CHAPTER -5

MULTI-OBJECTIVE HYBRID OPTIMIZATION BASED
ENERGY EFFICIENT D2D COMMUNICATION WITH
DEEP REINFORCEMENT LEARNING ROUTING
PROTOCOL

5.1 Introduction

Device-to-device (D2D) communication represents the BSG wireless network protocols
with highest capability by offering spectrum efficiency, energy efficiency, low latency,
ubiquity, and high data rates for peer-to-peer users. The advantages of D2D protocol
makes it capable of being fully utilized in multi-hop interaction scenarios. Although it is
a difficult functioning, energy-efficient multi-hop networking is widely utilized for
efficient communication. As a result, a multi-hop routing system based on deep
reinforcement learning is presented. The suggested double deep Q learning technique for
discovering the potential paths in this takes into account the energy consumption. Here,
the Gannet Chimp optimization (GCO) algorithm is introduced for the selection of
optimal path by considering the fitness function based on multi-objective factors for

enhancing the performance of the model.
5.2. Problem Statement

Through an effective communication approach, D2D communication can take advantage
of possibilities created by mobile users frequently moving from one location to other.
During these unplanned conversations among people, motion is intimately related to the
data flow that occurs. Through the utilization of customer activity, D2D-compatible
applications and services can visualize very ad hoc and unpredictable activities. It is
challenging to meet all of the demands of the consumer because their requirements are
complicated. The key concern is effectively anticipating the growth of communication
relationships between D2D consumers. Movement has an effect on all aspects of the
D2D system, particularly operating area, strength of the signal, and bandwidth
requirements.D2D communication using 5G wireless technologies is widely employed in
a variety of application industries, such as the emergency communications, auto industry,

and many others. Despite the existence of a number of fascinating researches on
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conversations between devices which have contributed significantly to and boosted
awareness of D2D interactions, the essential discipline of activity study keeps on
growing. For instance, reduction of interference, capacity and offload, efficacy in terms
of energy, delay, and many other concerns are now being addressed by routing protocols;

nevertheless, the creation of an energy-efficient routing is a more crucial task.
5.3. Proposed Energy Efficient D2D Communication for 5G Networks

In this research, a multi-hop routing technique for energy-efficient D2D communication
between 5G users of the network is proposed. The suggested double deep Q learning first
identify the potential routes for D2D interaction over several hops. In order to prevent
overly optimistic problems within the framework of the double deep Q learning, two
distinct DeepCNN are used while estimating the reward function and Q-value. In this
instance, the suggested double deep Q learning algorithm is used to assess the node's
consumption of energy in order to accomplish energy-efficient routing. The newly
devised Gannet Chimp Optimization (GCO) algorithm finds the best betting route based
on the discovered routes. In order to successfully capture the prey, the GCO combines
the gannet's hunting behavior with a chimpanzee's fighting behavior. To increase the rate
of convergence with the best global solution, hybridization is devised. The selection of
the best path is made here by considering the multi-objective fitness function. In order to
develop a multi-objective fitness function that improves the effectiveness of path
selection, degree of connectedness, hop count, packet latency, residual energy, and
bandwidth are taken into account. Figure 5.1 shows the workflow for the newly devised

D2D communication system.
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Figure 5.1: Newly devised Energy Efficient D2D communication protocol
5.3.1 Data Acquisition

Network simulation is used to gather the data needed for the suggested D2D
communication through multi-hop energy-efficient routing. The collected information is

processed in the suggested approach.
5.3.2 Double Deep Q learning for path detection

By taking energy consumption into consideration, double deep Q learning is able to
identify the potential routes for D2D communication utilizing multi-hop routing.
However, it is unable to handle complicated parameters because the classical Q learning
approach employs the Markov decision-making approach to address problems in
learning through reinforcement. Additionally, problems caused by the curse of
dimensionality increase the level of difficulty residing in computations and slow down
convergence. The deep neural network (DNN) is used in the newly devised method for
assessing the Q-value and reward in the deep-Q-learning strategy for solving these
problems.The discrete value function of Q-learning has been replaced by the DNN,
however deep-Q-learning remains susceptible to overly optimistic problems because

only one DNN is used to estimate both the reward and Q-value. By using two distinct

123



DNN to estimate the reward and Q-value, the double deep Q learning effectively

addresses the overly optimistic problem.
5.3.2.1 Deep Q-Learning

The traditional Q learning method acquires state and action as the data inputs and
produces the result as a Q-value. Yet, using the state value, a variety of actions are
generated by deep Q learning generates as its output. Figure 5.2, which is provided

below, structured the deep-Q-learning and Q-learning processes.
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Figure 5.2: System Model of: (a) Q-learning and (b) Deep Q Learning

Here, for the state X, the rewards are evaluated as v/ ., wherein the action is defined as

XX
F. The term g defines the discount factor and Ej;  Tefers to the action-state pair

probability. The routing of multiple hops between the nodes that arrives at the target is
described as action, whereas D2D communication between individuals of 5G networks is

expressed as state.
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5.3.2.2 Reward and Q value Evaluation

The action of an agent in deep Q-learning is determined by the reward determined based
on the state, determines the users communicate with one another. Here, the energy
consumption is taken into consideration to provide the energy-efficient D2D interaction

between individuals.Let us consider the userm,, who is considered as source node and

the receiver node is defined as m, . The evaluation of the reward function is defined as,

ne

Yoy =P~ [1m )+ 1my )|+ ez [, )+ lomy, )] (5.1)

where, the action-state pair is defined as (m , fs)and a, and a, refers to the weighting

parameter. The reward function is defined as Y’ZE > then the cost function enunciated as

the punishment factor is defined as p.

If the communication among the nodes succeeds, the reward value is calculated by

considering the expression (5.1); otherwise, it is determined as,

ne

Ymc,mb =—p><77—7/11(mc)+7/2n(mc) (5.2)

where, prefers the drop case of communication and the energy evaluation for the

communication is defined as /(m, )and is formulated as,

_ Eresi (mc)
l(mc)—l—m (5.3)

where, the initial energy varies from [0,1] and is referred as E,,;, then, the residual

energy is represented as E,,; . The normalized form of energy is indicated asi(m,) that

resi

plays a crucial role in communication between the nodes. Because, for the energy

efficient routing protocol, E,.;is highly essential. The communication between the

nodes takes place when the E,,; value becomes higher for the avoidance of

resi

communication dropping. Next, the group's reward function is stated as follows:

n(m, )= arctan(E,y (m, )~ E(m, ) (5.4)

T

where, the term E defines the residual energy of a group in average. Then, the final

reward function is enunciated as,
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fe fe
Reward=Ey <Y< +E(1-Ey )xY/c (5.5

me,mp,

Estimation of Q-Value: For the acquisition of the highest reward value, the Q-value is

evaluated to make the required action. The Q-value is enunciated as,
0-V(X, f)=Reward+ BlO-V(X, f)+ Max » (0-V(X",))| (5.6)

where, estimation of the Q-value is defined as O —J and is highly helpful in choosing the

energy efficient node for D2D communication.
5.3.2.3 Double Deep Q Learning based on DeepCNN

The traditional double deep Q learning utilizes the DNN for estimating the Q-value and
reward function. In the proposed methodology, the deep convolutional Neural Network
(DeepCNN) is utilized for estimating the Q-value and reward function. The detailed

description is given below.
5.3.2.3.1 Architecture of DeepCNN

For the algorithms using deep learning to improve their capacity to generalize, which
makes the results easier to use via multiple layers, complicated characteristics must be
trained. As a result of favorable findings, deep learning techniques are now frequently
used to solve numerous application domains' that considers the computer vision-related
problems, such as recognition, prediction, classification, and other tasks. Some of deep
learning algorithms like recurrent neural networks, deep belief networks, and
convolutional neural networks are utilized in various domains. In addition, the
requirement of the additional feature extraction is not essential for the deep learning
methods' due to the inbuilt automatic feature extraction. So, the estimation of the Q-value
and reward function are devised using the deep CNN (DeepCNN) in the suggested path
detection model. Figure 5.3 shows the design of the DeepCNN.
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Figure 5.3: Architecture of DeepCNN

Here are comprehensive explanations of the DeepCNN's layer-by-layer operations for

determining the Q-value or Reward.

Conv Layer: The Conv layer-1 gathers the network's input parameters for convolving it
for the generation of the feature maps using the kernel function. The following is a

definition of the formula for the conv layer outcome:
R-0,=YX"*y"+Q" (5.7)
where, the outcome of the conv layer is defined as R—Q, . The input feature is referred as

X"and the weight is represented asY". The bias value is notated as 0", wherein the

output map corresponding to the W/ " feature is indicated as w.

Max-Pooling Layer: In order to minimize the attribute duplication during the process of
pooling, the relevant attributes have been taken out that lowers the amount of complexity
of the processing burden. While retrieving relevant attributes in the newly devised
approach, the max-pooling procedure is used. In Figure 5.4, a max-pooling procedure

sample is shown.
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Figure 5.4: Max-pooling operation

Flatten Layer: The flatten layer employs the attribute's conversion into one

dimensionality for further processing.

Fully Connected Layer: The fully connected layer's output the employs softmax
activation, provides the reward and the Q-value computation. The definition of the

assessment of the result is

z
em

R-0yp, =— (5.8)

>

n=1

where, the softmax function is indicated asR-0Q,,, the element corresponding to the

input attribute is indicated as z,, , and irefers to the outcome.

5.3.3 Optimal Path detection using the proposed Gannet Chimp Optimization
Algorithm

The suggested Double Deep Q Learning includes a variety of paths throughthe possible
paths identification. The suggested GCO method selects the best path from among all
those that have been identified by the deep learning technique. Using characteristics
including trust factor, hop count, bandwidth, packet latency, and energy consumption, the

GCO determines the best path by considering the multi-objective fitness function.
5.3.3.1 Multi-objective Fitness Function

Trust factor, hop count, bandwidth, packet latency, and energy consumption are taken
into account while evaluating the best path utilizing the suggested GCO algorithm to

compute the multi-objective fitness function. Here is the explanation in more detail.
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5.3.3.1.1 Residual Energy: For user-to-user D2D communication to be energy-efficient,
residual energy is considered as a critical component. Here, the device with the maximal
residual energy is taken for uninterrupted user-to-user communication because sufficient
energy is essential for efficient communication. The formulation for the remaining

energy measure is defined as:
RE=E, _(Etxn +Erxn) (59)

where, the energy utilized for sender is indicated ask,,, the energy utilized by the

txn >

receiver is indicated asE

rxn>

the residual energy is defined as RE, and the present
remaining energy of the node is indicated as £, . The node with higher RE is preferred for

D2D communication.

5.3.3.1.2 Packet Latency: The network's time utilized on D2D communication is known

as the latency. According to its definition, it is formulated as:
PL-a %(N) (5.10)

where, the packet latency is notated as PL, the count of bits in the packet is notated asa,
the number of packet is represented as N, the capacity of the link is indicated asd, the

size of data is indicated as O and the bit size of header is notated as P .

5.3.3.1.3 Bandwidth: For user-to-user communication without any interruptions, higher
bandwidth is required. To ensure efficient routing, the resource usage must be in a small
portion of its available bandwidth. To ensure effective information routing, the minimum
of bandwidth must be taken into account that is denoted as Fy;. For communication
among devices through node sensing with energy efficient, the minimum bandwidth is

utilized.

5.3.3.1.4 Hop Count: For user communication, the suggested routing protocol employs a
multi-hop route, but the way with a high number of hops requires enormous energy.

Therefore, the fewest hops path is taken into account to save energy usage. Fj-denotes

the hop count.
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5.3.3.1.5 Degree of Connectivity:

The estimation of degree of connectivity is essential for identifying the capability of the
node to handle the number of devices within the specified times. The connectivity is

defined as DC;and the neighbour node is indicated as NN,. Then, the expression for

calculating the degree of connectivity is formulated as,

pe, =— i (5.11)
D; ; <Rp

where, the transmission range is represented as R, the distance between the nodes is

indicated as D; ;.

Thus, the multi-objective fitness function is formulated as,

MO0 = Ma{RE, DC, )Min(PL, Fyyc., Fgy, ) (5.12)

Here, the multi-objective fitness function is indicated as MO, . The fitness function is

normalized within the range of [0,1] for making the computation simpler.

5.3.3.2 Gannet Chimp Optimization

In order to successfully capture the solution more efficiently with fast convergence rate,
the Gannet Chimp Optimization (GCO) is introduced, which combines the chimpanzee's
fighting style with the gannet's hunting strategy. By using balanced diversification and
intensification capabilities, hybridization algorithm aims to achieve the global best
solution. Without becoming stuck at a local optimal solution, balanced optimization

guarantees the better solution to solve the problems of optimization.
Motivation behind the proposed Gannet Chimp Optimization

A carnivorous bird named Gannet [26] hunts its prey (crabs, amphibians, fish, and other
creatures) at the water's edge and in shore areas. With stubby bodies, narrow necks, and
strong eyes they live in flocks for hunting. The bird's improved eye sight makes it
possible to recognize the target precisely far away, which makes it easier to catch. The
prey never has a chance to escape as a result of being in the Gannet’s field of vision. A
better surrounding of the target is also ensured by the bird's V- and U-shaped dive
behavior. By disregarding water resistance, the bird exhibits a high level of capture

ability, making it incredibly easier to obtain the prey.
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The chimp's fighting criteria is incorporated in this case to increase the Gannet's capture-
ability and produce a fast-convergence. Chimp is a large ape from Africa that is a
member of the Hominoid family is the chimpanzee [27]. The attacker, chaser, barrier, and
driver categories of chimps are taken into consideration when attempting to solve
optimization problems. Every chimpanzee category in this scenario plays a unique part in
obtaining the prey. All the chimpanzees combined together to create their assault
approach more efficient. Therefore, in order to find the global best solution for resolving
the optimization problem, the chimp's attacking approach is hybridized to improve the

local search capabilities of the Gannet.

In the suggested approach based on the multi-hop routing strategy the GCO is used to
discover the energy-efficient path between users of D2D communication. The solution
accomplished by the optimization is nothing but the solution utilized for identifying the

best path.
3.3.2.1 Mathematical Modelling

The candidate solutions (Gannets) and the target (prey) are distributed at random manner
in the feature space during the initialization phase of the proposed Gannet chimp
optimization (GCO) algorithm. To solve the issues concerning the optimization, each
candidate's feature space solution is considered. In the feature space, the expression for

initialization is written as,

LT ) TSR < S ary
dry t Ayt Aoy dry
A=| e oay, e (5.13)
Ay, 0 Qu-yy 0 Auaya Auany
| duy 7t 4y, vt Ay duy

Here, the x" position of the candidate is defined as a,. For the dimension y , the x"

search agent’s solution is written as:

a,, =g x(0, -8, )+S,  x=12..U, y=12.F (5.14)
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where, U notates the population and the dimension of the solution is notated asV . The
S,andQ  are the two boundaries of the feature space concerning the lower and upper
limits. [O,l]is the range of randomly chosen variable g,. Each search agents has the

corresponding memory D for updating their solutions.

(i) Diversifying the solution: During the diversification stage, the candidate explores
through a variety of diving strategies in an effort to find the solution. The definition of

the terms for diving strategies is written as:
M:Z*cos(Z*ﬂ*gz)*t (5.15)
N=2%B(2xm*gy)*t (5.16)

where, V-shaped movement is notated as N and the U-shaped movement is notated as D
. The definition of the exploration stage is written as:
T

t=1-—— (5.17)

T max

where, [0,1] is the range of randomly chosen variable g;and g,. 7., notates the maximal

iteration and¢ indicates the current iteration. The expression for the angle of diving is

written as:

B(a)= (5.18)
—*q—1 ae(r2r)
T
The solution accomplished in the diversification is stored in D and is written as:
ANt)+u, +u, , 205
D (t+1)= ) +u vy, f (5.19)
A(t)+v, +v, ,f<05

where, f notates the equal probability of U and V diving. Then the factors are expressed

as,
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uy = K (4, (1)~ 4.(¢)) (5.20)

vy = L#(A4,(c)-4,()) (5.21)
K=(2%g, —1)*M (5.22)
L=Q2x*gs—1)xN (5.23)

where, Ae(t)notates the randomly selected search agent. The average solution A, (t)

accomplished by the search agents in the written as:

A= 24,0) (524)

The range of u; is [—M,M] and the range of v, is [— N, N].

(ii) Intensifying Solution: As a result of the candidates' global solution identification
during the diversification stage, the solution is then exploited during the local search. To
capture the prey in this criteria, the candidate employs its behavior of capturability and is

outlined as,

1

= (5.25)
G *t,
where, £, notates the iteration corresponding to the intensification and is written as:
t, =1+ (5.26)
T

The factors like velocity and mass are considered by the algorithm for estimating the

search agent’s energy G and is written as:

H * s?
P

G

(5.27)

where,1.5m/svelocity s is assigned for the candidate with 2.5kgmass. The parameters P

1s defined as:
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P=02+(2-02)*g, (5.28)

where, [0,1] is the range of randomly chosen variable g¢. The position updation for the

search agent is written as:

A, A A\t), C>d
LG AN A Al DI
where, 4,,,, (t)notates the best agent and the factors y and R are estimated as,
= CHA) Ay ) 530)
R=Lew(V) (5.31)

Here, R is the parameter considered for performing the levy flight and is written as:

Levy(V)=0.01x T‘Ff (5.32)
where,
1/ p
F(l + ,u)x s1n(ﬂ—éu
B= (5.33)

The values of the random variables yand [ has the range of [O,l]and the predefined
constant u has the value of 1.5. As a result of the smart target's quick turn and escape

from the search agent in this case, the gannet is unable to capture the solution and must
instead look for another fish. As a result, the suggested GCO algorithm incorporates the
chimpanzee's fighting conduct to reduce the ability of fish to escape. The chimp updates
the solution, which is developed using the solution from all four varieties of chimps. Its
updated solution is written as,

D,+Dy+Dy+D

D (t+1)="4 34 £ (5.34)
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where, D_(t+1)notates the solution updation, D refers the attacker, Dgnotated as the

barrier, Dprefers the driver, D, refers the carrier. The individual chimp's position is

stated as follows:

D,=D,~k(q,) (5.35)
Dy =D, —k,(q5) (5.36)
D. =D; —ks(qc) (5.37)
Dy, =Dy —ky(qp) (5.38)

where, ¢ ,notates the distance among the attacker and prey, qpnotates the distance
among the barrier and prey, g notates the distance among the carrier and prey, and g,
notates the distance among the driver and prey. The coefficient k|, k,,k;,and k,ranges

between [O,l]that forces the candidates to capture the target. D,,D,,D;,and D,refers to

the best solutions acquired by the attacker, barrier, carrier and driver. The hybridized

solution updating utilizing the suggested GCO is then written as,

D (t+1)=0.5D (t+1)5,,., +0.5D (¢ +1) (5.39)

Gannet Chimp

0.5[¢ # 7 # (A, () = Aoy (1)) + A4, (£)]+

0.5 D,y+Dg+Dp+ D, ’ C>d
4

o) 0 Sty (0= (A, €)= Ay (1) R 1] (540

' D,+Dy+D, +D, |
4

N

0.5

, C<d

(iii) Feasibility estimation: The multi-objective fitness function established in equation

(5.12) is used for the updated solutions from the previous step to assess their viability.

(iv) Stopping Criteria: The attainment of 7,,,, or the optimal best solution stop the

iteration of the algorithm. The pseudo-code for the proposed GCO algorithm is depicted
in Algorithm 5.1.
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Algorithm 5.1: Pseudo-code for proposed GCO algorithm

Pseudo-code for proposed GCO algorithm

2 Locate the population (candidate) of Gannet in the search space

4 Estimate the fitness for all the updated solutions

6 If £>05

8 else

10  Endif

12 Update the solution using equation (5.40) based on first condition

14  Update the solution using equation (5.40) based on second condition

16  Recheck the feasibility of the solution

18 End while

20 end

In the 5G networks, the ideal path for D2D communication between users is thus
selected using the GCO algorithm, which also provides energy efficient routing with

multi-hop.
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5.4. Results and Discussion

MATLAB, Windows 10, and 8GB RAM PC configuration system is used to develop the
suggested multi hop routing with energy-efficient approach. To demonstrate the
superiority of the developed model, the experimental results are assessed using a variety
of metrics. To compare the suggested approach to existing energy-efficient D2D routing
protocols, such as DRL [24], SG-EECC [22], Modified Derivative Algorithm [21], and
MBLCR [25] are compared with the newly devised approach.

5.4.1 Simulation Outcome

Figure 5.5 shows the simulation results of the suggested protocol among devises by
changing the number of rounds. In this case, a multi-objective fitness function is taken
into account while designing a multi-hop path for user communication in the 5G
network. The path detection using the deep learning approach and optimal path selection

technique are utilized for the energy efficiency of the suggested protocol.
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Figure 5.5: Simulation outcome of the proposed routing protocol based on (a) 50

nodes, (b) 100 nodes and (c) 150 nodes
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5.4.2 Performance Evaluation

The performance of the newly devised D2D deep reinforcement learning based routing
protocol by varying the iteration size and population are detailed in this section. Besides,

the number of users in network varied to depict the robustness of the model.
1. Analysis by varying Iteration

The analysis by varying the iteration of the newly introduced GCO algorithm based on
the various assessment measures with 50, 100 and 150 users are elaborated in this

section.
(a) Using 50 users

Average Residual Energy: The average residual energy by varying the number of
communication rounds and iteration size of the newly devised GCO algorithm in the
deep learning based multi hop routing protocol is depicted in Figure 5.6. The average
residual energy acquired with 500 round is 0.95 for 20 iterations, which is further
reduced when the round increases to 2500 with the average residual energy of 0.70.
Hence, the elevation in the number of rounds consumes more energy. Still, the increase
in iteration elevates the performance of the model by enhancing the amount of residual
energy. For example, the average residual energy estimated with 20 iterations and 1000
round is 0.84, which is 0.89 when the iteration increased to 100. The detailed analysis is

depicted in Table 5.1.

~ | |—¢—Iteration size = 20

—+—|teration size = 40 \\

0.75 Iteration size = 60 , 0
—<—|teration size = 80 R
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Number of Rounds

Figure 5.6: Average Residual Energy based on Iteration with 50 users
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Table 5.1: Average Residual Energy based on Iteration with 50 users

Iteration /
500 1000 1500 2000 2500
Rounds
20 0.95 0.84 0.80 0.72 0.70
40 0.97 0.85 0.82 0.76 0.71
60 0.97 0.87 0.85 0.79 0.76
80 0.98 0.89 0.87 0.82 0.79
100 0.98 0.89 0.88 0.84 0.81

Latency: The latency of the D2D communication depicts the time take for the

information to reach the destination from the source. The analysis based on latency by

varying the iteration with 50 users is portrayed in Figure 5.7. While considering the 20

iterations of GCO algorithm with 500 rounds, the latency estimated by the proposed

method is 1.85, which is increased to 3.56, when the round is increased to 2500. In

contrast, the latency gets minimized with increase in the number of iterations of the

algorithm. For example, with 1500 round and 20 iterations, the latency estimated by the

newly devised method is 2.57, which is further minimized to 2.13 with 100 iterations.

Thus, the increase in iteration elevates the performance and increase in number of rounds

limits the performance. The detailed analysis is presented in Table 5.2.
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Figure 5.7: Latency based on Iteration with 50 users
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Table 5.2: Latency based on Iteration with 50 users

Iteration /
500 1000 1500 2000 2500
Rounds
20 1.85 2.38 2.57 3.21 3.56
40 1.97 3.06 2.90 3.37 3.77
60 2.18 331 3.42 3.37 3.96
80 2.34 3.41 3.73 4.06 4.10
100 1.63 1.93 2.13 2.43 3.06

Network Life Time: The network lifetime based analysis with 50 users by varying the

iteration size is depicted in Figure 5.8. The network lifetime estimated by the newly

devised D2D communication protocol with multi hop routing is 98.17 with 20 iteration

and 500 rounds. The same is 89.76 with 2500 rounds and 20 iterations, which indicates

that the minimal rounds provides the better network lifetime. Also, the network lifetime

estimated is 91.82 with 1500 rounds and 20 iterations, which elevates with 96.31 with

100 iterations and 1500 rounds. Here, the analysis indicates the enhanced performance

with minimal communication round and higher iteration. The detailed analysis is

presented in Table 5.3.
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Figure 5.8: Network Life Time based on Iteration with 50 users
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Table 5.3: Network Life Time based on Iteration with 50 users

Iteration / 500 1000 1500 2000 2500
Rounds
20 98.17 94.18 91.82 90.64 89.76
40 98.24 94.57 92.85 90.80 90.73
60 98.63 95.75 94.82 9211 91.09
80 99.09 97.44 95.83 92.39 91.92
100 99.55 98.47 96.31 94.08 93.46

Packet Delivery Ratio: The interpretation of the packet delivery ratio for various
iteration sizes of the newly devised GCO algorithm of the introduced D2D multi-hop
routing with 50 users is depicted in Figure 5.9. For 20 iterations, the packet delivery
ration accomplished by the newly devised protocol is 99.54 with 500 rounds, which is
91.29 when the round is increased to 2500. In contrast, the packet delivery ratio acquired
by the proposed model is 95.18 with 20 iterations and 1000 rounds. Besides, the packet
delivery ratio measured by the proposed protocol with 100 iterations is 98.07 with 100

rounds. The detailed analysis is presented in Table 5.4.
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Figure 5.9: Packet Delivery Ratio based on Iteration with 50 users
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Table 5.4: Packet Delivery Ratio based on Iteration with 50 users

Iteration /
500 1000 1500 2000 2500
Rounds
20 99.54 95.18 94.63 93.72 91.29
40 99.62 95.93 95.05 95.12 92.61
60 99.61 96.30 95.21 95.00 92.94
80 99.69 96.58 96.29 95.59 92.69
100 99.89 98.07 97.22 96.31 93.24

Throughput: The throughput based analysis of the D2D protocol by varying the iteration
of the GCO algorithm is depicted in Figure 5.10 with 50 users. The throughput estimated
by the newly devised protocol with 20 iterations and 500 communications round is 6,
which is 12 with 2500 rounds. While analyzing the performance with 2000 rounds and
20 iterations, the throughput estimated by the proposed protocol is 12. When the iteration
increased to 100, the throughput estimated is 18 that depict the better outcome of the

model with increase in iteration. The detailed analysis is presented in Table 5.5.
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Figure 5.10: Throughput based on Iteration with 50 users
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Table 5.5: Throughput based on Iteration with 50 users

Iteration / 500 1000 1500 2000 2500
Rounds
30 6 g 12 12
40 8 10 13 15
0 9 12 15 16
30 10 13 17 19
100 12 IS 18 20

(b) Using 100 Users

Average Residual Energy: The average residual energy by varying the number of

communication rounds and iteration size with 100 users is depicted in Figure 5.11. The

average residual energy acquired with 500 round is 0.94 for 20 iterations, which is

further reduced when the round increases to 2500 with the average residual energy of

0.63. Hence, the elevation in the number of rounds consumes more energy. Still, the

increase in iteration elevates the performance of the model by enhancing the amount of

residual energy. For example, the average residual energy estimated with 20 iterations

and 1000 round is 0.80, which is 0.93 when the iteration increased to 100. The detailed

analysis is depicted in Table 5.6.
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Table 5.6: Average Residual Energy based on Iteration with 100 users

Iteration / 500 1000 1500 2000 2500
Rounds
20 0.04 0.80 0.74 0.66 0.63
40 0.95 0.86 0.80 0.69 0.66
60 0.96 0.88 0.80 0.70 0.67
80 0.97 0.90 0.81 0.73 0.70
100 1.00 0.93 0.85 0.83 0.75

Latency: The analysis based on latency by varying the iteration with 100 users is

portrayed in Figure 5.12. While considering the 20 iterations of GCO algorithm with 500

rounds, the latency estimated by the proposed method is 4.76, which is increased to

11.64, when the round is increased to 2500. In contrast, the latency gets minimized with

increase in the number of iterations of the algorithm. For example, with 1500 round and

20 iterations, the latency estimated by the newly devised method is 9, which is further

minimized to 5 with 100 iterations. Thus, the increase in iteration elevates the

performance and increase in number of rounds limits the performance. The detailed

analysis is presented in Table 5.7.
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Figure 5.12: Latency based on Iteration with 100 users
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Table 5.7: Latency based on Iteration with 100 users

Iteration /
500 1000 1500 2000 2500
Rounds
20 4.76 7.18 9.00 10.09 11.64
40 4.64 6.27 8.03 9.10 9.53
60 4.38 5.75 6.72 7.62 8.15
80 4.29 4.86 5.99 6.89 8.02
100 3.62 4.51 5.00 5.76 6.58

Network Life Time: The network lifetime based analysis with 100 users by varying the

iteration size is depicted in Figure 5.13. The network lifetime estimated by the newly

devised D2D communication protocol with multi hop routing is 97.17 with 20 iteration

and 500 rounds. The same is 75.11 with 2500 rounds and 20 iterations, which indicates

that the minimal rounds provides the better network lifetime. Also, the network lifetime

estimated is 86.23 with 1500 rounds and 20 iterations, which elevates with 97.03 with

100 iterations and 1500 rounds. Here, the analysis indicates the enhanced performance

with minimal communication round and higher iteration. The detailed analysis is

presented in Table 5.8.
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Figure 5.13: Network Life Time based on Iteration with 100 users
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Table 5.8: Network Life Time based on Iteration with 100 users

Iteration / 500 1000 1500 2000 2500
Rounds
20 97.17 92.62 86.23 80.13 75.11
40 97.26 9304 88.47 8335 78.58
60 98.01 94.04 91.76 86.80 81.33
80 99.14 96.20 9425 91.91 85.60
100 99.69 98.87 97.03 94.55 88.24

Packet Delivery Ratio: The interpretation of the packet delivery ratio for various
iteration sizes of the newly devised GCO algorithm of the introduced D2D multi-hop
routing with 100 users is depicted in Figure 5.14. For 20 iterations, the packet delivery
ration accomplished by the newly devised protocol is 97.25 with 500 rounds, which is
58.80 when the round is increased to 2500. In contrast, the packet delivery ratio acquired
by the proposed model is 88.38 with 20 iterations and 1000 rounds. Besides, the packet
delivery ratio measured by the proposed protocol with 100 iterations is 97.94 with 100

rounds. The detailed analysis is presented in Table 5.9.
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Table 5.9: Packet Delivery Ratio based on Iteration with 100 users

Iteration / 500 1000 1500 2000 2500
Rounds
20 97.25 88.38 78.68 .27 58.80
40 96.38 86.14 73.50 60.76 5432
60 97.09 90.56 85.67 78.73 7724
80 98.09 93.93 91.93 90.84 82.82
100 98.91 97.94 96.16 9426 90.03

Throughput: The throughput based analysis of the D2D protocol by varying the iteration

of the GCO algorithm is depicted in Figure 5.15 with 100 users. The throughput

estimated by the newly devised protocol with 20 iterations and 500 communications

round is 20, which is 28 with 2500 rounds. While analyzing the performance with 2000

rounds and 20 iterations, the throughput estimated by the proposed protocol is 21. When

the iteration increased to 100, the throughput estimated is 34 that depict the better

outcome of the model with increase in iteration. The detailed analysis is presented in

Table 5.10.
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Table 5.10: Throughput based on Iteration with 100 users

Iteration / 500 1000 1500 2000 2500
Rounds
20 20 19 19 21 28
60 21 22 23 25 35
80 21 25 27 30 37
100 22 27 31 34 41

(¢) Using 150 Users

Average Residual Energy: The analysis by varying the iteration size and average
residual energy with 150 users is depicted in Figure 5.16. The average residual energy
acquired with 500 round is 0.90 for 20 iterations, which is further reduced when the
round increases to 2500 with the average residual energy of 0.60. As a result, increasing
the number of rounds uses more energy. Even still, increasing the number of iterations
improves the model's performance by raising the quantity of residual energy. For
example, the average residual energy estimated with 20 iterations and 1500 round is
0.75, which is 0.88 when the iteration increased to 100. The detailed analysis is depicted
in Table 5.11.

=
©
o

=
©

0.85 -

=
)

=
~
o

| |—¢—Iteration size = 20
—+— [|teration size = 40
Iteration size = 60

| |—<—Iteration size = 80
—*— Iteration size = 100

i
g

Average Residual Energy (J)

=
]
@

0.6 ! I .
500 1000 1500 2000 2500

Number of Rounds

Figure 5.16: Average Residual Energy based on Iteration with 150 users

148




Table 5.11: Average Residual Energy based on Iteration with 150 users

Iteration / 500 1000 1500 2000 2500
Rounds
20 0.90 0.81 0.75 0.70 0.60
40 0.89 0.84 0.77 0.72 0.66
60 0.90 0.86 0.77 0.73 0.66
80 0.93 0.89 0.81 0.77 0.68
100 0.94 0.92 0.88 0.86 0.73

Latency: The analysis based on latency by varying the iteration with 150 users is

portrayed in Figure 5.17. While considering the 20 iterations of GCO algorithm with 500

rounds, the latency estimated by the proposed method is 7.87, which is increased to

17.52, when the round is increased to 2500. In contrast, the latency gets minimized with

increase in the number of iterations of the algorithm. For example, with 1500 round and

20 iterations, the latency estimated by the newly devised method is 13.99, which is

further minimized to 8.06 with 100 iterations. Thus, the increase in iteration elevates the

performance and increase in number of rounds limits the performance. The detailed

analysis is presented in Table 5.12.
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Table 5.12: Latency based on Iteration with 150 users

Iteration / 500 1000 1500 2000 2500
Rounds
20 787 11.87 13.99 14.77 17.52
40 7.49 10.70 1151 12.54 13.68
60 733 9.07 11.07 11.59 12.65
80 6.75 832 10.07 10.63 11.59
100 6.40 713 8.06 8.02 9.04

Network Life Time: The network lifetime based analysis with 150 users by varying the

iteration size is depicted in Figure 5.18. The network lifetime estimated by the newly

devised D2D communication protocol with multi hop routing is 94.30 with 20 iteration

and 500 rounds. The same is 69.55 with 2500 rounds and 20 iterations, which indicates

that the minimal rounds provides the better network lifetime. Also, the network lifetime

estimated is 80.43 with 1500 rounds and 20 iterations, which elevates with 90.16 with

100 iterations and 1500 rounds. Here, the analysis indicates the enhanced performance

with minimal communication round and higher iteration. The detailed analysis is

presented in

Table 5.13.
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Table 5.13: Network Life Time based on Iteration with 150 users

Iteration / 500 1000 1500 2000 2500
Rounds
20 9430 86.96 80.43 71.45 69.55
40 94.97 89.07 $2.02 7537 7023
60 96.12 91.68 83.52 78.98 7151
80 99.04 9351 87.90 83.00 7371
100 99.68 95.25 90.16 85.52 80.14

Packet Delivery Ratio: The interpretation of the packet delivery ratio for various
iteration sizes of the newly devised GCO algorithm of the introduced D2D multi-hop
routing with 150 users is depicted in Figure 5.19. For 20 iterations, the packet delivery
ratio accomplished by the newly devised protocol is 94.90 with 500 rounds, which is
72.98 when the round is increased to 2500. In contrast, the packet delivery ratio acquired
by the proposed model is 86.33 with 20 iterations and 1000 rounds. Besides, the packet
delivery ratio measured by the proposed protocol with 100 iterations is 93.38 with 100

rounds. The detailed analysis is presented in Table 5.14.
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Table 5.14: Packet Delivery Ratio based on Iteration with 150 users

Iteration / 500 1000 1500 2000 2500
Rounds
20 94.90 86.33 82.53 7731 72.98
40 95.09 89.44 8526 80.00 74.25
60 95.99 91.10 §7.03 84.19 77.94
80 96.80 91.65 90.08 87.96 81.82
100 96.25 93.38 92.38 90.37 8538

Throughput: The throughput based analysis of the D2D protocol by varying the iteration

of the GCO algorithm is depicted in Figure 5.20 with 150 users. The throughput

estimated by the newly devised protocol with 20 iterations and 500 communications

round is 22, which is 43 with 2500 rounds. While analyzing the performance with 2000

rounds and 20 iterations, the throughput estimated by the proposed protocol is 38. When

the iteration increased to 100, the throughput estimated is 62 that depict the better

outcome of the model with increase in iteration. The detailed analysis is presented in

Table 5.15.
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Table 5.15: Throughput based on Iteration with 150 users

Iteration /
500 1000 1500 2000 2500
Rounds
20 22 30 33 38 43
40 24 36 41 45 49
60 24 38 46 49 53
80 26 41 51 55 61
100 27 41 55 62 64

2. Analysis by varying the Population

The analysis by varying the population size of the algorithm is detailed in this section by

varying the number of users in the network.
(a) Using 50 users

Average Residual Energy: The analysis by varying the population size and average
residual energy with 50 users is depicted in Figure 5.21. The average residual energy
acquired with 500 round is 0.95 concerning to the population size 20, which is further
reduced when the round increases to 2500 with the average residual energy of 0.74. As a
result, increasing the number of rounds uses more energy. Even still, increasing the
population size improves the model's performance by raising the amount of residual
energy. For example, the average residual energy estimated with the population size 20
and 1500 round is 0.82, which is 0.88 when the population size increased to 100. The
detailed analysis is depicted in Table 5.16.
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Figure 5.21: Average Residual Energy based on Population size with 50 users

Table 5.16: Average Residual Energy based on Population size with 50 users

Population / 500 1000 1500 2000 2500
Rounds
20 0.95 0.86 0.82 0.75 0.74
40 0.97 0.87 0.82 0.75 0.75
60 0.97 0.86 0.84 0.79 0.78
30 0.98 0.87 0.87 081 0.79
100 0.98 0.89 0.88 0.84 0.81

Latency: The analysis based on latency by varying the population size with 50 users is

portrayed in Figure 5.22. While considering the population size 20 with 500 rounds, the

latency estimated by the proposed method is 2.30, which is increased to 3.60, when the

round is increased to 2500. In contrast, the latency gets minimized with increase in

population size of the algorithm. For example, with 2000 round and population size of

20, the latency estimated by the newly devised method is 3.26, which is further

minimized to 2.43 with 100 populations. Thus, the increase in population size elevates

the performance and increase in number of rounds limits the performance. The detailed

analysis is presented in Table 5.17.
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Table 5.17: Latency based on Population size with 50 users

Population / 500 1000 1500 2000 2500
Rounds
20 2.30 2.66 2.99 3.26 3.60
20 2.14 2.59 281 2.0 3.40
60 192 2.26 2.50 Rp) 334
20 181 2.19 2.36 2.62 324
100 163 1.93 213 28 3.06

Network Life Time: The network lifetime based analysis with 50 users by varying the
population size is depicted in Figure 5.23. The network lifetime estimated by the newly
devised D2D communication protocol with multi hop routing is 98.63 with 20 population
and 500 rounds. The same is 90.84 with 2500 rounds and population size of 20, which
indicates that the minimal rounds provides the better network lifetime. Also, the network
lifetime estimated is 92.06 with 1500 rounds and 20 populations, which elevates with
96.31 with 100 iterations and 1500 rounds. Here, the analysis indicates the enhanced
performance with minimal communication round and higher iteration. The detailed

analysis is presented in Table 5.18.
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Table 5.18: Network Life Time based on Population size with 50 users

Population / 500 1000 1500 2000 2500
Rounds
20 93.63 96.02 92.06 91.28 90.84
20 98.17 96.10 92.83 92.15 91.95
60 9824 96.43 9391 92.47 92.08
80 99.09 97.28 95.52 93.24 92.79
100 99.55 93.47 9631 94.93 9346

Packet Delivery Ratio: The outcome based on the packet delivery ratio for various
population sizes of the newly devised GCO algorithm of the introduced D2D multi-hop
routing with 50 users is depicted in Figure 5.24. For the population size of 20, the packet
delivery ratio accomplished by the newly devised protocol is 99.59 with 500 rounds,
which is 92.14 when the round is increased to 2500. In contrast, the packet delivery ratio
acquired by the proposed model is 96.09 with 20 population and 1000 rounds. Besides,
the packet delivery ratio measured by the proposed protocol with 100 populations is

98.07 with 100 rounds. The detailed analysis is presented in Table 5.19.
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Figure 5.24: Packet Delivery Ratio based on Population size with 50 users

Table 5.19: Packet Delivery Ratio based on Population size with 50 users

Population /
500 1000 1500 2000 2500
Rounds
20 99.59 96.09 95.10 94.20 92.14
40 99.67 96.70 95.47 94.95 92.52
60 99.66 97.18 96.31 95.28 92.75
80 99.74 97.60 96.91 95.90 92.95
100 99.89 98.07 97.22 96.31 93.24
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size. The detailed analysis is presented in Table 5.20.

Throughput. The throughput based analysis of the D2D protocol by varying the
population size of the GCO algorithm is depicted in Figure 5.25 with 100 users. The
throughput estimated by the newly devised protocol with 20 population size and 500
communications round is 6, which is 14 with 2500 rounds. While analyzing the
performance with 2000 rounds and 20 population size, the throughput estimated by the
proposed protocol is 13. When the population size increased to 100, the throughput

estimated is 18 that depict the better outcome of the model with increase in population
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Figure 5.25: Throughput based on Population size with 50 users

Table 5.20: Throughput based on Population size with 50 users

Population / 500 1000 1500 2000 2500
Rounds
20 6.00 8.00 10.00 13.00 14.00
40 7.00 9.00 12.00 12.00 16.00
60 7.00 10.00 13.00 16.00 17.00
80 8.00 11.00 14.00 17.00 19.00
100 8.00 12.00 15.00 18.00 20.00
(b) Using 100 Users

Average Residual Energy: The analysis by varying the population size and average
residual energy with 100 users is depicted in Figure 5.26. The average residual energy
acquired with 1000 round is 0.84 concerning to the population size 20, which is further
reduced when the round increases to 2500 with the average residual energy of 0.69.
Consequently, the interpretation depicts that the increasing the rounds uses more energy.
The model's performance is still enhanced by expanding the population by increasing the
amount of residual energy. For example, the average residual energy estimated with the
population size 20 and 1500 round is 0.78, which is 0.85 when the population size
increased to 100. The detailed analysis is depicted in Table 5.21.
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Table 5.21: Average Residual Energy based on Population size with 100 users

Population /
500 1000 1500 2000 2500
Rounds
20 0.94 0.84 0.78 0.72 0.69
40 0.96 0.87 0.80 0.74 0.70
60 0.96 0.88 0.81 0.76 0.72
80 0.97 0.91 0.83 0.80 0.74
100 1.00 0.93 0.85 0.83 0.75

Latency: The analysis based on latency by varying the population size with 100 users is
portrayed in Figure 5.27. While considering the population size 20 with 500 rounds, the
latency estimated by the proposed method is 4.33, which is increased to 9.94, when the
round is increased to 2500. In contrast, the latency gets minimized with increase in
population size of the algorithm. For example, with 2000 round and population size of
20, the latency estimated by the newly devised method is 9.36, which is further
minimized to 5.76 with 100 populations. Thus, the increase in population size elevates
the performance and increase in number of rounds limits the performance. The detailed

analysis is presented in Table 5.22.
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Figure 5.27: Latency based on Population size with 100 users

Table 5.22: Latency based on Population size with 100 users

Population / 500 1000 1500 2000 2500
Rounds
20 433 6.48 741 9.36 9.94
40 422 6.01 6.82 824 8.85
60 3.95 5.82 6.12 6.73 745
80 3.87 459 5.56 6.38 7.04
100 3.62 451 5.00 5.76 6.58

Network Life Time: The network lifetime based analysis with 100 users by varying the
population size is depicted in Figure 5.28. The network lifetime estimated by the newly
devised D2D communication protocol with multi hop routing is 97.17 with 20 population
and 500 rounds. The network lifetime is 75.11 with 2500 rounds and population size of
20, which indicates that the minimal rounds provides the better network lifetime. Also,
the network lifetime estimated is 86.23 with 1500 rounds and 20 populations, which
elevates with 97.03 with 100 iterations and 1500 rounds. Here, the analysis indicates the
enhanced performance with minimal communication round and higher iteration. The

detailed analysis is presented in Table 5.23.
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Figure 5.28: Network Life Time based on Population size with 100 users

Table 5.23: Network Life Time based on Population size with 100 users

Population / 500 1000 1500 2000 2500
Rounds
20 97.17 92.62 86.23 80.13 75.11
20 97.26 9324 88.47 8335 78.58
60 93.01 94.94 9176 86.80 8133
30 99.14 96.20 94.25 91.91 85.69
100 99.69 93.87 97.03 94.55 8824

Packet Delivery Ratio: The outcome based on the packet delivery ratio for various
population sizes of the newly devised GCO algorithm of the introduced D2D multi-hop
routing with 100 users is depicted in Figure 5.29. For the population size of 20, the
packet delivery ratio accomplished by the newly devised protocol is 97.78 with 500
rounds, which is 80.92 when the round is increased to 2500. In contrast, the packet
delivery ratio acquired by the proposed model is 92.50 with 20 population and 1000
rounds. Besides, the packet delivery ratio measured by the proposed protocol with 100

populations is 97.94 with 100 rounds. The detailed analysis is presented in Table 5.24.
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Figure 5.29: Packet Delivery Ratio based on Population size with 100 users

Table 5.24: Packet Delivery Ratio based on Population size with 100 users

Population /
500 1000 1500 2000 2500
Rounds
20 97.78 92.50 89.81 83.39 80.92
40 98.20 93.26 90.62 86.88 82.45
60 98.52 94.99 93.10 88.17 85.68
80 98.79 96.27 94.93 92.84 88.82
100 98.91 97.94 96.16 94.26 90.03

Throughput. The throughput based analysis of the D2D protocol by varying the

population size of the GCO algorithm is depicted in Figure 5.30 with 100 users. The

throughput estimated by the newly devised protocol with 20 population size and 500

communications round is 18, which is 30 with 2500 rounds. While analyzing the

performance with 2000 rounds and 20 population size, the throughput estimated by the

proposed protocol is 24. When the population size increased to 100, the throughput

estimated is 34 that depict the better outcome of the model with increase in population

size. The detailed analysis is presented in Table 5.25.
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Figure 5.30: Throughput based on Population size with 100 users

Table 5.25: Throughput based on Population size with 100 users

Population / 500 1000 1500 2000 2500
Rounds
20 18.00 20.00 22.00 24.00 30.00
20 20.00 23.00 24.00 25.00 35.00
60 21.00 24.00 25.00 27.00 37.00
30 21.00 25.00 27.00 29.00 38.00
100 22.00 27.00 31.00 34.00 41.00

(¢) Using 150 Users

Average Residual Energy: The analysis by varying the population size and average
residual energy with 150 users is depicted in Figure 5.31. The average residual energy
acquired with 1000 round is 0.85 concerning to the population size 20, which is further
reduced when the round increases to 2500 with the average residual energy of 0.63.
Consequently, the interpretation depicts that the increasing the rounds uses more energy.
The model's performance is still enhanced by expanding the population by increasing the

amount of residual energy. For example, the average residual energy estimated with the
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population size 20 and 2000 round is 0.73, which is 0.86 when the population size
increased to 100. The detailed analysis is depicted in Table 5.26.
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Figure 5.31: Average Residual Energy based on Population size with 150 users

Table 5.26: Average Residual Energy based on Population size with 150 users

P“ﬁglalz"s" / 500 1000 1500 2000 2500
20 0.90 0.85 0.80 0.73 0.63
40 0.90 0.88 0.81 0.75 0.68
60 0.93 0.89 0.81 0.76 0.71
80 0.93 0.91 0.84 0.80 0.73
100 0.94 0.92 0.88 0.86 0.73

Latency: The analysis based on latency by varying the population size with 150 users is
portrayed in Figure 5.32. While considering the population size 20 with 500 rounds, the
latency estimated by the proposed method is 7.88, which is increased to 16.83, when the
round is increased to 2500. In contrast, the latency gets minimized with increase in
population size of the algorithm. For example, with 2000 round and population size of
20, the latency estimated by the newly devised method is 14.61, which is further
minimized to 8.92 with 100 populations. Thus, the increase in population size elevates
the performance and increase in number of rounds limits the performance. The detailed

analysis is presented in Table 5.27.
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Table 5.27: Latency based on Population size with 150 users

Population / 500 1000 1500 2000 2500
Rounds
20 7.88 11.34 13.40 14.61 16.83
40 7.50 9.80 10.81 12.05 13.32
60 733 8.08 10.42 1132 1137
80 6.76 773 9.22 9.77 10.74
100 6.40 713 8.06 8.92 9.04

Network Life Time: The network lifetime based analysis with 150 users by varying the
population size is depicted in Figure 5.33. The network lifetime estimated by the newly
devised D2D communication protocol with multi hop routing is 94.31 with 20 population
and 500 rounds. The network lifetime is 71.73 with 2500 rounds and population size of
20, which indicates that the minimal rounds provides the better network lifetime. Also,
the network lifetime estimated is 81.51 with 1500 rounds and 20 populations, which
elevates with 90.16 with 100 iterations and 1500 rounds. Here, the analysis indicates the
enhanced performance with minimal communication round and higher iteration. The

detailed analysis is presented in Table 5.28.
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Table 5.28: Network Life Time based on Population size with 150 users

Population /
500 1000 1500 2000 2500
Rounds
20 94.31 88.56 81.51 72.40 71.73
40 94.97 90.62 82.39 75.99 72.26
60 96.12 91.85 85.93 77.02 73.35
80 99.04 93.79 87.63 84.63 75.56
100 99.68 95.25 90.16 85.52 80.14

Packet Delivery Ratio: The outcome based on the packet delivery ratio for various

population sizes of the newly devised GCO algorithm of the introduced D2D multi-hop

routing with 150 users is depicted in Figure 5.34. For the population size of 20, the

packet delivery ratio accomplished by the newly devised protocol is 94.91 with 500

rounds, which is 71.88 when the round is increased to 2500. In contrast, the packet

delivery ratio acquired by the proposed model is 85.32 with 20 population and 1000

rounds. Besides, the packet delivery ratio measured by the proposed protocol with 100

populations is 93.38 with 100 rounds. The detailed analysis is presented in Table 5.29.
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Table 5.29: Packet Delivery Ratio based on Population size with 150 users

Population /
500 1000 1500 2000 2500
Rounds
20 94.91 85.32 80.92 75.35 71.88
40 95.10 88.40 83.38 78.84 73.24
60 95.99 89.28 85.89 82.31 76.85
80 96.80 90.30 88.49 86.37 80.15
100 96.25 93.38 92.38 90.37 85.38

Throughput. The throughput based analysis of the D2D protocol by varying the

population size of the GCO algorithm is depicted in Figure 5.35 with 150 users. The

throughput estimated by the newly devised protocol with 20 population size and 500

communications round is 20, which is 41 with 2500 rounds. While analyzing the

performance with 2000 rounds and 20 population size, the throughput estimated by the

proposed protocol is 37. When the population size increased to 100, the throughput

estimated is 62 that depict the better outcome of the model with increase in population

size. The detailed analysis is presented in Table 5.30.
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Figure 5.35: Throughput based on Population size with 150 users

Table 5.30: Throughput based on Population size with 150 users

Population /
500 1000 1500 2000 2500
Rounds
20 20.00 29.00 32.00 37.00 41.00
40 22.00 35.00 40.00 43.00 48.00
60 23.00 37.00 45.00 48.00 52.00
80 25.00 39.00 50.00 54.00 59.00
100 27.00 41.00 55.00 62.00 64.00

5.4.3 Comparative Methods

The comparative analysis of the newly devised D2D communication protocols with the

conventional methods to depict the superiority of the proposed model. To compare the

suggested approach to existing energy-efficient D2D routing protocols, such as DRL

[182], SG-EECC [183], Modified Derivative Algorithm [184], and MBLCR [185] are

compared with the newly devised approach. The comparative analysis of the D2D

communication by varying the number of users in the network is detailed in this section.
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(a) Using 50 users

Average Residual Energy: The assessment based on the average residual energy is
depicted in Figure 5.36 with 50 users. The average residual energy evaluated by the
newly devised protocol is 0.98 with 500 rounds, which is 0.90%, 2.18%, 8.37%, and
9.81% 1improved outcome compared to the existing DRL, 5G-EECC, Modified
Derivative Algorithm, and MBLCR methods. For 2500 rounds, the average residual
energy evaluated by the newly devised protocol is 0.81, which is 11.68%, 33.41%,
40.99%, and 52.80% improved outcome compared to the existing DRL, 5G-EECC,
Modified Derivative Algorithm, and MBLCR methods. The detailed analysis is depicted

in Table 5.31.
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Figure 5.36: Average Residual Energy with 50 users

Table 5.31: Average Residual Energy with 50 users

Methods/ Rounds 500 1000 1500 2000 2500
MBLCR 0.88 0.73 0.68 0.56 0.38
Modified Derivative Algorithm 0.90 0.79 0.69 0.58 0.48
S5G-EECC 0.96 0.82 0.75 0.69 0.54
DRL 0.97 0.85 0.85 0.76 0.72
Proposed 0.98 0.89 0.88 0.84 0.81
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Latency: Figure 5.37 depicts the latency analysis of the proposed method by considering
the number of users as 50. While considering the 500 rounds, the latency evaluated by
the newly devised protocol is 1.63 that is 9.36%, 14.89%, 23.39%, and 39.34% improved
outcome compared to the existing DRL, SG-EECC, Modified Derivative Algorithm, and
MBLCR methods. Also, the latency estimated by the newly devised protocol is 3.06 with
2500 rounds that is 22.27%, 35.41%, 36.32%, and 42.23% improved outcome compared
to the existing DRL, 5G-EECC, Modified Derivative Algorithm, and MBLCR methods.
The detailed analysis is depicted in Table 5.32.
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Figure 5.37: Latency with 50 users

Table 5.32: Latency with 50 users

Methods/ Rounds 500 1000 1500 2000 2500
MBLCR 2.69 3.45 4.49 4.80 5.29
Modified Derivative
Algorithm 2.13 2.55 3.51 4.17 4.80
S5G-EECC 1.92 2.45 2.98 3.92 4.73
DRL 1.80 2.28 2.65 3.62 3.93
Proposed 1.63 1.93 2.13 2.43 3.06
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Network Life Time: The network lifetime analysis is portrayed in Figure 5.38 and its
detailed analysis is presented in Table 5.33. In this, the newly devised protocol
accomplished the higher network life time of 96.31; still the conventional methods like
DRL, 5G-EECC, Modified Derivative Algorithm, and MBLCR accomplished the
network life time of 92.52, 88.91, 85.13 and 74.05 respectively. Here, the newly devised
protocol is 3.94%, 7.69%, 11.61%, and 23.11% elevated outcome as compared to the
existing like DRL, 5G-EECC, Modified Derivative Algorithm, and MBLCR methods.
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Figure 5.38: Network Life Time with 50 users

Table 5.33: Network Life Time with 50 users

Methods/ Rounds 500 1000 1500 2000 2500
MBLCR 92.62 84.02 74.05 61.28 54.84
Modified Derivative
Algorithm 94.17 89.10 85.13 75.15 64.94
S5G-EECC 95.24 92.42 88.91 81.46 75.75
DRL 99.09 96.28 92.52 89.24 81.78
Proposed 99.55 98.47 96.31 94.98 93.46
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Packet Delivery Ratio: The reception amount of information depicts the measure of
packet deliver ratio; thus the higher value indicates the better outcome. The analysis of
the packet delivery ratio with 50 users is depicted in Figure 5.39, wherein the newly
devised protocol acquired the superior outcome. For example, the newly devised
protocol acquired the packet delivery ratio of 96.31 with 2000 rounds; still the
conventional methods DRL, 5G-EECC, Modified Derivative Algorithm, and MBLCR
acquired the minimal packet delivery ratio of 89.05, 85.84, 82.10, and 75.25 respectively.
Here, the performance enhancement of 7.54%, 10.88%, 14.75%, and 21.87% concerning
the DRL, 5G-EECC, Modified Derivative Algorithm, and MBLCR methods. The
detailed analysis is presented in Table 5.34.
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Figure 5.39: Packet Delivery Ratio with 50 users

Table 5.34: Packet Delivery Ratio with 50 users

Methods/ Rounds 500 1000 1500 | 2000 2500
MBLCR 9241 87.58 84.69 | 7525 | 62.32
Modified Derivative Algorithm 93.74 89.16 85.61 | 82.10 | 75.32
S5G-EECC 95.97 93.13 89.28 | 85.84 | 76.86
DRL 98.70 97.23 91.35 | 89.05| 85.57
Proposed 99.89 98.07 97.22 1 9631 | 93.24

172



Throughput. The throughput based interpretation with 50 users is portrayed in Figure
5.40. The throughput evaluated by the newly devised protocol is 8 with 500 rounds,
which is 25.00%, 37.50%, 37.50%, and 62.50% improved outcome compared to the
existing DRL, 5G-EECC, Modified Derivative Algorithm, and MBLCR methods. For
2500 rounds, the throughput evaluated by the newly devised protocol is 20, which is
15.00%, 20.00%, 40.00%, and 50.00% improved outcome compared to the existing
DRL, 5G-EECC, Modified Derivative Algorithm, and MBLCR methods. The detailed
analysis is depicted in Table 5.35.
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Figure 5.40: Throughput with 50 users

Table 5.35: Throughput with 50 users

Methods/ Rounds 500 1000 1500 | 2000 2500
MBLCR 3 5 6 7 10
Modified Derivative Algorithm 5 8 9 10 12
SG-EECC 5 7 10 12 16
DRL 6 10 11 14 17
Proposed 8 12 15 18 20
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(b) Using 100 Users

Average Residual Energy: The assessment based on the average residual energy is

depicted in Figure 5.41 with 100 users. The average residual energy evaluated by the

newly devised protocol is 0.98 with 500 rounds, which is 6.59%, 8.23%, 9.43%, and

10.75% improved outcome compared to the existing DRL, S5G-EECC, Modified

Derivative Algorithm, and MBLCR methods. For 2500 rounds, the average residual

energy evaluated by the newly devised protocol is 0.81, which is 6.54%, 18.43%,

31.46%, and 42.53% improved outcome compared to the existing DRL, 5G-EECC,

Modified Derivative Algorithm, and MBLCR methods. The detailed analysis is depicted

in Table 5.36.
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Figure 5.41: Average Residual Energy with 100 users

Table 5.36: Average Residual Energy with 100 users

Methods/ Rounds 500 1000 1500 | 2000 | 2500
MBLCR 0.89 0.74 0.60 0.50 0.43
Modified Derivative Algorithm 0.90 0.82 0.71 0.60 0.52
S5G-EECC 0.92 0.83 0.76 0.71 0.62
DRL 0.93 0.88 0.83 0.76 0.71
Proposed 1.00 0.93 0.85 0.83 0.75
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Latency: Figure 5.42 depicts the latency analysis of the proposed method by considering
the number of users as 50. While considering the 500 rounds, the latency evaluated by
the newly devised protocol is 3.62 that is 10.06%, 14.01%, 22.02%, and 48.13%
improved outcome compared to the existing DRL, SG-EECC, Modified Derivative
Algorithm, and MBLCR methods. Also, the latency estimated by the newly devised
protocol is 6.58 with 2500 rounds that is 8.57%, 14.62%, 24.14%, and 42.72% improved
outcome compared to the existing DRL, 5G-EECC, Modified Derivative Algorithm, and
MBLCR methods. The detailed analysis is depicted in Table 5.37.
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Figure 5.42: Latency with 100 users

Table 5.37: Latency with 100 users

Methods/ Rounds 500 1000 1500 2000 2500

MBLCR 6.98 8.03 8.46 10.40 11.48

Modified Derivative Algorithm 4.64 6.43 7.25 8.66 8.67

5G-EECC 4.21 6.07 6.37 6.99 7.70
DRL 4.02 4.75 5.72 6.54 7.19
Proposed 3.62 4.51 5.00 5.76 6.58
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Network Life Time: The network lifetime analysis is portrayed in Figure 5.43 and its
detailed analysis is presented in Table 5.38. In this, the newly devised protocol
accomplished the higher network life time of 97.03; still the conventional methods like
DRL, 5G-EECC, Modified Derivative Algorithm, and MBLCR accomplished the
network life time of 89.51, 86.03, 78.73 and 63.49 respectively with 1500 rounds. Here,
the newly devised protocol is 7.75%, 11.34%, 18.86%, and 34.57% elevated outcome as
compared to the existing like DRL, 5G-EECC, Modified Derivative Algorithm, and
MBLCR methods.

£
%
o
H
2 50|~ MBLCR
—+— Modified Derivative Algorithm
—s—5G-EECC
40 —«—pRL
—*— Proposed ,
%00 1000 1500 2000 2500
Number of Rounds
Figure 5.43: Network Life Time with 100 users
Table 5.38: Network Life Time with 100 users
Methods/ Rounds 500 1000 1500 2000 | 2500
MBLCR 9644 | 67.88| 63.49| 5040 | 33.38

Modified Derivative Algorithm | 99.53 | 85.50 | 78.73 | 62.61 | 58.85

SG-EECC 98.27 | 91.21| 86.03 | 75.07| 70.59
DRL 9840 | 9546 | 89.51| 81.17| 80.95
Proposed 99.69 | 98.87| 97.03 | 94.55| 88.24
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Packet Delivery Ratio: The analysis of the packet delivery ratio with 100 users is
depicted in Figure 5.44, wherein the newly devised protocol acquired the superior
outcome. For example, the newly devised protocol acquired the packet delivery ratio of
94.26 with 2000 rounds; still the conventional methods DRL, 5G-EECC, Modified
Derivative Algorithm, and MBLCR acquired the minimal packet delivery ratio of 90.83,
77.16, 57.87, and 69.38 respectively. Here, the performance enhancement of 3.64%,
18.15%, 38.61%, and 26.40% concerning the DRL, 5G-EECC, Modified Derivative
Algorithm, and MBLCR methods. The detailed analysis is presented in Table 5.39.
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Figure 5.44: Packet Delivery Ratio with 100 users
Table 5.39: Packet Delivery Ratio with 100 users
Methods/ Rounds 500 1000 1500 2000 2500
MBLCR 94.37 85.50 75.80 | 6938 | 5591

Modified Derivative Algorithm 93.49 83.25 70.61 | 57.87 | 51.44

SG-EECC 95.51 88.98 84.09 | 77.16 | 75.67
DRL 98.08 93.92 91.92| 90.83 | 82.81
Proposed 98.91 97.94 96.16 | 94.26 | 90.03
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Throughput: The throughput based interpretation with 100 users is portrayed in Figure
5.45. The throughput evaluated by the newly devised protocol is 22 with 500 rounds,
which is 22.73%, 40.91%, 54.55%, and 59.09% improved outcome compared to the
existing DRL, 5G-EECC, Modified Derivative Algorithm, and MBLCR methods. For
2500 rounds, the throughput evaluated by the newly devised protocol is 41, which is
7.32%, 21.95%, 39.02%, and 43.90% improved outcome compared to the existing DRL,
5G-EECC, Modified Derivative Algorithm, and MBLCR methods. The detailed analysis
is depicted in Table 5.40.
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Figure 5.45: Throughput with 100 users

Table 5.40: Throughput with 100 users

Methods/ Rounds 500 | 1000 1500 2000 2500
MBLCR 9 13 16 18 23
Modified Derivative Algorithm 10 16 18 21 25
5G-EECC 13 19 23 24 32
DRL 17 21 25 27 38
Proposed 22 27 31 34 41
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(c) Using 150 Users

Average Residual Energy: The assessment based on the average residual energy is
depicted in Figure 5.46 with 150 users. The average residual energy evaluated by the
newly devised protocol is 0.98 with 500 rounds, which is 3.66%, 9.12%, 10.89%, and
22.66% improved outcome compared to the existing DRL, SG-EECC, Modified
Derivative Algorithm, and MBLCR methods. For 2500 rounds, the average residual
energy evaluated by the newly devised protocol is 0.81, which is 21.11%, 43.81%,
54.40%, and 78.99% improved outcome compared to the existing DRL, 5G-EECC,
Modified Derivative Algorithm, and MBLCR methods. The detailed analysis is depicted
in Table 5.41.
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Figure 5.46: Average Residual Energy with 150 users

Table 5.41: Average Residual Energy with 150 users

Methods/ Rounds 500 1000 1500 2000 2500
MBLCR 0.73 0.61 0.45 0.31 0.15
Modified Derivative Algorithm 0.84 0.75 0.59 0.44 0.33
5G-EECC 0.86 0.79 0.63 0.57 0.41
DRL 0.91 0.86 0.78 0.71 0.58
Proposed 0.94 0.92 0.88 0.86 0.73
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Latency: Figure 5.47 depicts the latency analysis of the proposed method by considering
the number of users as 50. While considering the 500 rounds, the latency evaluated by
the newly devised protocol is 6.40 that is 4.59%, 12.10%, 14.05%, and 18.26% improved
outcome compared to the existing DRL, SG-EECC, Modified Derivative Algorithm, and
MBLCR methods. Also, the latency estimated by the newly devised protocol is 9.04 with
2500 rounds that is 15.42%, 26.65%, 36.68%, and 49.18% improved outcome compared
to the existing DRL, 5G-EECC, Modified Derivative Algorithm, and MBLCR methods.
The detailed analysis is depicted in Table 5.42.
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Figure 5.47: Latency based on Iteration with 150 users

Table 5.42: Latency based on Iteration with 150 users

Methods/ Rounds 500 1000 1500 2000 | 2500
MBLCR 7.83 1329 | 16.34 17.56 | 17.78
Modified Derivative Algorithm 7.44 10.75 11.76 1299 | 14.27
SG-EECC 7.28 9.03 11.37 12.27 | 12.32
DRL 6.70 7.67 9.17 9.72 | 10.68
Proposed 6.40 7.13 8.06 8.92 9.04
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Network Life Time: The network lifetime analysis is portrayed in Figure 5.48 and its
detailed analysis is presented in Table 5.43 for 150 users. In this, the newly devised
protocol accomplished the higher network life time of 90.16; still the conventional
methods like DRL, S5G-EECC, Modified Derivative Algorithm, and MBLCR
accomplished the network life time of 85.06, 74.10, 61.43 and 71.60 respectively with
1500 rounds. Here, the newly devised protocol is 6.00%, 21.68%, 46.77%, and 25.92%
elevated outcome as compared to the existing like DRL, 5G-EECC, Modified Derivative
Algorithm, and MBLCR methods.
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Figure 5.48: Network Life Time with 150 users
Table 5.43: Network Life Time with 150 users
Methods/ Rounds 500 1000 1500 2000 | 2500
MBLCR 9041 | 81.66 | 71.60 58.50 | 47.83

Modified Derivative Algorithm | 91.02 | 72.66 | 61.43 56.03 | 39.31

S5G-EECC 93.30 | 86.02| 74.10 | 67.19 | 60.52
DRL 98.47 | 93.23 | 85.06 | 78.06 | 73.00
Proposed 99.68 | 95.25| 90.16 | 85.52 | 80.14
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Packet Delivery Ratio: The analysis of the packet delivery ratio with 150 users is
depicted in Figure 5.49, wherein the newly devised protocol acquired the superior
outcome. For example, the newly devised protocol acquired the packet delivery ratio of
90.37 with 2000 rounds; still the conventional methods DRL, 5G-EECC, Modified
Derivative Algorithm, and MBLCR acquired the minimal packet delivery ratio of 80.39,
69.32, 61.86, and 44.37 respectively. Here, the performance enhancement of 11.05%,
23.29%, 31.55%, and 50.91% concerning the DRL, 5G-EECC, Modified Derivative
Algorithm, and MBLCR methods. The detailed analysis is presented in Table 5.44.
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Figure 5.49: Packet Delivery Ratio with 150 users
Table 5.44: Packet Delivery Ratio with 150 users
Methods/ Rounds 500 1000 1500 2000 2500
MBLCR 93.92 81.34 | 5994 | 4437 | 36.90
Modified Derivative Algorithm 94.11 85.42 7539 | 61.86| 43.25
SG-EECC 94.01 8730 | 7890 | 6932 | 55.86
DRL 95.32 88.31 84.51 | 80.39 | 77.17
Proposed 96.25 9338 | 9238 | 90.37| 85.38
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Throughput: The throughput based interpretation with 150 users is portrayed in Figure

5.51. The throughput evaluated by the newly devised protocol is 27 with 500 rounds,
which is 7.41%, 22.22%, 29.63%, and 44.44% improved outcome compared to the
existing DRL, 5G-EECC, Modified Derivative Algorithm, and MBLCR methods. For

2500 rounds, the throughput evaluated by the newly devised protocol is 64, which is
14.06%, 25.00%, 35.94%, and 46.88% improved outcome compared to the existing
DRL, 5G-EECC, Modified Derivative Algorithm, and MBLCR methods. The detailed

analysis is depicted in Table 5.46.
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Figure 5.50: Throughput with 150 users

Table 5.45: Throughput with 150 users

Methods/ Rounds 500 1000 1500 2000 2500
MBLCR 15 19 23 28 34
Modified Derivative Algorithm 19 21 28 31 41
5G-EECC 21 24 32 39 48
DRL 25 34 43 48 55
Proposed 27 41 55 62 64
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5.4.4 Discussion

The suggested energy efficient routing protocol with multi hop for D2D communication
between the user in the 5G network attained enhanced performance while analysing the
performance based on several measures like packet delivery ratio, latency, residual
energy, throughput and network lifetime. The suggested method uses the multi-hop
possible path detection using the suggested double deep Q learning technique. Here, the
considing energy consumption between the nodes for selecting the next hop node
identifies the best energy efficient node for communication. Besides, the consideration of
DeepCNN to estimate the Q-value and reward function enhances the detection accuracy
of finding the possible paths which solves the over optimistic issues. Also, the suggested
GCO algorithm uses the multi-objective fitness function for finding the optimal best path
for communication among the identified path. Thus, the considering of the combined
behavior of the double deep Q learning along with the GCO algorithm helps in
identifying the optimal best energy efticient path for D2D communication and is shown

based on several assessment measures.
5.5 Summary

An energy efficient multi hop routing protocol was introduced in the research for D2D
communication between the 5G network users. Here, a deep reinforcement learning
method named double deep Q learning is suggested for the identification of multi hop
paths for D2D communication. In this, the DeepCNN is introduced for the estimation of
the Q-value and reward function of the double deep Q learning for improving the path
detection accuracy and solving the problem concerning the over optimization. Also, a
hybrid optimization named GCO is introduced by hybridizing the hunting behavior of
the Gannet with the chimp in obtaining the global best solution to choose the optimal
best path. The balanced exploration and exploitation capability of the suggested GCO
algorithm with multi-objective fitness function opts for the best path for D2D
communication. The assessment of the suggested method based on various measures like
packet delivery ratio, latency, residual energy, throughput and network lifetime
accomplished the values of 99.89, 1.63, 0.98, 64 and 99.69 respectively.
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