TABLE OF CONTENTS

	Title Page	1
	Declaration	ii
	Certificate Guide	iii
	Copyright	iv
	Acknowledgement	V
	Abstract	vii
	Table of Contents	ix
	List of Figures	xii
	List of Tables	xvii
	List of Abbreviations	xxi
	Chapters	Page No.
Chapter 1	INTRODUCTION	01 - 23
1.1	Introduction	01
1.2	Background	01
1.3	Key Technologies of 5G	03
1.4	D2D communication Types	05
1.5	Types of Outband D2D Communication	08
1.6	Types of Relay selection Communication	10
1.7	D2D Communication Types	12
1.8	Routing Protocol Types	14
1.9	Need for Energy Efficient Protocol	16
1.10	Machine Learning based Routing Techniques	16
1.11	General Frame work of RL based D2D Communication	17
1.12	Challenges in D2D Communication Protocol	19
1.13	Need for new model	19
1.14	Applications of D2D communication	20
1.15	Objective	22
1.16	Contribution	23

Chapter 2	LITERATURE REVIEW	24 - 60	
2.1	Introduction	24	
2.2	Categorization of 5G Communication techniques	24	
2.3	Research Gaps	58	
2.4	Summary	60	
Chapter 3	ARCHITECTURE	61 – 66	
3.1	Introduction	61	
3.2	Architecture of Cooperative D2D	62	
3.3	Challenges	65	
3.4	Summary	66	
Chapter 4	COOPERATIVE DEVICE-TO-DEVICE	67 - 120	
	COMMUNICATION USING JOINT RELAY		
	ASSIGNMENT AND CHANNEL		
	ALLOCATION USING DEEP LEARNING		
4.1	Introduction	67	
4.2	Problem Statement	67	
4.3	Proposed Methodology for Joint Channel Allocation and	68	
	Relay Assignment		
4.4	Result and Discussion	77	
4.5	Summary	120	
Chapter 5	MULTI-OBJECTIVE HYBRID	121 - 184	
	OPTIMIZATION BASED ENERGY		
	EFFICIENT D2D COMMUNICATION WITH		
	DEEP REINFORCEMENT LEARNING		
	ROUTING PROTOCOL		
5.1	Introduction	121	
5.2	Problem Statement	121	
5.3	Proposed Energy Efficient D2D Communication for 5G	122	
	Networks		

5.4	Results and Discussion	137
5.5	Summary	184
Chapter 6	CONCLUSION	185 - 188
6.1	Conclusion	185
6.2	Main Finding	186
6.3	Future Scope	186
	REFERENCES	189 - 209
	Annexures:	
	Annexure 1: Code	-
	Annexure 2: Research Papers	-
	Annexure 3: Conference Certificates	-
	Annexure 4: Plagiarism Check Report	-