional layers of 

complexity and adaptability. CNNs, for instance, enhance feature learning by 

capturing spatial patterns in audio signals. The adaptability of deep learning models 

proves beneficial in scenarios where diverse audio content and varying conditions 

necessitate a flexible approach. Furthermore, deep learning's efficient preprocessing 

capabilities, such as those offered by auto encoders contribute to improved 

generalization and resilience against common signal processing attacks. In essence, 

the comparison underscores the potential of deep learning to augment and optimize 

audio watermarking methodologies, providing a more sophisticated and adaptive 

approach to the embedding and extraction of watermarks in audio signals. 

3.4.1 LSTM: 

LSTM, a subtype of Recurrent Neural Networks (RNNs), addresses the limitations of 

traditional RNNs in effectively handling time sequence data. While RNNs exhibit 

efficient performance by assigning varying weights to information to internally form a 

memory of sequential events, they suffer from the vanishing gradient problem during 

training, impeding the network's ability to retain long-term data memory. LSTM 

addresses this issue by implementing mechanisms to filter and selectively update the 

cell state during runtime, ensuring optimal historical memory utilization for accurate 

predictions. The LSTM model comprises interconnected recursive sub-modules, each 

encompassing the cell state, output results, and gate structures operating on the state. 

The gate structures, including the forget gate, input gate, and output gate, play a 

crucial role in information selection by outputting values between 0 and 1, 

determining whether to retain or discard information. Specifically, the forget gate 

erases previous memory, the input gate receives new memory, and the output gate 

regulates the writing of memory information to other neurons. This dynamic gate 

mechanism enhances LSTM's ability to capture and retain relevant temporal 
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dependencies. The relevant mathematical formulations governing these processes 

contribute to LSTM's effectiveness in handling long-term sequential data, offering 

improved performance in various applications. 

[ ]( )fiefe byhWf += − ,1σ      (3.14) 

[ ]( )iieie byhWi += − ,1σ     (3.15) 

[ ]( )siee byhWS += − ,tanh 1

'
     (3.16) 

'

1 .. eeeee SiSfS += −       (3.17) 

[ ]( )oeeoe byhWO += − ,. 1σ      (3.18) 

( )eee SOh tanh.=      (3.19) 

The LSTM model involves several critical components denoted by different variables 

and parameters to address the challenges associated with the vanishing gradient 

problem. Let's delve into the components and expressions within the LSTM 

architecture. The forget gate result, input gate result, and the output gate consequence, 

denoted as eee Oif ,, respectively, play crucial roles in determining the flow of 

information. The cell state at the current moment 
'

, ee SS and its updated version are 

integral to the memory operations of LSTM. Additionally, σ  represent different types 

of neural network activation functions, and the parameters bW ,  are inherent parts of 

these activation functions. The overall LSTM output is expressed as eh . This 

comprehensive set of formulas effectively captures the information transfer process 

from the hidden layer at the 1−e moment to the hidden layer at the e  moment. By 

introducing gate neurons to manage the cell state, LSTM significantly enhances its 

ability to perceive information from previous time nodes, effectively mitigating the 

issue of gradient disappearance during the training process. This advanced 

architecture contributes to improved information retention and learning capabilities in 

sequential data processing. 
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Figure 3.5: Layer details for the LSTM 

3.4.2 Deep CNN: 

The optimization models effectively tunes the weight and bias of the classifier 

models, which helps in increasing the accuracy of the models. The optimal blocks for 

embedding the secret medical message or image are meticulously chosen from the 

generated signal blocks through the application of search location optimization on a 

DCNN. DCNN, a widely utilized tool in signal processing, proves effective in 

selecting the ideal block for secret data embedding. The architecture of the DCNN 

classifier is visually represented in Figure 3.4, with additional details provided in 

Table 3.1. This classifier plays a pivotal role in the embedding process, employing 

advanced Convolutional neural network techniques to identify optimal locations for 

concealing the secret medical message or image within the audio signal blocks. 
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Figure 3.6: Architecture of the deep CNN layer 

Table 3.1: Layer information of deep CNN 

Layer type Output shape Parameters 

conv2d (None, 181, 1, 32) 544 

leaky_re_lu (None, 181, 1, 32) 0 

max_pooling2d (None, 91, 1, 32) 0 

conv2d_1 (None, 91, 1, 64) 18496 

leaky_re_lu_1 (None, 91, 1, 64) 0 

max_pooling2d_1 (None, 91, 1, 64) 0 

conv2d_2 (None, 91, 1, 128) 73856 

leaky_re_lu_2 (None, 91, 1, 128) 0 

Con_2 

Convolution 

(181, 1, 32) 

ReLu layer 

(181, 1, 

32) 

Con_1 

Convolution 

(91, 1, 64) 

Max-pooling 

(91, 1, 64) 

Dense 

(91, 1, 32) 
ReLu layer 

Max-pooling 

(91, 1, 64) 

ReLu layer 

128 

3 
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max_pooling2d_2 (None, 91, 1, 128) 0 

flatten (None, 11648) 0 

dense (None, 128) 1491072 

leaky_re_lu_3 (None, 128) 0 

dense_1 (None, 3) 387 

 

The proposed model is composed of 3 Convolutional layers, 4 leaky ReLu layers, 3 

max-pooling layers, 1 flatten layer, and 2 dense layers. The core of the DCNN lies in 

its Convolutional layers, which generate a feature vector. The first Convolutional 

layer produces an output feature vector of size )1181( × with a batch size of 32. The 

subsequent ReLu layer, employing the sigmoid function, scales the CNN and 

generates an output of )1181( × . Following this, the max-pooling layer reduces the 

spatial size of the input image. This sequence is repeated until a batch size of 128 is 

achieved, culminating in a single elongated feature vector of size 11648 through the 

flattening layer. The dense layer categorizes the input into 128 class outputs, scaled 

by the ReLu layer. Ultimately, the dense layer is employed to obtain 3 class outputs 

with a batch size of 387, providing a comprehensive architecture for effective signal 

processing and optimal block selection in the watermark embedding process. 

3.4.3 HSO deep CNN: In the context of deep CNNs, the justification likely stems 

from advancements in computational efficiency or complexity reduction, while still 

maintaining or improving watermarking performance. The HSO deep CNN model 

aims to optimize specific aspects of the deep learning architecture, contributing to 

streamlined processing and potentially enhancing overall effectiveness in audio 

watermarking tasks. 

Hybrid particle swarm optimization:  In PSO, two factors cause the swarm to 

converge prematurely. For the global best of PSO, the fundamental idea is that 
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particles converge to a single point on the line between the pbest and gbest locations, 

although this point is not guaranteed for a local optimum. Second, the rapid flow of 

information between particles leads to the generation of comparable particles without 

increasing population diversity, as well as the ability of the PSO to avoid local 

optima.  In order to get over PSO's drawbacks, it is therefore a good idea to combine 

the hybrid PSO approach with a local search method. This allows PSO to identify 

potential solutions where the global optimum may exist while the local search method 

uses a fine search to locate the global optimum with precision. In addition to 

preventing the issue of trapping to local optimum by simple local search, this type of 

solution strategy accelerates the rate of convergence compared to pure global search. 

Genetic algorithm (GA) crossover and mutation operators are used in the creation of 

the HSO algorithm. Due to the fact that the main benefits of the GA above other 

optimization algorithms are mostly associated with its capacity to avoid local minima 

and its independence from initialization. Additionally, it is an effective method that 

can be used to enhance the convergence ratio and choose the algorithm parameters 

wisely. It performs well across a wide range of study domains. As a result, in every 

generation, the fitness function values of every individual are determined within the 

same population, and the PSO scheme initially processes the half of the top 

performers who exhibit exceptional performance. Here conduct crossover and 

mutation operators on updated positions of the global best particles of PSO, rather 

than reproducing the half top ones directly to the next generation. In order to prevent 

convergence on subpar and wrong solutions and to retain a high degree of population 

variety of potential solutions, selection operations are typically stochastic in nature. 

Following that, the probability-based crossover and mutation processes are done to a 

chosen chromosome. Additionally, the two individuals chosen at random in the 

tournament selection process are employed. When choosing which parent is superior, 

their fitness values are compared to the previous higher fitness value. Updated 

individuals expect the produced offspring to outperform part of the original 

population, with the weaker performers being eliminated from the population over 

successive generations. In contrast, PSO is used to inform the highest-ranking 

members of each generation in order to enhance PSO's capacity to limit and regulate 

velocities. Since every particle in the swarm gravitates toward better positions, the 
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population as a whole can eventually work together to find the best solution. In the 

context of deep CNNs, the justification likely stems from advancements in 

computational efficiency or complexity reduction, while still maintaining or 

improving watermarking performance. The HSO deep CNN model aims to optimize 

specific aspects of the deep learning architecture, contributing to streamlined 

processing and potentially enhancing overall effectiveness in audio watermarking 

tasks. 

3.4.4 Human Mental Search based Optimization Model 

It is a population based metaheuristic algorithm which explores the regions around 

each solution, then grouping for finding the promising region and finally moving 

towards best strategy. It is mimicking the behavior of the exploration strategies based 

on online auctions. At the end the auction winner might be having high probability of 

buying a costly product at the lowest price. 

Basic Structure of HMS Algorithm [41]. 

1. Each participant has a strategy α,  

2. Each person can provide a bid,  

3. The next bid of every person is consistent with the Levy flight distribution,  

4. Multiple bids are allowed,  

5. The losing participants try to pick the winner’s strategy for the subsequent 

auctions. 

In this specific type of algorithm each single solution is called a bid, and the Cost 

value of a bid is obtained by evaluating the cost function [15]:  

Cost V alue of a bid = f (bid) = f (x1, x2,...,xNVar ) 

Here, the mental search represents the number of consecutive values produced for 

each bid. Few of them are newly created bids around a bid based on Levy flight.  

Where a Levy flight is a particular type of random walk determining step size with a 

Levy distribution. Random walk is a Markov chain in which the next position depends 

only on the current position [41]. 
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3.4.5 Proposed SLOA –deep CNN: 

Proposed Search Location Optimization Algorithm (SLOA) 

The novel SLOA is inspired by the searching behavior of creatures [42], designed to 

enhance the searching speed of a creature using locating characteristics [41].  The 

Search location optimization, which is devised by hybridizing the locating 

characteristics of humans [41] and the searching behavior of a creature [42]. Drawing 

on the concept of undetermined optima in optimization problems as open patch-ups 

dispersed randomly across the exploration area, the followers in the group navigate 

the area in pursuit of these patches. The algorithm posits that the crucial mutational 

characteristics of promoters and feeders are similar, allowing them to move 

interchangeably. At each iteration the follower in the group positioned in the most 

promising location, providing the best fitness value is selected as the promoter. The 

promoter then halts, scanning the surroundings for the optimum solution. In the 

scanning process, the promoter employs eyesight, a primary scanning technique 

widely preferred by creatures. Different species utilize retinas with adjustable spatial 

resolutions for visual scanning, enhancing survival by swiftly focusing on potential 

targets. The SLOA strategy integrates the locating characteristics of humans to 

maximize fast scanning, minimize iterations, and reduce computational time, thereby 

improving the algorithm's efficiency. 

3.4.5.1 Inspiration 

In the SLOA strategy, creatures exhibit distinct roles based on their hunting and 

foraging behaviors. Promoters and feeders are two primary types[42], with dispersed 

followers contributing to the exploration dynamics by introducing randomness. The 

group comprises promoters, feeders, and dispersed followers, each playing a unique 

role. During a specific period, only one promoter is active for exploration, while the 

rest are designated as feeders to simplify computation. Notably, the assumption is 

made that all source feeders may converge towards the source discovered by the 

promoter. The SLOA strategy draws inspiration from common creature exploration 

characteristics and employs a communal scanning technique, making it particularly 

suited for addressing continuous function optimization problems. While the promoter 

in the SLOA strategy and the globally best particle share similarities, promoters 
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differentiate themselves by retaining the head angle information, a distinctive feature 

not shared by feeders and dispersed followers. The subsequent section details the 

mathematical modeling of the SLOA algorithm based on the exploration direction 

angle, elucidating its application in solving optimization problems for continuous 

functions. 

3.4.5.2 Mathematical modeling of search location optimization algorithm 

i) Initialize the positions and head angles 

In the j dimensional exploring region, during the 
thv  exploring period, the 

thu

follower has a current location denoted as
jv

uK λ∈ , and the initial head angles are set as 

follows: 

( )
( ) 1

11
,......, −∈=

−

jv

u

v

u

v

u j
λθθθ                                                             (3.23) 

The exploration direction of the 
thu  follower is defined by a unit vector, and this 

direction is quantified by the follower's head angle 
v

uθ through a Cartesian coordinate 

transformation originating from polar form. This transformation is articulated as 

follows. 

( ) ( ) jv

u

v

u

v

u

v

u j
nnN λθ ∈= ,.......,

1
     (3.24) 

( )∏
−

=

=
1

1

cos
1

j

w

v

u

v

u w
n θ       (3.25) 

( )( ) ( )∏
−

=
−=

1

1

1 cos.sin
1

j

w

v

u

v

xt

v

u w
n θθ      (3.26) 

( )( )v

ju

v

u j
n 1sin −= θ       (3.27) 

Consider the 
thv  exploration period, where the achieved exploration direction N , 

determined by the follower's head angle ( )4/,3/ ππθ =v

u  using equation (3.28), is 

expressed as:" 
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( )2/2,4/6,2/1=v

uN                                                                  (3.28) 

ii) Promoter scanning 

At the outset, the promoter randomly establishes three points within the exploring 

field for the scanning process. These points encompass the zero-degree, right-side 

hypercube, and left-side hypercube. The coordinates of the promoter points, denoted 

as qK , are expressed through equations (3.29), (3.30), and (3.31): 

( )vv

q

v

qy NwFKK θmax1+=        (3.29) 

( )2/max2max1 ϕθ FNkFKK vv

q

v

qF ++=      (3.30) 

( )2/max2max1 φθ FNwFKK vv

q

v

qw −+=      (3.31) 

In this context, the promoter is denoted as K , with yK  representing zero degrees, FK  

for the right side, and wK  for the left side. 1F  and 2F represent random numbers, 

where 1F  falls within the range of 
1N  with a standard deviation of 1 and a mean of 0. 

The maximum pursuit angle is denoted as max, and 2F  lies within the range of 
1−uN

with ( )0,1 , representing the maximum search space of the promoter and the target as

maxϕ . The movement of the individual towards the global best location is facilitated by 

adhering to the optimal strategy devised by the promoters. This strategy is expressed 

as follows: 

  ( )v

q

v

q

v

q KHFDKK −+=+ **1       (3.32) 

By employing equation (3.32), the promoter scanning phase undergoes modification 

in its standardized form, incorporating the exceptional locating characteristics of the 

human. This integration is reflected in equations (3.34) and (3.35), as expressed 

below: 

( ) ( ){ }v

q

v

q

vv

q

v

qy KHFDKNwFKK −+++= **
2

1
max1 θ   

 (3.34) 
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( ) ( ){ }HFDNkFDKK vv

q

v

qy **2
2

1
max1 ++−= θ      (3.35) 

The global best location is represented as H , and the constant term for the promoter 

scanning at zero degrees is denoted as D . Similarly, the modification of the promoter 

scanning phase, contingent on the right side of the hypercube, involves the 

incorporation of constant parameters λβ and , expressed as: 

( ){ } ( ){ }v

q

v

q

vv

q

v

qF KHFDKFNFkKK −+++++= *2/max21max λϕθβ                (3.36) 

( ) ( ) HFDFNwFDKK vv

q

v

qF **.2/.. max2max1 λφθβλλββ +++−+=   (3.37) 

The enhancement of the left side hypercube in the promoter scanning process is 

achieved by considering both the global and personal best locations of the human. 

This formulation is expressed as: 

              

( ) ( ) ( ){ }v

l

v

q

v

j

vv

l

v

qk KVFWKHFDKFNFkKK −+−++−+= ****2/
2

1
max2max φθ  

          (3.38) 

                   

( ) ( ) ( ) ( ){ }VFWHFDFNkFWDKK vv

l

v

qw ****2/2
2

1
max2max1 ++−+−−= φθ   (3.39) 

In this context, WandD signify constant terms, where H  represents the global best 

location and v denotes the personal best location of the promoter. This refinement 

ensures a more accurate identification of the global best location in the promoter 

scanning phase, incorporating the personal best solution across all angles. 

iii) Feeder selection 

The promoter identifies an optimal point using a suitable fitness function and 

subsequently migrates to another point if a better source is identified compared to the 

previous one. If no better source is found, the promoter remains at the current point by 

rotating its head to a newly generated angle. 
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max2

1 βθθ F
vv +=+

                                                          (3.40) 

 
The maximum rotating angle of the promoter is designated as

1

max N∈β . Upon the 

completion of t  iterations, in the event that the promoters do not identify the optimal 

region, they initiate a reset by rotating their heads back to an angle of 0  degrees, as 

articulated below: 

vv θθ =+!
                                                                         (3.41) 

Where, the term 
1Nt∈  is assumed as constant. 

In each iteration a group of followers is designated as feeders, tasked with tracking 

the promoters to reach sources identified by the promoters themselves. Among the 

three pivotal phases in the SLOA strategy, the first involves mimicking the region to 

discern the exploring area of the promoter. This mimicking phase entails stalking 

other entities without revealing any distinct searching strategy. In the stealing phase, 

feeders directly acquire sources from the promoters. In the 
thv  iteration, the 

characteristic of the mimicking region for the 
thu  follower can be conceptualized as a 

random movement towards the promoter, expressed as follows: 

( )v

u

v

l

v

u

v

u KKFKK −°+=+
3

1

                                          
(3.42)

 

Random walks are acknowledged as a highly effective exploration technique for 

discovering available sources in a stochastic manner. In the 
thv iteration, the 

randomized head angle is generated as uθ  using max2

1 αθθ F
vv +=+

 by selecting a 

random space and transitioning to a different point, as expressed by: 

( )`11 ++ += vv

uu

v

u

v

u NwKK θ                                              (3.43) 
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The algorithm SLOA is given as follows, 

Algorithm 1. Pseudocode for the proposed SLOA algorithm 

Input: jY  

Output: 1p

jY +  

Initialize positions and head angles 

Promoter scanning 

 At zero degree based on equation (21) 

 On the right side hypercube based on equation (22) 

 On the left side hypercube based on equation (23) 

Integrate human locating characteristics in equations (21), (22), and (23) 

 Obtain the global best location at zero degrees in equation (26) 

 Obtain the global best location at the right side hypercube in equation (28) 

 Obtain global best location and personal best location at left side hypercube in 

equation (30) 

Feeder selection 

 Based on the fitness of thj followers in a group 

Random walk as 1p

jY +  

End while 
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3.5 Results and Discussion:  

3.5.1 Experimental Result for Basic NN Model: Neural Network (BPNN) in 

conjunction with the DWT. 

 

a)  

 

b) 
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c) 

 

d) 

 

Figure 3.7: Experimental result obtained using NN model a) Audio Signal before 

applying DWT, b) Audio Signal after applying DWT c) Sample Watermark 

Image and d) Extracted Watermark Image. 
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3.5.2 Experimental setup for proposed SLOA. 

The proposed digital audio watermarking system with SLOA is developed using 

Python, and the system is configured with the PyCharm software running on the 

Windows 10 operating system. 

3.5.3 Dataset description: The input image for the brain tumor is sourced from the 

BraTS database, presenting a multimodal composition with diverse medical scans. 

Subsequently, experts interpreted the available scans to identify different glioma sub-

regions within the BraTS database. 

3.5.4 Experimental Result for Proposed Deep CNN with SLOA: 

The experimental outcomes for embedding the image into the audio signal are 

presented in Figure 3.8, showcasing the input signal, the associated embedded image, 

the recovered image, the original image, and the embedded signal under different 

noise conditions. The analysis encompasses various types of noise, including salt and 

pepper noise, Gaussian noise, and random noise. Notably, the proposed method 

demonstrated robust performance, even in the absence of noise. 

 

Salt and pepper noise 

Input signal Original image 

 

 

 

Embedded signal                            Recovered image 
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Input signal Original image 

Gaussian noise 

 

 

 

Input signal Original image 

 

                 

                  

Input signal                       Original image 

Random noise 
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Input signal                         Original image 

 

 

                     

Without noise 
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Figure 3.8: Experimental result obtained using the deep CNN with SLOA model 

3.5.5 Performance analysis: Basic Neural Network model 

The neural network proposed for the watermarking process performs logical 

calculations to complete the task. This developed neural network comprises two input 

features and one output feature, with a learning rate set at 0.01. The activation 

function employed is the Sigmoid  function, and the model undergoes training for 

100,000 epochs. 

 

Figure 3.9: Graph representing the model training for 100000 epochs and 

reduction in loss in NN Model 
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3.5.6 Achievements and analysis of Deep CNN in audio watermarking: 

The effectiveness of the proposed optimization-based digital audio watermarking is 

delineated through an assessment involving the experimental setup, dataset 

description, and comparative analysis. The experimental results are compared on the 

basis of MSE, BER and SNR. 

3.5.7 Performance analysis 

In this section, the Mean Squared Error (MSE), Bit Error Rate (BER), and Signal-to-

Noise Ratio (SNR) of the SLOA optimization are evaluated across five distinct audio 

signals. The analysis takes into account various noise scenarios, including salt and 

pepper noise, Gaussian noise, random noise, and a noise-free condition. 

 

3.5.7.1 Analysis based on different signals performance for Image-1: 

The performance of SLOA optimization across five different signals under various 

noise conditions, as assessed by MSE, BER, and SNR, is presented in Table 3.2. In 

table 3.2, the MSE values for signal 5 are reported for salt and pepper noise, Gaussian 

noise, random noise, and the noise-free scenario, measuring 0.065, 0.062, 0.059, and 

0.056, respectively. 

Table 3.2) displays the BER for signal 5, indicating values of 0.081 for salt and 

pepper noise, 0.081 for Gaussian noise, 0.081 for random noise, and 0.035 without 

noise. 

Table 3.2) showcases the SNR for signal 5 under different noise conditions, with 

values of 53.422 dB for salt and pepper noise, 54.422 dB for Gaussian noise, 54.422 

dB for random noise, and 56.422 dB without noise. 
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3.5.7.2 Performance Analysis for Image-1 based on noise intensity 

The SLOA optimization performance for various noise intensities using the various 

noise in terms of the MSE, BER, and SNR are revealed in Figure 3.10. Figure 3.10 a) 

represents the MSE for both the noise intensity and their corresponding noises. The 

MSE for the 0.4 noise intensity based on the 3 different noises, and without noise are 

0.093, 0.093, 0.090, and 0.078. 

Figure 3.10 b) represents the BER for both the noise intensity and their various 

corresponding noises. The BER for the 0.4 noise intensity based on the 3 different 

noise, and without noise are and without noise are 0.074, 0.065, 0.054, and 0.043. 

Figure 3.10 c) represents the SNR for both the noise intensity and their various 

corresponding noises. The SNR for the 0.4 noise intensity based on the 3 different 

noises, and without noise are 39.001 dB, 40.001 dB, 41.001 dB, and 42.001 dB 

respectively. 

 

a) 
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b) 

 

c) 

Figure 3.10: Performance analysis for Image-1 a) MSE, b) BER, c) SNR 
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3.5.7.3 Performance analysis based on different signals for Image-2. 

The performance of SLOA optimization across five different signals under various 

noise conditions, as measured by MSE, BER, and SNR, is presented in Table 3.3. In 

table 3.3 the MSE values for signal 5 are reported for three different noises and the 

noise-free scenario, measuring 0.046, 0.042, 0.038, and 0.034, respectively. 

Table 3.3) displays the BER for signal 5, indicating values of 0.079 for the three 

different noises and 0.051 without noise. 

Table 3.3) showcases the SNR for signal 5 under different noise conditions, with 

values of 57.634 dB for the three different noises and 60.634 dB without noise. 
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3.5.7.4 Performance analysis for Image-2 based on noise intensity 

The performance of SLOA optimization under various noise intensities, assessed 

through MSE, BER, and SNR, is depicted in Figure 3.11. In Figure 3.11a), the MSE 

values for a noise intensity of 0.4 are reported for three different noises and the noise-

free scenario, measuring 0.110, 0.060, 0.058, and 0.055, respectively. Figure 3.11b) 

illustrates the BER for different noise intensities, with values of 0.073, 0.070, 0.062, 

and 0.054 for a noise intensity of 0.4 with three different noises and without noise. 

Figure 3.11c) depicts the SNR for various noise intensities, reporting values of 42.001 

dB, 43.002 dB, 44.004 dB, and 45.011 dB for noise intensity of 0.4 with three 

different noises and without noise. 

 

a) 
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b) 

 

 

Figure 3.11: Performance analysis  for Image-2 a) MSE, b) BER, c) SNR 
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3.6 Summary: 

In conclusion, this research significantly advances the field of digital audio 

watermarking by proposing a novel deep learning-based system that effectively 

addresses the limitations of traditional methods. Leveraging the DWT and an 

optimized DCNN, the proposed model excels in selecting optimal embedding 

locations, enhancing robustness against various attacks. The meticulous hyper 

parameter tuning through search location optimization contributes to minimizing 

errors in the classifier. Experimental results underscore the superior performance of 

the proposed model, achieving a BER of 0.082, MSE of 0.099, and SNR of 45.363, 

surpassing existing watermarking models. The research also provides a 

comprehensive overview of hybrid and novel techniques in digital audio 

watermarking, emphasizing the efficacy of neural network architectures, particularly 

the DCNN, in elevating the security and performance of watermark embedding and 

extraction processes. This work not only demonstrates the feasibility of incorporating 

deep learning into audio watermarking but also underscores the potential for future 

advancements in securing digital data. 

 

 

 

 

 

 

 

 

 

 


