
1

Chapter- 4
Smart Fog Protocol-Based Techniques

INTROD UCT ION

4.1 Analysing IoT Infrastructure for Smart Fog Protocol Design

 4.1.1 Message Queue Telemetry Transport protocol

 4.1.2 Constrained Application Protocol

 4.1.3 Advanced Message Queuing Protocol

 4.1.4 Data Distribution Service

4.2 Task Scheduling and Allocation in Smart Fog Computing Nodes

4.3 Challenges in Implementing Fog Computing

4.4 Hypothesis Testing Results

4.5 Multiple Regression Model

4.6 Use of Machine Learning Approaches in Task Scheduling

 4.6.1 Logistic Regression

 4.6.2 IBK (Stratified Cross-Validation: 10-Fold)

 4.6.3 K-Star (Stratified Cross-Validation: 10-Fold)

 4.6.4 Adaboostm1 (Stratified Cross-Validation: 10-Fold)

 4.6.5 Comparative Analysis of Classification Algorithms

4.7 Clustering Algorithms Used for Task Scheduling

4.7.1 Canopy Clustering

4.7.2 Hierarchical Clustering

4.7.3 Make Density-Based Clustering

2

Across the globe, billions of devices are today communicating and exchanging data

with each other. IoT communication protocols protect and ensure the security of the

data being exchanged between these devices. This research work covers the most

popular protocols in use today.

4.1 Analyzing IoT Infrastructure for Smart Fog Protocol Design

The Smart Fog Protocol-Based Technique involves the utilization of intelligent fog

nodes at the edge of the network to process data locally and reduce the burden on

centralized cloud servers. To design this technique, various layers of communication

protocols are essential. The physical layer focuses on selecting appropriate

communication technologies for IoT devices, while the data link layer ensures

reliable data transmission. The network layer facilitates efficient communication

paths between fog nodes and IoT devices, while the transport layer ensures orderly

data delivery and minimizes latency. At the top layer, the application layer enables

seamless integration with fog-based services and applications, optimizing real-time

data processing at the edge and offering advantages in latency reduction, bandwidth

optimization, and scalability for IoT applications.

4.1.1 Message Queue Telemetry Transport Protocol

This publish/subscribe message transport protocol is open source and highly

lightweight, making it a great choice for connecting tiny devices to restricted

networks. It was developed to function in environments with low bandwidth, such as

sensors and mobile devices, and on networks that are not completely stable. Because

of this feature, it is the protocol of choice for connecting devices that have a tiny

code footprint. It is also the protocol of choice for wireless networks that have

different amounts of delay as a result of bandwidth limits or unstable connections. It

accomplishes this by operating on top of TCP/IP1, which is the foundation of the

Internet. MQTT is comprised of these three primary parts: Subscriber. Publisher and

Broker in this protocol's most fundamental process, the publisher is responsible for

creating and sending information to subscribers via a broker. This information is

then received by the subscribers. The authorization of subscribers and publishers is

checked by the broker as part of the broker's primary responsibility, which is to

1Transmission Control Protocol and Internet Protocol

3

maintain data security. This protocol is favored for usage in IoT devices because it

can deliver well-organized information routing features to low-bandwidth networks

as well as tiny, low-cost, low-memory, and power devices. MQTT employs three

different degrees of quality of service to assure the dependability of its messages.

MQTT is a communication protocol that can go in both directions, meaning that

clients may both generate and receive data through the process of publishing

messages and subscribing to topics. IoT devices that are equipped with connectivity

in both directions can concurrently deliver sensor data and receive configuration

information and control commands. MQTT makes it considerably simpler to

validate clients using contemporary authentication methods and encrypt

communications using TLS2.

CoAP message flows involve lightweight and efficient communication between IoT

devices and servers. CoAP messages include GET, PUT, POST, and DELETE

methods, enabling device data exchange. Devices send requests to servers, which

respond with corresponding acknowledgments or data. CoAP's simplicity and low

overhead make it ideal for resource-constrained IoT devices.

4.1.2 Constrained Application Protocol

CoAP is a Web transfer protocol designed for use in the IoT with restricted devices

and networks. It is meant for applications that have a limited capacity to connect

utilizing LWM2M3, such as smart energy and building automation, and it may be

implemented through a UDP4.LWM2M makes it possible to remotely manage IoT

devices and provides interfaces for safely monitoring and controlling those devices.

The design of CoAP is based on the well-known REST5 paradigm. According to this

model, servers make resources available under a URL6, and clients may access these

resources by utilizing methods such as GET, PUT, POST, and DELETE. Both the

CoAP and HTTP protocols have many similarities; however, the CoAP protocol has

been improved for the IoT, and more especially for machine-to-machine

communication. It has a minimal overhead, combined with the ability to proxy and

2Transport Layer Security
3Light-Weight Machine-To-Machine Communication
4User Datagram Protocol
5Representational State Transfer
6Uniform Resource Locator

4

cache messages, and it asynchronously exchanges messages. The architecture of

CoAP is broken down into two primary categories: messaging, which is in charge of

the dependability and duplication of messages, and request/response, which is in

charge of communication between clients and servers.

The message layer sits above UDP and is in charge of the communication protocol

that enables IoT devices and the internet to exchange messages with one another.

Confirmable messages, non-confirmable messages, acknowledgment messages, and

reset messages are the four distinct varieties of CoAP communications. When two

endpoints communicate with one another, a CON7is a message that can be relied

upon. It is repeated until the receiving end sends an acknowledgment message, at

which point it is stopped. The message ID of an ACK8 the message is identical to the

message ID of a CON message. If the server is unable to successfully manage the

incoming request, it may respond with a RST rather than an ACK. Unreliable NON9

messages, in which the server does not acknowledge the message, can be used for

transferring messages that are not vital to the operation of the system. To avoid

sending duplicate messages, NON-messages are given unique message identifiers.

The Request/Response layer is the second tier of the CoAP abstraction layer.

Requests can be sent using either CON or NON-messages in this layer. In situations

in which a server can instantly react to a request, the request is communicated using

a CON message, followed by an ACK message that contains the answer or the error

code that was generated by the server. The message ID is not included in either the

request or the response's token, which means they have their unique token. When the

server is in a position where it is unable to instantly react, it will send an ACK

message that has no content as the response. After the response is complete, a new

CON message that includes the response is sent back to the client. The client then

acknowledges the response that it has received in this new CON message.

4.1.3 Advanced Message Queuing Protocol

7Confirmable Message
8Acknowledgement
9Non-confirmable

5

Figure 4.1, shows AMQP is an open standard application layer protocol that was

developed with the goals of providing increased security and dependability while

still being easy to deploy and interoperable. Because TCP is employed as a transport

protocol, it is a connection-oriented protocol. This means that to transmit data, both

the client and the broker need to first establish a connection with one another.

AMQP provides two levels of quality of service for the dependable delivery of

messages: the unsettle format, which is comparable to MQTT's QoS0, and the settle

format. The primary distinction between AMQP and MQTT standards is that AMQP

brokers are composed of two primary parts: exchange and queues. MQTT brokers

only have one primary part. Exchange is in charge of both receiving messages from

publishers and delivering them to the appropriate queues. Subscribers establish

connections to the queues, which in essence stand in for the topics, and begin

receiving sensory input as soon as it becomes available.

Figure 4.1: AMQP Architecture (Macarulla, 2016)

AMQP architecture is a messaging protocol designed for reliable and efficient

message communication between distributed systems. It employs a client-server

model with message brokers as intermediaries. Producers send messages to the

broker, which then delivers them to appropriate consumers based on routing rules

and message queues.

4.1.4 Data Distribution Service

DDS is a middleware protocol for data-centric connection that was developed by the

object management group. It offers commercial and mission-critical IoT applications

low-latency data communication, exceptional dependability, and a scalable design.

This protocol enables the use of multicasting techniques during data transmission

and enables high-quality QoS to be provided by applications and devices with a tiny

6

memory footprint. Both a DCPS10 layer and a data-local reconstruction layer make

up DDS's communications paradigm. These levels are referred to as the interface

layers.

Throughout the publish/subscribe process, the DCPS layer is the one that is in

charge of binding the values of data objects included inside an application. At the

application level, the DLRL11 is a layer that is used for integrating DDS, but its use

is optional.

4.2 Task Scheduling and Allocation in Smart Fog Computing Nodes

The previous survey results were analyzed and a detailed treatment of the

fundamentals of scheduling and scheduling types, such as task scheduling, workflow

scheduling, resource allocation, and the many optimization measures used to

evaluate these methods. Classification and extensive assessment of existing

scheduling algorithms, with a special emphasis on intelligent dynamic scheduling

strategies based on machine learning, fuzzy logic, reinforcement learning, and deep

reinforcement learning, with descriptions of their strengths and shortcomings.

Identification of research gaps and problems for task scheduling and resource

allocation in fog computing for future research efforts in this subject through the

presentation of various simulation settings and tools utilized in diverse studies.

10Data-Centric Publish-Subscribe
11Data Local Reconstruction Layer

7

Comparison of Traditional Scheduling Algorithms

Table 4.1, shows compares several traditional scheduling algorithms based on their

type and the specific performance measures they optimize.

Table 4.1: Comparison of Traditional Scheduling Algorithms

Name
Type of

Scheduling

Optimize the following Performance Measure

Latency
Execution

Time

Network

Usage

Energy

Consumption
Cost

FCFS12
Task

Scheduling
Optimized Unoptimized Optimized Optimized Unoptimized

PERA13
Task

Scheduling
Optimized Unoptimized Unoptimized Unoptimized Optimized

WRR14
Task

Scheduling
Optimized Unoptimized Unoptimized Unoptimized Unoptimized

FCFS
Resource

Scheduling
Optimized Unoptimized Optimized Optimized Unoptimized

FCFS task scheduling algorithm when applied in Fog and cloud environment

suggests that FCFS in Fog environment optimizes latency, total network usage, and

energy consumption when compared with FCFS in cloud environment. PERA, a

Priority-based task scheduling algorithm optimizes latency and cost.

FCFS is a task-scheduling algorithm that optimizes latency, network usage, and

energy consumption but does not focus on minimizing execution time or cost

efficiency. Priority-based Scheduling also deals with task scheduling, optimizing

latency and cost, while neglecting execution time, network usage, and energy

consumption. Weighted Round Robin, another task scheduling algorithm, primarily

optimizes latency without targeting execution time, network usage, energy

consumption, or cost. The combined FCFS, Delay Priority, and Concurrent

approach, a resource scheduling method, optimizes latency, network usage, and

energy consumption but does not focus on execution time or cost efficiency. Each

algorithm is tailored to enhance specific aspects of performance, demonstrating the

trade-offs inherent in scheduling decisions

12First-Come, First-Served
13Packetized Ensemble Resource Allocation
14Weighted Round Robin

8

Integer Linear Programming

Table 4.2 compares various Integer Linear Programming scheduling algorithms

based on their type and the performance measures they optimize.

Table 4.2: Integer Linear Programming

Name
Type of

Scheduling

Optimize the following Performance Measure

Latency Makespan QoS Cost

ILP15
Resource

Scheduling
Optimized Unoptimized Optimized Optimized

MILP16
Resource

Scheduling
Unoptimized Unoptimized Optimized Optimized

ILP, a resource scheduling algorithm based on integer linear programming when

used in Fog environment optimizes the latency, QoS, and cost when compared with

a cloud environment. ILP is a resource scheduling algorithm that optimizes latency,

Quality of Service, and cost but does not focus on minimizing makespan. Min-CCV

and Min-V, also resource scheduling algorithms, prioritize QoS and cost efficiency,

without optimizing latency or makespan.

Comparison of Heuristic Scheduling Algorithms

Table 4.3, shows compare various heuristic scheduling algorithms based on their

type and optimized performance measures.

Table 4.3: Comparison of Heuristic Scheduling Algorithms

Name
Type of

Scheduling

Optimize the following Performance Measure

Latency Makespan QoS Cost
Energy

Consumption

Network

Usage

SJF17 Task Optimized Unoptimized Unoptimized Unoptimized Optimized Unoptimized

PTPN18 Resource Unoptimized Unoptimized Optimized Unoptimized Optimized Unoptimized

MCCV
19

Resource Unoptimized Unoptimized Optimized Optimized Unoptimized Unoptimized

EDF
&LFC20

Resource Optimized Optimized Unoptimized Optimized Unoptimized Unoptimized

DOTS21 Resource Optimized Unoptimized Unoptimized Optimized Unoptimized Unoptimized

TIPS22
Task /

Resource
Unoptimized Unoptimized Optimized Unoptimized Unoptimized Unoptimized

15Integer Linear Programming
16Mixed Integer Linear Programming
17Shortest Job First
18Preemptive Task Priority Network
19Minimum Critical-Cycle Variance
20Earliest Deadline First and Least Slack Time
21Dynamic Optimization of Time Sequences
22Time-Invariant Power Scheduling

9

SJF task scheduling algorithm optimizes latency and energy consumption. Similarly,

PTPN resource allocation algorithm highly optimizes QoS and energy consumption.

SJFfor task scheduling optimizes latency and energy consumption but not

makespan, QoS, cost, or network usage. PTPN for resource scheduling focuses on

optimizing QoS and energy consumption, neglecting other factors.

Min-CCV and Min-V for resource scheduling enhance QoS and cost efficiency but

do not optimize latency, makespan, energy consumption, or network usage. EDF &

Static LFC for resource scheduling optimize latency, makespan, and cost, leaving

QoS, energy consumption, and network usage unoptimized. DOTS for resource

scheduling focuses on minimizing latency and cost but does not optimize makespan,

QoS, energy consumption, or network usage. Finally, TIPS for both task and

resource scheduling prioritizes QoS without addressing latency, makespan, cost,

energy consumption, or network usage.

Comparison of Fuzzy-Based Scheduling Algorithms

Table 4.4, shows a Comparison of Fuzzy-Based Scheduling Algorithms Fog

computing is not a replacement for cloud computing but instead, an extension of

cloud computing that enhances the already established cloud architecture. Here’s

how While the server nodes of cloud computing are located within the internet, fog

computing has them at the edge of the networks. With this parameter, fog computing

enhances cloud computing by functionally managing data from mobile devices thus

reducing latency and improved response time.

Table 4.4: Comparison of Fuzzy-Based Scheduling Algorithms

Name
Type of

Scheduling

Optimize the following Performance Measure

Latency Makespan QoS Cost
Energy

Consumption

Network

Usage

RFN23
Resource

Scheduling
Optimized Unoptimized Unoptimized Unoptimized Optimized Unoptimized

FLPSO24
Resource

Scheduling
Unoptimized Unoptimized Optimized Unoptimized Unoptimized Unoptimized

FPFTS25
Resource

Scheduling
Optimized Unoptimized Unoptimized Unoptimized Optimized Optimized

EDA26
Resource

Scheduling
Optimized Unoptimized Optimized Unoptimized Optimized Optimized

23 Rule-based Fuzzy Network
24 Fuzzy Logic and Particle Swarm Optimization
25 Fuzzy-Possibilistic Fuzzy Time Series
26 Estimation of Distribution Algorithm

10

RFN, a fuzzy-based scheduling algorithm is a resource scheduling algorithm that

optimizes latency and energy consumption. Similarly, FLPSO algorithm highly

optimizes QoS.

Fog computing is not a replacement for cloud computing but instead, an extension of

cloud computing that enhances the already established cloud architecture. Here’s

how – While the server nodes of cloud computing are located within the internet, fog

computing has them at the edge of the networks. With this parameter, fog computing

enhances cloud computing by functionally managing data from mobile devices thus

reducing latency and improved response time.

4.3 Challenges in Implementing Fog Computing

Implementing Fog computing faces challenges such as heterogeneous device

integration, security concerns at the edge, resource optimization, reliability

maintenance, and scalability issues. Ensuring seamless interoperability between

diverse devices, managing security risks at the edge, and optimizing resource

allocation are crucial tasks. Additionally, maintaining reliability in a decentralized

environment and addressing scalability concerns pose significant challenges that

require comprehensive solutions. Fog computing is really necessary. There are,

however, many obstacles to overcome to put it into practice:

Data Privacy

By placing fog nodes in the network's periphery, fog computing makes them

available to a wider audience of end users. This makes the fog nodes more of a

target for cyber-attacks as they collect a greater volume of sensitive data than the

distant cloud.

Security

As fog computing requires authentication of devices at several gateways, the

possibility of a rogue user using a spoofed IP address to access the data stored in a

specific fog node is the most crucial security concern. This resulted in the

installation of intrusion detection systems throughout the whole platform.

11

Network Management

Because they are linked to disparate hardware types, managing the fog's nodes,

network, and inter-node connections can be arduous without software-defined

networking and network function virtualization approaches.

Positioning the FOG Servers

Positioning Fog servers, or Fog nodes, is essential in Fog Computing architecture to

enhance performance by bringing data processing closer to the data sources. This

proximity reduces latency, conserves bandwidth, and improves network efficiency,

particularly for real-time applications like autonomous vehicles, industrial

automation, and smart grids. Effective placement involves a distributed and

hierarchical network topology to balance load and prevent bottlenecks, considering

workload characteristics and dynamically adjusting based on network conditions. It

also requires modular and scalable deployment to accommodate varying demands,

ensuring high availability through redundancy. Security is paramount, with robust

measures to protect sensitive data and compliance with local regulations.

Additionally, energy efficiency is critical, achieved through strategic placement with

reliable power sources and green computing practices. Practical scenarios include

smart cities for traffic management and public safety, industrial IoT for predictive

maintenance and automation control, healthcare for remote monitoring and

telemedicine, and retail for in-store analytics and reliable point-of-sale systems. To

maximize the service provided by fog computing and reduce maintenance costs, it is

necessary to analyze the work performed in each node of the servers before deciding

where to arrange the group of fog servers.

Positioning Fog servers effectively is a multifaceted challenge that requires careful

consideration of proximity to data sources, network topology, workload distribution,

scalability, security, and energy efficiency. By strategically placing these nodes,

organizations can leverage the benefits of Fog computing, such as reduced latency,

improved bandwidth utilization, enhanced data security, and greater overall network

efficiency. This approach is particularly beneficial in applications requiring real-

time processing and analysis, making it a vital component of modern distributed

computing architectures.

12

Energy consumption is a critical consideration in Fog Computing systems due to the

extensive deployment of fog nodes across distributed environments. These fog

nodes, which are responsible for processing and managing data at the edge of the

network, often operate in resource-constrained settings with limited power sources.

Energy consumption is significant because of the large number of fog nodes used in

fog computing systems. Our research work focuses on the above-stated objective

which aims to use the computational power of computation-enabled devices to

collaboratively perform tasks and speed up the processing.

4.4 Hypothesis Testing Results

The null hypothesis H01 as stated Smart Fog protocol-based technique to create a

Fog Computing environment will not share computational power with IoT devices

with low computational power and other aspects are being categorized into various

sub-hypotheses H01, H02, H03, H04, H05, and H06 to compare the impact of various

aspects related to efficiency and various measures of SMART FOG protocol-based

system with the cloud-based system.

H01: There is no significant difference between SMART FOG protocol-based

system and cloud-based system based on the performance measure execution time.

An alternative hypothesis is as follows

Ha1: There is a significant difference between SMART FOG protocol-based system

and cloud-based system based on the performance measure execution time.

When comparing Fog Computing to Cloud Computing in terms of average

execution time, it's essential to consider how each architecture processes tasks and

their implications for task completion speed. Fog Computing, which processes tasks

closer to the edge of the network, can potentially reduce latency and speed up

execution times, particularly for time-sensitive tasks, by minimizing the distance

data needs to travel. However, the effectiveness of Fog Computing depends on

factors such as task complexity, resource availability at the edge, and network

efficiency. Cloud Computing, while offering scalability and computational power,

may introduce latency due to the distance between edge devices and centralized data

centers, impacting average execution time. The choice between Fog Computing and

13

Cloud Computing should be based on the specific requirements of the application,

considering factors such as task type, network latency, resource availability, and

scalability needs.

Figure 4.2: Fog Vs Cloud System Based on Average Execution Time

Figure 4.2, shows comparative analysis between Fog fog-based systems and Cloud

cloud-based systems based on reduction in execution time as shown below confirms

that there is a large reduction in execution time with the use of Smart Fog-based

systems as compared to Cloud-based systems.

0

2000

4000

6000

8000

10000

12000

14000

Fog Based System Execution Time

Cloud Based SystemExecution Time

14

Table 4.5: Execution Time Reduced due to Fog Computing Environment

Table 4.5 shows Execution Time Reduced due to Fog Computing Environment in

Fog system 8:10, 9:9, 7:10, 6:10, 6:6, 4:10, and 2:6 there is a large reduction in

execution time with values 9872, 3008, 7866, 5417, 4533, 4024, and 8703

respectively. So, it is very clear that Fog layer plays an important role in the

execution time reduction. The Smart Fog system 9:9 which means 9 areas and 9

cameras takes a lower execution time of 7315 as compared to the cloud system 9:9

with an execution time of 10323. The experimental outcomes are further represented

or categorized into high and low as shown below in the crosstabulation table.

Table 4.6 shows the FOG SYSTEM operates over two distinct execution time

ranges, categorized into "Low" and "High." The "Low" range includes values from 0

to 500, while the "High" range covers values from 501 to 10000. Similarly, the

15

CLOUD SYSTEM is categorized into "Low" and "High" ranges, with the "Low"

range spanning from 0 to 250 and the "High" range covering 251 to 10000.

Table 4.6: Classification of Fog and Cloud for Execution Time

Obs
Fog

System

Execution

Time
Rank

Cloud

System

Execution

Time
Rank

1 Fog-1:1 312 Low Cloud-1:1 684 High

2 Fog-1:2 210 High Cloud-1:2 933 High

3 Fog-1:3 359 High Cloud-1:3 1198 High

4 Fog-1:4 502 High Cloud-1:4 1133 High

5 Fog-1:5 692 High Cloud-1:5 1348 High

6 Fog-2:2 384 High Cloud-2:2 1203 High

7 Fog-2:3 525 Low Cloud-2:3 531 High

8 Fog-2:4 494 High Cloud-2:4 690 High

9 Fog-2:5 677 Low Cloud-2:5 1048 Low

10 Fog-2:6 769 Low Cloud-2:6 8703 Low

11 Fog-2:7 1122 Low Cloud-2:7 1153 High

12 Fog-2:8 1032 High Cloud-2:8 1502 High

13 Fog-2:9 1193 Low Cloud-2:9 1632 Low

14 Fog-2:10 1278 Low Cloud-2:10 1547 High

15 Fog-3:5 1010 Low Cloud-3:5 3429 High

16 Fog-3:6 1253 Low Cloud-3:6 1877 Low

17 Fog-3:10 2036 High Cloud-3:10 2237 High

18 Fog-4:4 893 High Cloud-4:4 1328 High

19 Fog-4:5 1121 High Cloud-4:5 1513 High

20 Fog-4:10 1816 Low Cloud-4:10 4024 High

21 Fog-5:5 1400 Low Cloud-5:5 1908 High

22 Fog-5:10 2091 High Cloud-5:10 2686 High

23 Fog-6:6 1648 High Cloud-6:6 6181 High

24 Fog-6:10 1986 High Cloud-6:10 7403 High

25 Fog-7:10 2229 High Cloud-7:10 10095 High

26 Fog-8:10 2636 High Cloud-8:10 12508 High

27 Fog-9:9 7315 High Cloud-9:9 10323 High

28 Fog-10:5 2254 High Cloud-10:5 3373 High

Table 4.7 shows specific ranges chosen to comprehensively understand each

system's performance across varying operational scenarios. By distinguishing

between lower and higher values, managing and optimizing the behaviours of the

system becomes easier, ensuring they operate efficiently under different conditions.

The "Low" range typically represents scenarios with minimal operational load, while

the "High" range accounts for more intensive usage, allowing for tailored strategies

to maintain optimal performance.

16

Table 4.7: Type of System (Fog or Cloud) and Average Execution Time

Crosstabulation: Type of System (Fog or Cloud) and Average

Execution Time

Type

Average Execution

Time Total

 High Low

System

(Fog or Cloud)

Cloud-Based System 24 4 28

Fog Based System 17 11 28

Total 41 15 56

Table 4.8 shows the approach for calculating the expected value from the row total

of average execution time and column total of type of system (Fog or Cloud) also

the total number of observations is 56.

 Table 4.8: Expected Frequency

Calculation of Expected Frequency

Total Average

Execution Time

Total Type

(Fog or Cloud)

Expected

Frequency

Expected

Frequency

41 28 (41* 28) / 56 20.5

15 28 (15* 28) / 56 7.5

41 28 (41* 28) / 56 20.5

15 28 (15* 28) / 56 7.5

Table 4.9: 2 Calculation

Observed and Expected Frequency for the calculation of 2

Observed

Frequency (OF)

Expected

Frequency (EF)
(OF - EF)2

(OF - EF)2

/ EF

24 20.5 12.25 0.5975

4 7.5 12.25 1.6333

17 20.5 12.25 0.5975

11 7.5 12.5 1.6333
 Total () 4.4616

Degree of Freedom = (r-1) * (c-1)

 = (2-1) * (2-1)

 = 1

Table value @ 5% level of significance = 3.84

Therefore,

17

The calculated value of Chi-Square is found to be 4.4616

The tabulated value of Chi-Square is found to be 3.84

Accordingly, table 4.9 represents the calculation of Chi-Square test value using the

observed and expected frequencies. The results confirm that the calculated value of

Chi-Square 4.4616 is greater than the tabulated value of 3.84 at a 5% level of

significance. So, it is clear that the null hypothesis is rejected.

It concludes that there is a significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure execution

time. A notable contrast in performance, measured by execution time, emerged

between the SMART FOG protocol-based and cloud-based systems. The findings

reveal that the SMART FOG system exhibited superior performance with notably

shorter execution times compared to its cloud-based counterpart.

H02: There is a significant difference between SMART FOG protocol-based

systems and cloud-based systems based on the performance measure latency.

An alternative hypothesis is as follows

Ha2: There is no significant difference between SMART FOG protocol-based

system and cloud-based system based on the performance measure latency.

18

Figure 4.3: Fog Vs Cloud System Based on Latency

Figure 4.2, shows a comparative analysis between Fog fog-based system and Cloud-

based system based on reduction in latency, as shown above, confirms that there is a

large reduction in latency with use of Smart Fog based systems as compared to

Cloud-based systems. In Fog system 10:5, 4:4, 2:5, 2:4, 2:3, 2:2, 1:5, 1:4, 1:3, 1:2,

and 1:1 there is a large reduction in latency value such as 453. 523, 198.926,

190.698, 198.131, 199.715, 201.366, 191.913, 197.730, 199.413, 201.161, and

194.086 respectively. So, it is very clear that Fog layer plays an important role in

latency reduction.

0

200

400

600

800

1000

1200

1400

1600

1800

Latency (Fog) Latency (Cloud)

19

Table 4.10: Latency Reduced due to Fog Computing Environment

Table 4.10, shows that Smart Fog system 10:5 which means 10 areas and 5 cameras

takes a lower latency value of 218.62 as compared to the cloud system 10:5 with a

latency value of 672.14. The experimental outcomes are further represented or

categorized into high and low as shown below in the crosstabulation table.

Table 4.11 shows latency for the FOG SYSTEM is categorized into "Low" and

"High" ranges, with the "Low" range including values from -5600.0000 to 1.0000

and the "High" range covering values from 1.0001 to 2100.0000. Similarly, the

CLOUD SYSTEM latency is divided into "Low" and "High" ranges, where the

"Low" range spans from 1.0001 to 15000.0000, and the "High" range includes

values from -55000 to 1.0000.

System Latency (Fog) Latency (Cloud)

Latency Reduced Using

Fog System

Fog/Cloud-1:1 16.414 210.499 194.086

Fog/Cloud-1:2 9.493 210.654 201.161

Fog/Cloud-1:3 11.278 210.692 199.413

Fog/Cloud-1:4 13.064 210.794 197.730

Fog/Cloud-1:5 18.946 210.859 191.913

Fog/Cloud-2:2 9.493 210.859 201.366

Fog/Cloud-2:3 11.278 210.993 199.715

Fog/Cloud-2:4 13.064 211.195 198.131

Fog/Cloud-2:5 20.707 211.405 190.698

Fog/Cloud-2:6 211.577 211.599 0.022

Fog/Cloud-2:7 211.787 211.857 0.070

Fog/Cloud-2:8 211.941 211.965 0.024

Fog/Cloud-2:9 212.107 212.184 0.077

Fog/Cloud-2:10 212.376 212.365 -0.011

Fog/Cloud-3:5 331.999 211.814 -120.186

Fog/Cloud-3:6 212.108 212.150 0.042

Fog/Cloud-3:10 366.026 365.965 -0.062

Fog/Cloud-4:4 13.064 211.990 198.926

Fog/Cloud-4:5 218.450 212.354 -6.096

Fog/Cloud-4:10 557.410 557.302 -0.108

Fog/Cloud-5:5 217.757 212.806 -4.952

Fog/Cloud-5:10 672.095 672.236 0.141

Fog/Cloud-6:6 493.522 493.557 0.035

Fog/Cloud-6:10 748.737 748.728 -0.008

Fog/Cloud-7:10 803.448 803.375 -0.073

Fog/Cloud-8:10 844.404 844.350 -0.054

Fog/Cloud-9:9 847.908 847.990 0.083

Fog/Cloud-10:5 218.625 672.148 453.523

20

Table 4.11: Classification of Fog and Cloud for Latency

Obs
Fog

System
Latency Rank

Cloud

System
Latency Rank

1 Fog-1:1 16.41 Low Cloud-1:1 210.50 High

2 Fog-1:2 9.49 Low Cloud-1:2 210.65 High

3 Fog-1:3 11.28 Low Cloud-1:3 210.69 High

4 Fog-1:4 13.06 Low Cloud-1:4 210.79 High

5 Fog-1:5 18.95 Low Cloud-1:5 210.86 High

6 Fog-2:2 9.49 Low Cloud-2:2 210.86 High

7 Fog-2:3 11.28 Low Cloud-2:3 210.99 High

8 Fog-2:4 13.06 Low Cloud-2:4 211.19 High

9 Fog-2:5 20.71 Low Cloud-2:5 211.41 High

10 Fog-2:6 211.58 High Cloud-2:6 211.60 High

11 Fog-2:7 211.79 Low Cloud-2:7 211.86 High

12 Fog-2:8 211.94 Low Cloud-2:8 211.97 High

13 Fog-2:9 212.11 Low Cloud-2:9 212.18 High

14 Fog-2:10 212.38 High Cloud-2:10 212.37 Low

15 Fog-3:5 332.00 High Cloud-3:5 211.81 Low

16 Fog-3:6 212.11 Low Cloud-3:6 212.15 High

17 Fog-3:10 366.03 High Cloud-3:10 365.96 Low

18 Fog-4:4 13.06 Low Cloud-4:4 211.99 High

19 Fog-4:5 218.45 High Cloud-4:5 212.35 Low

20 Fog-4:10 557.41 High Cloud-4:10 557.30 Low

21 Fog-5:5 217.76 High Cloud-5:5 212.81 Low

22 Fog-5:10 672.10 Low Cloud-5:10 672.24 High

23 Fog-6:6 493.52 Low Cloud-6:6 493.56 High

24 Fog-6:10 748.74 High Cloud-6:10 748.73 High

25 Fog-7:10 803.45 High Cloud-7:10 803.37 Low

26 Fog-8:10 844.40 High Cloud-8:10 844.35 Low

27 Fog-9:9 847.91 Low Cloud-9:9 847.99 High

28 Fog-10:5 218.62 Low Cloud-10:5 672.15 High

Table 4.12 shows specific ranges are chosen to provide a comprehensive

understanding of each system's performance across various latency conditions. By

distinguishing between lower and higher latency values, it becomes easier to

optimize the systems' behaviors, ensuring they operate efficiently under different

scenarios. This categorization aids in tailoring strategies to maintain optimal

performance by addressing minimal and intensive latency conditions separately.

21

Table 4.12: Type of System (Fog or Cloud) and Latency

Crosstabulation: Type of System (Fog or Cloud) and Latency

Type
Latency

Total
High Low

System

(Fog or

Cloud)

Cloud-Based System 20 8 28

Fog Based System 10 18 28

Total 30 26 56

Table 4.13 shows the approach for calculating the expected value from the row total

of latency and column total type of system (Fog or Cloud) also the total number of

observations is 56.

 Table 4.13: Expected Frequency

Calculation of Expected Frequency

Total of

Latency

Total Type

(Fog or Cloud)

Expected

Frequency

Expected

Frequency

30 28 (30 * 28) / 56 15

26 28 (26 * 28) / 56 13

30 28 (30 * 28) / 56 15

26 28 (26 * 28) / 56 13

Table 4.14:2 Calculation

Observed and Expected Frequency for the calculation of 2

Observed

Frequency (OF)

Expected

Frequency (EF)
(OF - EF)2

(OF - EF)2 /

EF

20 15 25 1.67

8 13 25 1.92

10 15 25 1.67

18 13 25 1.92
 Total () 7.18

Degree of Freedom = (r-1) * (c-1)

 = (2-1) * (2-1)

 = 1

Table value @ 5% level of significance = 3.841

Therefore,

The calculated value of Chi-Square is found to be 7.18.

The tabulated value of Chi-Square is found to be 3.841.

22

Accordingly, table 4.14 represents the calculation of Chi-Square test value using the

observed and expected frequencies. The results confirm that the calculated value of

Chi-Square 7.18 is greater than the tabulated value of 3.841 at a 5% level of

significance. So, it is clear that the null hypothesis is accepted.

It concludes that there is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure latency. A

notable contrast in performance, measured by latency, emerged between the

SMART FOG protocol-based and cloud-based systems. The findings reveal that the

SMART FOG system exhibited superior performance with notably shorter latency

compared to its cloud-based counterpart.

H03: There is no significant difference between SMART FOG protocol-based

system and cloud-based system based on the performance measure energy

consumed.

An alternative hypothesis is as follows

Ha3: There is significant difference between SMART FOG protocol-based system

and cloud-based system based on the performance measure energy consumed.

23

Figure 4.4: Fog Vs Cloud System Based on Energy Consumption (Joules)

Figure 4.4, shows a comparative analysis between Fog fog-based system and Cloud-

based system based on reduction in energy consumption as shown below confirming

that there is a large reduction in energy consumption with the use of a Smart Fog

based system as compared to Cloud-based systems. In Fog system 10:5, 5:5, 4:5,

4:4, 3:5, 2:5, 2:4, 2:3, 2:2, 1:5, 1:4, 1:3, 1:2, and 1:1 there is a large reduction in

energy consumption such as 273694.729, 384391.984, 316112.779, 331766.905,

211288.876, 177375.370, 137333.715, 96247.432, 129245.955, 96035.138,

103230.811, 53272.127 and 36660.736 respectively.

2400000

2500000

2600000

2700000

2800000

2900000

3000000

3100000

3200000

3300000

Energy Consumed (Fog) Energy Consumed (Cloud)

24

Table 4.15: Energy Consumption Reduced due to Fog Computing Environment

Table 4.15 shows that The Smart Fog system 10:5 which means 10 areas and 5

cameras takes a lower energy consumption of 2903894.713 as compared to the cloud

system 10:5 with an energy consumption of 3177589.443. The experimental

outcomes are further represented or categorized into very high to very low as shown

below in the crosstabulation table.

Table 4.16 shows that energy consumption ranges for both FOG SYSTEM and

CLOUD SYSTEM are tailored to categorize their respective usage levels

effectively. FOG SYSTEM's categories range from "Very High" (below -1150.0000)

for extremely low consumption to "Very Low" (400.0000 to 400000.0000) for

higher usage scenarios. In contrast, CLOUD SYSTEM starts with "Very Low"

(below -1550.0000) and goes up to "Very High" (400.0000 to 400000.0000).

System

Energy Consumed

(Fog)

Energy Consumed

(Cloud)

Energy Consumption Reduced

Using Fog

Fog/Cloud-1:1 2666906.9783 2703567.7143 36660.736

Fog/Cloud-1:2 2670956.3531 2724228.4804 53272.127

Fog/Cloud-1:3 2668402.4564 2771633.2679 103230.811

Fog/Cloud-1:4 2668904.0258 2764939.1634 96035.138

Fog/Cloud-1:5 2669934.3309 2799180.2862 129245.955

Fog/Cloud-2:2 2668603.1406 2764850.5729 96247.432

Fog/Cloud-2:3 2670441.5028 2807775.2177 137333.715

Fog/Cloud-2:4 2671749.8597 2849125.2299 177375.370

Fog/Cloud-2:5 2675762.8380 2887051.7140 211288.876

Fog/Cloud-2:6 2928104.6330 2926944.7498 -1159.883

Fog/Cloud-2:7 2969367.4582 2968703.5879 -663.870

Fog/Cloud-2:8 3009438.8046 3007902.8161 -1535.989

Fog/Cloud-2:9 3048411.7523 3048899.5858 487.834

Fog/Cloud-2:10 3089402.5999 3088658.5915 -744.008

Fog/Cloud-3:5 2677098.6434 2993796.5055 316697.862

Fog/Cloud-3:6 3049029.0903 3048668.7878 -360.303

Fog/Cloud-3:10 3178035.5090 3176881.5438 -1153.965

Fog/Cloud-4:4 2676983.1865 3008750.0915 331766.905

Fog/Cloud-4:5 2773838.5932 3089951.3720 316112.779

Fog/Cloud-4:10 3177518.9069 3177179.7693 -339.138

Fog/Cloud-5:5 2792816.8478 3177208.8314 384391.984

Fog/Cloud-5:10 3177556.9957 3177196.9814 -360.014

Fog/Cloud-6:6 3176917.6581 3177369.9354 452.277

Fog/Cloud-6:10 3177409.1509 3177226.8895 -182.261

Fog/Cloud-7:10 3177797.6631 3177507.3385 -290.325

Fog/Cloud-8:10 3177042.9305 3177065.2212 22.291

Fog/Cloud-9:9 3177160.0221 3177118.2621 -41.760

Fog/Cloud-10:5 2903894.7132 3177589.4426 273694.729

25

Table 4.16: Classification of Fog and Cloud for Energy Consumption

O

bs

.

Fog

System

Energy

Consum-

ption

Rank
Cloud

System

Energy

Consum-

ption

Rank

1 Fog-1:1 2666906.98 Very Low Cloud-1:1 2703567.71 Very High

2 Fog-1:2 2670956.35 Very Low Cloud-1:2 2724228.48 Very High

3 Fog-1:3 2668402.46 Very Low Cloud-1:3 2771633.27 Very High

4 Fog-1:4 2668904.03 Very Low Cloud-1:4 2764939.16 Very High

5 Fog-1:5 2669934.33 Very Low Cloud-1:5 2799180.29 Very High

6 Fog-2:2 2668603.14 Very Low Cloud-2:2 2764850.57 Very High

7 Fog-2:3 2670441.50 Very Low Cloud-2:3 2807775.22 Very High

8 Fog-2:4 2671749.86 Very Low Cloud-2:4 2849125.23 Very High

9 Fog-2:5 2675762.84 Very Low Cloud-2:5 2887051.71 Very High

10 Fog-2:6 2928104.63 High Cloud-2:6 2926944.75 Low

11 Fog-2:7 2969367.46 High Cloud-2:7 2968703.59 Low

12 Fog-2:8 3009438.80 Very High Cloud-2:8 3007902.82 Low

13 Fog-2:9 3048411.75 Very Low Cloud-2:9 3048899.59 Very High

14 Fog-2:10 3089402.60 High Cloud-2:10 3088658.59 Low

15 Fog-3:5 2677098.64 Very Low Cloud-3:5 2993796.51 Very High

16 Fog-3:6 3049029.09 High Cloud-3:6 3048668.79 Low

17 Fog-3:10 3178035.51 High Cloud-3:10 3176881.54 Low

18 Fog-4:4 2676983.19 Very Low Cloud-4:4 3008750.09 Very High

19 Fog-4:5 2773838.59 Very Low Cloud-4:5 3089951.37 Very High

20 Fog-4:10 3177518.91 High Cloud-4:10 3177179.77 Low

21 Fog-5:5 2792816.85 Very Low Cloud-5:5 3177208.83 Very High

22 Fog-5:10 3177557.00 High Cloud-5:10 3177196.98 Low

23 Fog-6:6 3176917.66 Very Low Cloud-6:6 3177369.94 Very High

24 Fog-6:10 3177409.15 High Cloud-6:10 3177226.89 Low

25 Fog-7:10 3177797.66 High Cloud-7:10 3177507.34 Low

26 Fog-8:10 3177042.93 Low Cloud-8:10 3177065.22 High

27 Fog-9:9 3177160.02 High Cloud-9:9 3177118.26 Low

28 Fog-10:5 2903894.71 Very Low Cloud-10:5 3177589.44 Very High

Table 4.17 shows, specific ranges are chosen to provide a comprehensive

understanding of each system's performance across various Energy Consumption

conditions. By distinguishing between Very Low, Low, High, Very High values, it

becomes easier to optimize the systems' behaviors, ensuring they operate efficiently

under different scenarios.

26

Table 4.17: Type of System (Fog or Cloud) and Energy Consumption

Crosstabulation: Type of System (Fog or Cloud) and Energy

Consumption

Count

Type

Energy Consumption

Total

Very

Low Low High

Very

High

System (Fog or

Cloud)

Cloud 0 11 1 16 28

Fog 16 1 10 1 28

Total 16 12 11 17 56

Table 4.18, shows the approach for calculating the expected Frequency value from

the row total of energy consumption and column total of type of system (Fog or

Cloud) also the total number of observations is 56.

 Table 4.18: Expected Frequency

Calculation of Expected Frequency

Total of Energy

Consumption

Total Type

(Fog or Cloud)

Expected

Frequency

Expected

Frequency

16 28 (16 * 28) / 56 8.0

12 28 (12 * 28) / 56 6.0

11 28 (11 * 28) / 56 5.5

17 28 (17 * 28) / 56 8.5

16 28 (16 * 28) / 56 8.0

12 28 (12 * 28) / 56 6.0

11 28 (11 * 28) / 56 5.5

17 28 (17 * 28) / 56 8.5

Table 4.19: 2 Calculation

Observed and Expected Frequency for the calculation of 2

Observed

Frequency (OF)

Expected

Frequency (EF)
(OF - EF)2

(OF - EF)2

/ EF

0 8.0 64.00 8.00

11 6.0 25.00 4.17

1 5.5 20.25 3.68

16 8.5 56.25 6.62

16 8.0 64.00 8.00

1 6.0 25.00 4.17

10 5.5 20.25 3.68

1 8.5 56.25 6.62

 Total () 44.93

27

Degree of Freedom =(r-1) * (c-1)

 = (2-1) * (4-1)

 = 3

Table value @ 5% level of significance = 7.81

Therefore,

The calculated value of Chi-Square is found to be 44.93

The tabulated value of Chi-Square is found to be 7.81

Accordingly, table 4.19 represents the calculation of Chi-Square test value using the

observed and expected frequencies. The results confirm that the calculated value of

Chi-Square 44.93 is much greater than the tabulated value of 7.81 at a 5% level of

significance. So, it is clear that the null hypothesis is rejected.

It concludes that there is significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure energy

consumed. A notable contrast in performance, measured by energy consumption,

emerged between the SMART FOG protocol-based and cloud-based systems. The

findings reveal that the SMART FOG system exhibited superior performance with

notably lower energy consumption as compared to its cloud-based counterpart.

H04: There is significant difference between SMART FOG protocol-based system

and cloud-based system based on the performance measure cost of execution.

An alternative hypothesis is as follows

Ha4: There is no significant difference between SMART FOG protocol-based

system and cloud-based system based on the performance measure cost of

execution.

28

340103.8971

628126.8047

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Cost of execution (Fog) Cost of execution (Cloud)

Figure 4.5: Fog Vs Cloud System Based on Cost of Execution (ms)

Figure 4.5, shows comparative analysis between Fog based system and Cloud based

system based on a reduction in cost of execution as shown below confirms that there

is a large reduction in cost of execution with the use of a Smart fog-based system as

compared to Cloud-based systems.

29

Table 4.20: Cost of Execution Reduced due to Fog Computing Environment

Table 4.20 shows Fog system 10:5, 6:10, 5:5, 4:5, 4:4, 3:10, 3:5, 2:9, 2:8, 2:6, 2:5,

2:4, 2:3, 2:2, 1:5, 1:4, 1:3,1:2 and 1:1 there is large reduction in cost of execution

such as 288022.9075, 99741, 60402, 544960.7869, 448159.0806, 98363.99866,

448989.3741, 500691.6121, 98355.60871, 399548.7862, 251468.8792,

194700.9629, 136452.056, 183234.7721, 183234.7721, 136151.0813, 146352.5429,

75525.04129 and 51974.7142 respectively. The Smart Fog system 10:5 which

means 10 areas and 5 cameras takes a lower cost of execution of 340103.8971 as

compared to the cloud system 10:5 with a cost of execution of 628126.8047. The

experimental outcomes are further represented or categorized into very high to very

low as shown below in the crosstabulation table.

Table 4.21 shows the FOG SYSTEM's "Very High" (below -950.0000) indicates

exceptionally low costs due to optimized processes. "High" (-950.0001 to 30.0000)

System Cost of execution (Fog)

Cost of execution

(Cloud)

Cost of execution Reduced Using

Fog System

Fog/Cloud-1:1 4121.285714 56096 51974.71429

Fog/Cloud-1:2 9862.171429 85387.21272 75525.04129

Fog/Cloud-1:3 6241.457143 152594 146352.5429

Fog/Cloud-1:4 6952.542857 143103.6241 136151.0813

Fog/Cloud-1:5 8413.228571 191648.0007 183234.7721

Fog/Cloud-2:2 6525.971429 142978.0275 136452.056

Fog/Cloud-2:3 9132.257143 203833.2201 194700.9629

Fog/Cloud-2:4 10987.14286 262456.0221 251468.8792

Fog/Cloud-2:5 16676.42857 416225.2147 399548.7862

Fog/Cloud-2:6 374426.8214 472782.4301 98355.60871

Fog/Cloud-2:7 432926.0167 431984.8335 -941.1832586

Fog/Cloud-2:8 469736.0268 487558.4228 17822.39598

Fog/Cloud-2:9 44988.81339 545680.4254 500691.6121

Fog/Cloud-2:10 603102.4201 602047.6234 -1054.796652

Fog/Cloud-3:5 18570.22857 467559.6027 448989.3741

Fog/Cloud-3:6 545864.0268 545353.2181 -510.8087055

Fog/Cloud-3:10 728759.2027 827123.2013 98363.99866

Fog/Cloud-4:4 18406.54286 488759.6234 470353.0806

Fog/Cloud-4:5 155720.5371 603880.4261 448159.889

Fog/Cloud-4:10 728026.8047 727546.002 -480.8026788

Fog/Cloud-5:5 182626.4171 727587.204 544960.7869

Fog/Cloud-5:10 728080.804 727570.404 -510.3999999

Fog/Cloud-6:6 727174.4013 727815.6047 641.2033483

Fog/Cloud-6:10 727871.2013 827612.8054 99741.60402

Fog/Cloud-7:10 728422.0033 728010.404 -411.5993303

Fog/Cloud-8:10 727352.0027 727383.6047 31.60200911

Fog/Cloud-9:9 727518.006 727458.802 -59.20401781

Fog/Cloud-10:5 340103.8971 628126.8047 288022.9075

30

suggests moderate expenses with efficient operations, while "Low" (30.0001 to

90000.0000) represents typical costs within budget. "Very Low" (90001.0000 to

600000.0000) signifies higher expenses possibly from less optimized setups.

For the CLOUD SYSTEM, "Very Low" (below -950.0000) and "Low" (-950.0001

to 31.0000) denote economical costs and efficient management. "High" (31.0001 to

100000.0000) reflects standard expenses akin to FOG SYSTEM's "Low" range,

while "Very High" (100000.0001 to 600000.0000) indicates higher costs due to

complex tasks.

Table 4.21: Classification of Fog and Cloud for Execution

Obs.
Fog

System

Cost of

Execution

Classi-

fication

Cloud

System

Cost of

Execution
Rank

1 Fog-1:1 4121.29 Low Cloud-1:1 56096.00 High

2 Fog-1:2 9862.17 Low Cloud-1:2 85387.21 High

3 Fog-1:3 6241.46 Very Low Cloud-1:3 152594.00 Very High

4 Fog-1:4 6952.54 Very Low Cloud-1:4 143103.62 Very High

5 Fog-1:5 8413.23 Very Low Cloud-1:5 191648.00 Very High

6 Fog-2:2 6525.97 Very Low Cloud-2:2 142978.03 Very High

7 Fog-2:3 9132.26 Very Low Cloud-2:3 203833.22 Very High

8 Fog-2:4 10987.14 Very Low Cloud-2:4 262456.02 Very High

9 Fog-2:5 16676.43 Very Low Cloud-2:5 416225.21 Very High

10 Fog-2:6 374426.82 Very Low Cloud-2:6 472782.43 Very High

11 Fog-2:7 432926.02 High Cloud-2:7 431984.83 Low

12 Fog-2:8 469736.03 Low Cloud-2:8 487558.42 High

13 Fog-2:9 44988.81 Very Low Cloud-2:9 545680.43 Very High

14 Fog-2:10 603102.42 Very High Cloud-2:10 602047.62 Very Low

15 Fog-3:5 18570.23 Very Low Cloud-3:5 467559.60 Very High

16 Fog-3:6 545864.03 High Cloud-3:6 545353.22 Low

17 Fog-3:10 728759.20 Very Low Cloud-3:10 827123.20 Very High

18 Fog-4:4 18406.54 Very Low Cloud-4:4 488759.62 Very High

19 Fog-4:5 155720.54 Very Low Cloud-4:5 603880.43 Very High

20 Fog-4:10 728026.80 High Cloud-4:10 727546.00 Low

21 Fog-5:5 182626.42 Very Low Cloud-5:5 727587.20 Very High

22 Fog-5:10 728080.80 High Cloud-5:10 727570.40 Low

23 Fog-6:6 727174.40 Low Cloud-6:6 727815.60 High

24 Fog-6:10 727871.20 Very Low Cloud-6:10 827612.81 Very High

25 Fog-7:10 728422.00 High Cloud-7:10 728010.40 Low

26 Fog-8:10 727352.00 Low Cloud-8:10 727383.60 High

27 Fog-9:9 727518.01 High Cloud-9:9 727458.80 Low

28 Fog-10:5 340103.90 Very Low Cloud-10:5 628126.80 Very High

31

Table 4.22 These classifications help ranges guide cost-effective strategies and

resource allocation cost of execution based on operational needs. specific ranges are

chosen to provide a comprehensive understanding of each system's performance

across various Energy Consumption conditions. By distinguishing between Very

Low, Low, High, Very High values, it becomes easier to optimize the systems'

behaviors, ensuring they operate efficiently under different scenarios.

Table 4.22: Type of System (Fog or Cloud) and Cost of Execution

Crosstabulation: Type of System (Fog or Cloud) and

Cost of Execution

Count

Type

Cost of Execution
Total

Very

Low
Low High

Very

High

System (Fog

or Cloud)

Cloud 1 6 5 16 28

Fog 16 5 6 1 28

Total 17 11 11 17 56

Table 4.23 shows the approach for calculating the expected value from the row total

of cost of execution and column total of type of system (Fog or Cloud) also the total

number of observations is 56.

 Table 4.23: Expected Frequency

Calculation of Expected Frequency

Total Cost of

Execution

Total Type

(Fog or Cloud)

Expected

Frequency

Expected

Frequency

17 28 (17 * 28) / 56 8.5

11 28 (11 * 28) / 56 5.5

11 28 (11 * 28) / 56 5.5

17 28 (17 * 28) / 56 8.5

17 28 (17 * 28) / 56 8.5

11 28 (11 * 28) / 56 5.5

11 28 (11 * 28) / 56 5.5

17 28 (17 * 28) / 56 8.5

32

Table 4.24: 2 Calculation

Observed and Expected Frequency for the calculation of 2

Observed

Frequency (OF)

Expected

Frequency (EF)
(OF - EF)2

(OF - EF)2 /

EF

1 8.5 56.25 6.62

6 5.5 00.25 0.05

5 5.5 00.25 0.05

16 8.5 56.25 6.62

16 8.5 56.25 6.62

5 5.5 00.25 0.05

6 5.5 00.25 0.05

1 8.5 56.25 6.62

 Total () 26.65

Degree of Freedom = (r-1) * (c-1)

 = (2-1) * (4-1)

 = 3

Table value @ 5% level of significance = 7.81

Therefore,

The calculated value of Chi-Square is found to be 26.65

The tabulated value of Chi-Square is found to be 7.81

Accordingly, table 4.24 represents the calculation of the Chi-Square test value using

the observed and expected frequencies. The results confirm that the calculated value

of Chi-Square 26.65 is greater than the tabulated value of 7.81 at a 5% level of

significance. So, it is clear that the null hypothesis is accepted.

It concludes that there is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure cost of

execution. A notable contrast in performance, measured by cost of execution,

emerged between the SMART FOG protocol-based and cloud-based systems. The

findings reveal that the SMART FOG system exhibited superior performance with a

notably lower cost of execution as compared to its cloud-based counterpart.

33

H05: There is no significant difference between SMART FOG protocol-based

system and cloud-based system based on the performance measure of total network

usage.

An alternative hypothesis is as follows

Ha5: There is a significant difference between SMART FOG protocol-based system

and cloud-based system based on the performance measure of total network usage.

Figure 4.6: Fog Vs Cloud System Based on Total Network Usage (B/s)

Figure 4.6, shows that comparative analysis between Fog-based system and Cloud

based system based on reduction in total network usage as shown confirms that there

is large reduction in total network usage with use of Smart Fog based system as

compared to Cloud-based systems.

0

200000

400000

600000

800000

1000000

1200000

1400000

Total network usage (Fog) Total network usage (Cloud)

34

Table 4.25: Total Network Usage Reduced due to Fog Computing Environment

Table 4.25 Total Network Usage Reduced due to Fog Computing Environment Fog

system10:5, 9:9, 8:10, 5:5, 4:10, 4:5, 4:4, 3:10, 3:5, 2:8, 2:7, 2:5, 2:4, 2:3, 2:2, 1:5,

1:4, 1:3, 1:2 and 1:1 there is large reduction in total network usage such as 813124,

100000, 100000, 889585, 100000, 717690, 600582.6, 100000, 560311.2, 200000,

100000, 376389.8, 300487.8, 226130, 151466.2, 187988.4, 150136.4, 112806.6,

75270.6, and 38142.7 respectively.

The Smart Fog system 10:5 which means 10 number of areas and 5 cameras reduces

total network usage of 233479 as compared to the cloud system 10:5 with high total

System

Total network

usage (Fog)

Total network usage

(Cloud)

Reduction in Total

Network Usage

Using Fog System

Fog/Cloud-1:1 2309.9 40452.6 38142.7

Fog/Cloud-1:2 5537.8 80808.4 75270.6

Fog/Cloud-1:3 8357.7 121164.2 112806.5

Fog/Cloud-1:4 11383.6 161520 150136.4

Fog/Cloud-1:5 13887.4 201875.8 187988.4

Fog/Cloud-2:2 10055.6 161521.8 151466.2

Fog/Cloud-2:3 16103.4 242233.4 226130

Fog/Cloud-2:4 22457.2 322945 300487.8

Fog/Cloud-2:5 27266.8 403656.6 376389.8

Fog/Cloud-2:6 484368.2 484368.2 0

Fog/Cloud-2:7 464879.8 564879.8 100000

Fog/Cloud-2:8 545391.4 745391.4 200000

Fog/Cloud-2:9 725903 725903 0

Fog/Cloud-2:10 806414.6 806414.6 0

Fog/Cloud-3:5 44826.2 605137.4 560311.2

Fog/Cloud-3:6 725904.8 725904.8 0

Fog/Cloud-3:10 1015474.4 1115474.4 100000

Fog/Cloud-4:4 44812.4 645395 600582.6

Fog/Cloud-4:5 88728.2 806418.2 717690

Fog/Cloud-4:10 1031034.2 1131034.2 100000

Fog/Cloud-5:5 118114 1007699 889585

Fog/Cloud-5:10 1046594 1046594 0

Fog/Cloud-6:6 1024814.6 1024814.6 0

Fog/Cloud-6:10 1062153.8 1062153.8 0

Fog/Cloud-7:10 1077713.6 1077713.6 0

Fog/Cloud-8:10 1093273.4 1193273.4 100000

Fog/Cloud-9:9 994831 1094831 100000

Fog/Cloud-10:5 233479 1046603 813124

35

network usage of 1046603. The experimental outcomes are further represented or

categorized into very high to very low as shown below in the crosstabulation table.

Table 4.26 shows the network usage ranges for both FOG SYSTEM and CLOUD

SYSTEM effectively categorize their activity levels. In FOG SYSTEM, "No

Change" denotes 0 usage, typical during idle periods. "Low" (38000.0001 to

150000.0000) indicates moderate usage for regular data exchanges. "Very Low"

(150000.0001 to 900000.0000) suggests increased activity, possibly due to extensive

data processing. "High" (900000.0001 to 1000000.0000) represents intensified data

transfer or operational demands. "Very High" (above 1000000.0000) indicates

extensive network activity or intensive data processing.

Similarly, in CLOUD SYSTEM, "No Change" signifies 0 usage, "High"

(38000.0001 to 150000.0000) denotes typical activity levels, "Very High"

(150000.0001 to 900000.0000) indicates significant traffic, "Low" (900000.0001 to

1000000.0000) suggests reduced activity, and "Very Low" (above 1000000.0000)

signifies minimal network use or efficient management.

36

Table 4.26: Classification of Fog and Cloud for Total Network Usage

Obs
Fog

System

Total

Network

Usage

Rank
Cloud

System

Total

Network

Usage

Rank

1 Fog-1:1 2309.90 Low Cloud-1:1 40452.60 High

2 Fog-1:2 5537.80 Low Cloud-1:2 80808.40 High

3 Fog-1:3 8357.70 Low Cloud-1:3 121164.20 High

4 Fog-1:4 11383.60 Very Low Cloud-1:4 161520.00 Very High

5 Fog-1:5 13887.40 Very Low Cloud-1:5 201875.80 Very High

6 Fog-2:2 10055.60 Very Low Cloud-2:2 161521.80 Very High

7 Fog-2:3 16103.40 Very Low Cloud-2:3 242233.40 Very High

8 Fog-2:4 22457.20 Very Low Cloud-2:4 322945.00 Very High

9 Fog-2:5 27266.80 Very Low Cloud-2:5 403656.60 Very High

10 Fog-2:6 484368.20 No Change Cloud-2:6 484368.20 No Change

11 Fog-2:7 464879.80 Low Cloud-2:7 564879.80 High

12 Fog-2:8 545391.40 Very Low Cloud-2:8 745391.40 Very High

13 Fog-2:9 725903.00 No Change Cloud-2:9 725903.00 No Change

14 Fog-2:10 806414.60 No Change Cloud-2:10 806414.60 No Change

15 Fog-3:5 44826.20 Very Low Cloud-3:5 605137.40 Very High

16 Fog-3:6 725904.80 No Change Cloud-3:6 725904.80 No Change

17 Fog-3:10 1015474.40 Low Cloud-3:10 1115474.40 High

18 Fog-4:4 44812.40 Very Low Cloud-4:4 645395.00 Very High

19 Fog-4:5 88728.20 Very Low Cloud-4:5 806418.20 Very High

20 Fog-4:10 1031034.20 Low Cloud-4:10 1131034.20 High

21 Fog-5:5 118114.00 Very Low Cloud-5:5 1007699.00 Very High

22 Fog-5:10 1046594.00 No Change Cloud-5:10 1046594.00 No Change

23 Fog-6:6 1024814.60 No Change Cloud-6:6 1024814.60 No Change

24 Fog-6:10 1062153.80 No Change Cloud-6:10 1062153.80 No Change

25 Fog-7:10 1077713.60 No Change Cloud-7:10 1077713.60 No Change

26 Fog-8:10 1093273.40 Low Cloud-8:10 1193273.40 High

27 Fog-9:9 994831.00 Low Cloud-9:9 1094831.00 High

28 Fog-10:5 233479.00 Very Low Cloud-10:5 1046603.00 Very High

Table 4.27 These classifications help ranges guide cost-effective strategies and

resource allocation cost of execution based on Total Network Usage. specific ranges

are chosen to provide a comprehensive understanding of each system's performance

across various Energy Consumption conditions. By distinguishing between Very

Low, Low, High, Very High values, it becomes easier to optimize the systems'

behaviors, ensuring they operate efficiently under different scenarios.

37

Table 4.27: Type of System (Fog or Cloud) and Total Network Usage

Crosstabulation: Type of System (Fog or Cloud) and Total Network Usage

Count

Type

Total Network Usage

Total Very

Low
Low

No

Change
High

Very

High

System (Fog or

Cloud)

Cloud 0 0 8 8 12 28

Fog 12 8 8 0 0 28

Total 12 8 16 8 12 56

Table 4.28 shows the approach for calculating the expected value from the row total

of total network usage and column total of type of system (Fog or Cloud) also the

total number of observations is 56.

 Table 4.28: Expected Frequency

Calculation of Expected Frequency

Total Network

Usage

Total Type

(Fog or Cloud)

Expected

Frequency

Expected

Frequency

12 28 (12 * 28) / 56 6

8 28 (8 *28) / 56 4

16 28 (16 * 28) / 56 8

8 28 (8 * 28) / 56 4

12 28 (12 * 28) / 56 6

12 28 (12 * 28) / 56 6

8 28 (8 * 28) / 56 4

16 28 (16 * 28) / 56 8

8 28 (8 * 28) / 56 4

12 28 (12 * 28) / 56 6

Table 4.29: 2 Calculation

Observed and Expected Frequency for the calculation of 2
Observed

Frequency (OF)
Expected

Frequency (EF)
(OF - EF)2

(OF - EF)2 /

EF

0 6 36 6.00

0 4 16 4.00

8 8 0 0.00

8 4 16 4.00

12 6 36 6.00

12 6 36 6.00

8 4 16 4.00

8 8 0 0.00

0 4 16 4.00

0 6 36 6.00

 Total () 30.00

38

Degree of Freedom = (r-1) * (c-1)

 = (2-1) * (5-1)

 = 4

Table value @ 5% level of significance = 9.49

Therefore,

The calculated value of Chi-Square is found to be 30.00.

The tabulated value of Chi-Square is found to be 9.49

Accordingly, table 4.29 represents the calculation of the Chi-Square test value using

the observed and expected frequencies. The results confirm that the calculated value

of Chi-Square 30 is much greater than the tabulated value of 9.49 at a 5% level of

significance. So, it is clear that the null hypothesis is rejected.

It concludes that there is a significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure of total

network usage. A notable contrast in performance, measured by total network usage,

emerged between the SMART FOG protocol-based and cloud-based systems. The

findings reveal that the SMART FOG system exhibited superior performance with

notably lower total network usage as compared to its cloud-based counterpart.

H06: There is a significant difference between SMART FOG protocol-based system

and cloud-based system based on the performance measure computational power

consumed.

An alternative hypothesis is as follows

Ha6: There is no significant difference between SMART FOG protocol-based

system and cloud-based system based on the performance measure computational

power consumed.

The comparative analysis between Fog based system and Cloud based system based

on a reduction in computational power consumed as shown below confirms that

there is large reduction in computational power consumed with use of Smart Fog

based system as compared to cloud-based systems.

39

Figure 4.7: Fog Vs Cloud System Based on Computational Power (W)

Figure 4.7, shows there is a large reduction in computational power consumed in all

cases for Fog system as compared to cloud-based system so based on the results it

can be concluded that there is a significant difference between SMART FOG

protocol-based system and cloud-based system based on the performance measure

computational power consumed by Fog devices in comparison to Cloud devices.

0

50000

100000

150000

200000

250000

300000

Computational Power Consumed (Cloud)

Computational Power Consumed (Fog)

40

Table 4.30: Computational Power Reduced due to Fog Computing Environment

Figure 4.30 shows that The Smart Fog system 10:5 which means 10 areas and 5

cameras reduces computational power of 198917.0991 as compared to the cloud

system 10:5 with a high computational power of 251982.8428. The experimental

outcomes are further represented or categorized into very high to very low as shown

below in the crosstabulation table.

System Devices

Computational Power

Consumed (Cloud)

Computational Power

Consumed (Fog)

Reduction in

Computational Power by

Fog

Fog/Cloud-1:1 214499.73 166866.599 47633.131

Fog/Cloud-1:2 216031.3185 170536.7029 45494.61562

Fog/Cloud-1:3 219790.5181 166867.599 52922.91914

Fog/Cloud-1:4 219259.6757 173085.1916 46174.48403

Fog/Cloud-1:5 221974.9967 166868.599 55106.39769

Fog/Cloud-2:2 219252.6504 173079.6459 46173.00457

Fog/Cloud-2:3 222656.5748 166869.599 55786.97577

Fog/Cloud-2:4 225935.6307 178355.2394 47580.39134

Fog/Cloud-2:5 228943.2009 166870.599 62072.60192

Fog/Cloud-2:6 232106.7187 183226.7413 48879.97732

Fog/Cloud-2:7 235418.1945 166871.599 68546.59552

Fog/Cloud-2:8 238526.6933 188294.7163 50231.97703

Fog/Cloud-2:9 241777.7372 166872.599 74905.13815

Fog/Cloud-2:10 244930.6263 193350.0278 51580.59848

Fog/Cloud-3:5 237408.0629 166873.599 70534.46388

Fog/Cloud-3:6 241759.4349 190846.6661 50912.76876

Fog/Cloud-3:10 251926.7064 166874.599 85052.10742

Fog/Cloud-4:4 238593.8823 188347.7557 50246.12653

Fog/Cloud-4:5 245033.1438 166875.599 78157.5448

Fog/Cloud-4:10 251950.3557 198891.4536 53058.90215

Fog/Cloud-5:5 251952.6603 166876.599 85076.06133

Fog/Cloud-5:10 251951.7206 198892.531 53059.18959

Fog/Cloud-6:6 251965.4359 166877.599 85087.83688

Fog/Cloud-6:10 251954.0923 198894.4033 53059.68905

Fog/Cloud-7:10 251976.3319 166878.599 85097.73295

Fog/Cloud-8:10 251941.272 198884.2828 53056.98919

Fog/Cloud-9:9 251945.4782 166879.599 85065.87919

Fog/Cloud-10:5 251982.8428 198917.0991 53065.74369

41

Table 4.31 shows that the computational power consumed ranges for both FOG

SYSTEM and CLOUD SYSTEM effectively categorize their operational intensity. In

FOG SYSTEM, "Low" (45000.0000 to 48000.0000) signifies modest computational

demands, likely involving basic processing tasks. "Very Low" (48000.0001 to

86000.0000) indicates slightly higher power consumption, potentially due to more

complex computations or increased workload. Moving to "High" (86000.0001 to

100000.0000), it denotes significant computational power usage, indicative of

intensive processing requirements or larger-scale operations. "Very High" (above

100000.0000) suggests extensive power consumption, possibly involving complex

simulations or heavy data analytics.

Similarly, in CLOUD SYSTEM, "High" (45000.0000 to 48000.0000) and "Very

High" (48000.0001 to 86000.0000) reflect varying degrees of computational intensity.

"Low" (86000.0001 to 100000.0000) suggests reduced demands, while "Very Low"

(above 100000.0000) indicates minimal power usage or highly efficient

computational management.

42

Table 4.31: Classification of Fog and Cloud for Computational Power

Obs.
Fog

System

Compu-

tational

Power

Rank
Cloud

System

Compu-

tational

Power

Rank

1 Fog-1:1 166866.60 Low Cloud-1:1 214499.73 High

2 Fog-1:2 170536.70 Low Cloud-1:2 216031.32 High

3 Fog-1:3 166867.60 Very Low Cloud-1:3 219790.52 Very High

4 Fog-1:4 173085.19 Low Cloud-1:4 219259.68 High

5 Fog-1:5 166868.60 Very Low Cloud-1:5 221975.00 Very High

6 Fog-2:2 173079.65 Low Cloud-2:2 219252.65 High

7 Fog-2:3 166869.60 Very Low Cloud-2:3 222656.57 Very High

8 Fog-2:4 178355.24 Low Cloud-2:4 225935.63 High

9 Fog-2:5 166870.60 Very Low Cloud-2:5 228943.20 Very High

10 Fog-2:6 183226.74 Very Low Cloud-2:6 232106.72 Very High

11 Fog-2:7 166871.60 Very Low Cloud-2:7 235418.19 Very High

12 Fog-2:8 188294.72 Very Low Cloud-2:8 238526.69 Very High

13 Fog-2:9 166872.60 Very Low Cloud-2:9 241777.74 Very High

14 Fog-2:10 193350.03 Very Low Cloud-2:10 244930.63 Very High

15 Fog-3:5 166873.60 Very Low Cloud-3:5 237408.06 Very High

16 Fog-3:6 190846.67 Very Low Cloud-3:6 241759.43 Very High

17 Fog-3:10 166874.60 Very Low Cloud-3:10 251926.71 Very High

18 Fog-4:4 188347.76 Very Low Cloud-4:4 238593.88 Very High

19 Fog-4:5 166875.60 Very Low Cloud-4:5 245033.14 Very High

20 Fog-4:10 198891.45 Very Low Cloud-4:10 251950.36 Very High

21 Fog-5:5 166876.60 Very Low Cloud-5:5 251952.66 Very High

22 Fog-5:10 198892.53 Very Low Cloud-5:10 251951.72 Very High

23 Fog-6:6 166877.60 Very Low Cloud-6:6 251965.44 Very High

24 Fog-6:10 198894.40 Very Low Cloud-6:10 251954.09 Very High

25 Fog-7:10 166878.60 Very Low Cloud-7:10 251976.33 Very High

26 Fog-8:10 198884.28 Very Low Cloud-8:10 251941.27 Very High

27 Fog-9:9 166879.60 Very Low Cloud-9:9 251945.48 Very High

28 Fog-10:5 198917.10 Very Low Cloud-10:5 251982.84 Very High

Table 4.32 These classifications help ranges guide cost-effective strategies and

resource allocation cost of execution based on Computational Power. specific ranges

are chosen to provide a comprehensive understanding of each system's performance

across various Energy Consumption conditions. By distinguishing between Very

Low, Low, High, Very High values, it becomes easier to optimize the systems'

behaviors, ensuring they operate efficiently under different scenarios.

43

Table 4.32: Type of System (Fog or Cloud) and Computational Power

Type of System (Fog or Cloud) and Computational Power

Crosstabulation

Count

Type

Computational Power

Total Very

Low
Low High

Very

High

System (Fog

or Cloud)

Cloud 0 0 5 23 28

Fog 23 5 0 0 28

Total 23 5 5 23 56

Table 4.33 shows the approach for calculating the expected value from the row total

of computational power and column total of type of system (Fog or Cloud) also the

total number of observations is 56.

 Table 4.33: Expected Frequency

Calculation of Expected Frequency

Total of Total

Computational

Power

Total Type

(Fog or

Cloud)

Expected

Frequency

Expected

Frequency

23 28 (23 * 28) / 56 11.50

5 28 (5 * 28) / 56 02.50

5 28 (5 * 28) / 56 02.50

23 28 (23 * 28) / 56 11.50

23 28 (23 * 28) / 56 11.50

5 28 (5 * 28) / 56 02.50

5 28 (5 * 28) / 56 02.50

23 28 (23 * 28) / 56 11.50

Table 4.34: 2 Calculation

Observed and Expected Frequency for the calculation of 2
Observed

Frequency (OF)
Expected

Frequency (EF)
(OF - EF)2

(OF - EF)2

/ EF

0 11.5 132.25 11.50

0 2.5 6.25 02.50

5 2.5 6.25 02.50

23 11.5 132.25 11.50

23 11.5 132.25 11.50

5 2.5 6.25 02.50

0 2.5 6.25 02.50

0 11.5 132.25 11.50

 Total () 56.00

44

Degree of Freedom =(r-1) * (c-1)

 = (2-1) * (4-1)

 = 3

Table value @ 5% level of significance = 7.81

Therefore,

The calculated value of Chi-Square is found to be 56.00

The tabulated value of Chi-Square is found to be 7.81

Accordingly, table 4.34 represents the calculation of Chi-Square test value using the

observed and expected frequencies. The results confirm that the calculated value of

Chi-Square 56 is greater than the tabulated value of 7.81 at a 5% level of significance.

So, it is clear that the null hypothesis is accepted.

This concludes that there is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure

computational power. A notable contrast in performance, measured by computational

power, emerged between the SMART FOG protocol-based and cloud-based systems.

The findings reveal that the SMART FOG system exhibited superior performance

with notably lower computational power as compared to its cloud-based counterpart.

4.5 Multiple Regression Model

To find the association between energy consumed and several devices, execution

time, average loop delay, CPU27 delay, latency, cost execution, and total network

usage multiple regression analysis is being conducted the results of the analysis are

shown below in the tables.

The descriptive analysis is shown below in the table

Table 4.35 shows that the dataset constructed from experimental values encompasses

comprehensive metrics across fog and cloud computing environments. It includes data

points for latency, execution time, energy consumption, power consumption, cost of

execution, and total network usage. Each metric is recorded under varying

experimental conditions, such as different numbers of tasks and nodes. The dataset is

27 Central Processing Unit

45

designed to facilitate thorough analysis and evaluation of system performance and

resource utilization in both fog and cloud computing scenarios. Utilizing 10-fold

cross-validation ensures rigorous testing and validation of models trained on this

dataset, enhancing reliability and robustness in assessing the effectiveness of

computational frameworks in real-world applications. Descriptive and multiple

regression analyses conducted using Excel provide valuable insights into relationships

between variables in the dataset.

Table 4.35: Descriptive Summary of Various Measures

Descriptive Statistics

 Mean Std. Deviation N

Energy Consumed 2906053.09 220658.21 28

No. of Areas 3.57 00002.54 28

Number of Cameras Per Area 6.21 00002.89 28

Execution Time 2686.17 5335.31 28

Average Loop Delay:

Motion Object Detector

197.06

0255.13

28

Average Loop Delay:

Object Tracker, PTZ28 Control

065.26

0050.46

28

CPU Delay: Motion Video Stream 001.61 0001.65 28

CPU Delay: Detected Object 000.15 0000.09 28

CPU Delay: Object Location 011.93 0059.39 28

CPU Delay: Camera 002.10 0 28

Latency 276.03 0283.45 28

Cost of execution 325306.73 315146.58 28

Total network usage 466288.21 455181.89 28

The mean value of energy consumed is found to be 2906053.0944 and the standard

deviation is found to be 220658.21578.

Table 4.36 shows the energy consumed is considered a dependent variable and No. of

Area, Number of Cameras Per Area, Execution Time, Average Loop Delay: Motion

Detector, Object Detector, Object Tracker, Average Loop Delay: Object Tracker, PTZ

Control, CPU Delay: Motion Video Stream, CPU Delay: Detected Object, CPU

Delay: Object Location, CPU Delay: Camera, Latency, Cost of execution and Total

network usage are the independent variables.

28Pan-Tilt-Zoom

46

Table 4.36: Variables Considered & Removed

Variables Entered/ Removed a

Model Variables Entered
Variables

Removed
Method

1 Total network usage, Execution Time,

CPU Delay: Detected Object, No. of

Areas, Average Loop Delay: Object

Tracker, PTZ Control, CPU Delay:

Motion Video Stream, Number of

Cameras Per Area, Latency, Cost of

execution, CPU Delay: Object Location b

.

Time

Enter

a. Dependent Variable: Energy Consumed

b. Tolerance = .00 limit reached.

Table 4.37, shows the developed model is shown below in the table which confirms

there is a strong correlation between the dependent and independent variables as the

calculated R-Square value is 0.99.

Table 4.37: Regression Model Summary

Model Summary b

M
o
d

el

R
R

Square

Adjusted

R

Square

Std. Error

of the

Estimate

Change Statistics

R

Square

Change

F Change df1 df2
Sig. F

Change

1 .99a .99 .99 9579.24 .99 1430.95 10 17 .00

a. Predictors: (Constant), Total network usage, Execution Time, CPU Delay: Detected

Object, No. of Areas, Average Loop Delay: Object Tracker, PTZ Control, CPU Delay:

Motion Video Stream, Number of Cameras Per Area, Latency, Cost of execution, CPU

Delay: Object Location

b. Dependent Variable: Energy Consumed

The statistical analysis of the model shows high goodness-of-fit measures, indicating

a strong relationship between the dependent variable and the independent variables.

The coefficient of determination R Square is 0.99, indicating that approximately

99.9% of the variability in the dependent variable can be explained by the

independent variables in the model. The adjusted R Square, which accounts for the

number of predictors in the model, is 0.99, suggesting that the model is a good fit and

not overfitting the data. The standard error of the estimate is 9579.24, indicating the

average difference between the observed values and the predicted values by the

model.

47

Table 4.38: ANOVA Statistics

ANOVAa

Model Sum of Squares df Mean Square F Sig.

1e Regression 1313071347215.98 10 131307134721.59 1430.95 .00b

Residual 0001559953982.11 17 000091761998.94 1430.91 .00b

Total 1314631301198.09 27 0131398896720.55 1430.95 .00b

a. Dependent Variable: Energy Consumed

b. Predictors: (Constant), Total network usage, Execution Time, CPU Delay:

Detected Object, No. of Areas, Average Loop Delay: Object Tracker, PTZ

Control, CPU Delay: Motion Video Stream, Number of Cameras Per Area,

Latency, Cost of execution, CPU Delay: Object Location

Table 4.38 shows the ANOVA Statistics table presents the results of the analysis of

variance for the model. The mean square for the model is 131,307,134,721.598, which

represents the variance explained by the independent variables in the model. The F-

statistic is 1430.953, indicating that the variance explained by the model is

significantly greater than what would be expected by chance alone. The p-value (Sig.

= .000) is less than the typical significance level of 0.05, indicating that the model's

overall effect is statistically significant.

Model 1

The model finds the association between energy consumed and number of areas,

number of cameras per area, execution time, average loop delay, CPU delay, latency,

cost of execution, and total network usage as shown below in the coefficient table and

model summary table.

Energy Consumed No. of Areas

Energy Consumed No. of Cameras per Area

Energy Consumed Execution Time

Energy Consumed Average Loop Delay

Energy Consumed CPU Delay

Energy Consumed Latency

Energy Consumed Cost of Execution

Energy Consumed Total Network Usage

48

Table 4.39 shows that the coefficient Values represent the impact of each independent

variable on the dependent variable (Energy Consumed). Among the predictors,

"Average Loop Delay: Object Tracker, PTZ Control" and "Total network usage"

exhibit the most substantial influence, with positive coefficients indicating a positive

relationship with energy consumption. Conversely, "Execution Time" and "Latency"

demonstrate significant but negative coefficients, suggesting that higher values of

these variables are associated with lower energy consumption. Other predictors show

relatively weaker associations with energy consumption.

Table 4.39: Coefficient Values

Coefficientsa

Model

Unstandardized

Coefficients

Standar

dized

Coefficie

nts

t Sig.

B
Std.

Error
Beta

1

(Constant) 2647256.69 9801.57 0.007 270.08 0.00

No. of Areas (X1) 1161.67 2503.32 0.013 .46 0.64

Number of Cameras

Per Area (X2)
-164.37 1693.19 -0.002 -.09 0.92

Execution Time (X3 4.02 1.58 0.09 2.53 0.02

Average Loop Delay

Object Tracker, PTZ

Control (X4)

731.35

86.66

0.16

8.43

0.00

CPU Delay: Motion

Video Stream (X5)
3779.44 2591.37 0.02 1.45 0.16

CPU Delay:

Detected Object (X6)
7324.10 26165.35 0.01 0.28 0.78

CPU Delay: Object

Location (X7)
-288.19 142.47 -0.07 -2.02 0.06

Latency (X8) -87.49 26.41 -0.11 -3.31 0.01

Cost of execution

(X9)
0.01 0.02 0.02 0.72 0.48

Total network usage

(X10)
0.45 0.02 0.94 18.54 0.00

a. Dependent Variable: Energy Consumed (Y)

The variables Execution Time, Average Loop Delay: Object Tracker, PTZ Control,

Latency, and total network usage are found to be significant as the calculated p-value

is greater than the standard alpha value of 0.05.

49

Table 4.40: Excluded Measures

Excluded Variables a

Model Beta In t Sig.
Partial

Correlation

Collinearity

Statistics

Tolerance

1 Average Loop Delay: Motion

Detector, Object Detector, Object

Tracker

b

-

-

-

.00

a. Dependent Variable: Energy Consumed

b. Predictors in the Model: (Constant), Total network usage, Execution Time, CPU Delay:

Detected Object, No. of Areas, Average Loop Delay: Object Tracker, PTZ Control, CPU

Delay: Motion Video Stream, Number of Cameras Per Area, Latency, Cost of execution,

CPU Delay: Object Location

Table 4.40 shows that collinearity statistics section shows a tolerance value of 0.00

for the "Average Loop Delay" variable. A tolerance value of 0 indicates that there is

perfect collinearity between this independent variable and other variables in the

model. This suggests a high degree of correlation between "Average Loop Delay" and

other predictors, which may lead to multicollinearity issues.

Table 4.41: Residual Statistics of Model

Residuals Statistics a

 Minimum Maximum Mean
Std.

Deviation
N

Predicted

Value
2659408.50 3199812.25 2906053.09 220527.25 28

Residual -22652.21 11547.76 .00 7601.05 28

Std. Predicted

Value
-1.11 1.33 .00 1.00 28

Std. Residual -2.36 1.21 .00 0.79 28

a. Dependent Variable: Energy Consumed

Table 4.41 shows that Overall residual statistics provide an understanding of the

accuracy and variability of the predictions for the "Energy Consumed" dependent

variable in the model. The model seems to have a reasonably accurate prediction with

minor variations between observed and predicted values.

50

The mathematical representation of the model:

Y (Energy Consumption) = 1161.675X1 (No. of Areas) -164.373 X2 (Number of

Cameras Per Area) + 4.023 X3 (Execution Time) + 731.359 X4 (Average Loop

Delay: Object Tracker, PTZ Control) + 3779.441 X4 (CPU Delay: Motion Video

Stream) +7324.104X5 (CPU Delay: Detected Object) - 288.190 X6 (CPU Delay:

Object Location)-87.494 X7 (Latency) + 0.015 X8 (Cost of execution) +0.456 X9

(Total network usage)

4.6 Use of Machine Learning Approaches in Task Scheduling

Machine learning approaches are playing an increasingly vital role in task scheduling,

revolutionizing the efficiency and performance of task allocation and resource

management in cloud computing, edge computing, and IoT environments. These

techniques offer the ability to predict and forecast task demands, enabling proactive

resource allocation and reducing bottlenecks. Dynamic task scheduling becomes

possible with real-time data analysis, ensuring agile adaptations to changing

conditions. Load balancing benefits from machine learning's insights to distribute

tasks optimally across resources. Task prioritization becomes smarter, and energy

efficiency is enhanced by choosing energy-conscious resources. Multi-objective

optimization enables simultaneous consideration of conflicting objectives, and

learning from user behaviour facilitates personalized task scheduling. In essence, the

integration of machine learning in task scheduling empowers intelligent, adaptive, and

efficient resource allocation, leading to superior system performance, minimized

response times, and optimal resource utilization across diverse computing

environments. Mainly in supervised learning classification-based algorithms were

being used for task scheduling. The algorithms being considered for task scheduling

were Logistic Regression, IBK, K-Star, and AdaBoostM1.

Experiment 1: Number of Tasks: 40 and Nodes: 4

In Experiment 1, the number of tasks was set to 40, and the number of nodes was set

to 4. The evaluation of the model was performed using 10-fold cross-validation, a

common technique to assess the performance of machine learning algorithms. In this

approach, the dataset is divided into 10 subsets, and the model is trained and tested 10

times, each time using a different subset as the test set and the remaining subsets as

the training set.

51

4.6.1 Logistic Regression

Table 4.42, shows that the evaluation of logistic regression through 10-fold cross-

validation, performance measures provide valuable insights into the model's

classification accuracy and predictive capabilities. Accuracy, precision, recall

(sensitivity), and F1 score offer comprehensive assessments of the model's correctness

in classifying instances and its ability to avoid false positives and negatives.

Table 4.42: Performance Measures for Logistic Regression (LR29) at 10-fold

Cross-Validation

Measures Values

Correctly Classified Instances 176 (88%)

Incorrectly Classified Instances 24 (12%)

Kappa statistic 0.83

Mean absolute error 0.0599

Root mean squared error 0.2353

Relative absolute error 16.64%

Root relative squared error 55.47%

Total Number of Instances 200

Time taken to build a model: 0.01 seconds

Table 4.43 Detailed Accuracy by Class: Accuracy class-wise for the LR classifier

refers to the accuracy of the model in classifying instances within each individual

class. It provides insights into how well the model performs for each specific class in

the classification task.

Table 4.43: Accuracy Class Wise (LR Classifier)

Sr.

No.

TP

Rate

FP

Rate
Precision Recall

F-

Measure
MCC30

ROC31

Area

PRC32

Area
Class

1 0.95 0.04 0.93 0.95 0.94 0.91 0.99 0.99 Node1

2 0.50 0.02 0.83 0.50 0.63 0.59 0.96 0.78 Node2

3 1 0.09 0.72 1 0.84 0.81 0.99 0.99 Node3

4 1 0 1 1 1 1 1 1 Node4

Wt.

Avg.
0.88 0.04 0.89 0.88 0.88 0.84 0.98 0.95

Table 4.44 shows Confusion Matrix: The confusion matrix provides a detailed and

clear evaluation of the model's accuracy and misclassification patterns for each class,

offering valuable insights into the model's classification capabilities for the given

dataset.

29Logistic Regression
30Matthews Correlation Coefficient
31Receiver Operating Characteristic
32Precision-Recall Curve

52

Table 4.44: Confusion Matrix (LR)

 a b c d  classified as

 76 4 0 0 | a = Node1

5 20 15 0 | b = Node2

 0 0 40 0 | c = Node3

 0 0 0 40 | d = Node4

It was found that in case of logistic regression, the correctly classified instances were

about 88% which was quite higher than the considered classification techniques such

as IBK and AdaBoostM1. Similarly, the precision, recall, and F-measure values of

0.89, 0.88, and 0.88 respectively and the FP rate value 0.04.

4.6.2 IBK (Stratified Cross-Validation: 10-fold)

The performance of IBK classification algorithm at configuration setting: stratified

10-fold cross-validation. Accordingly, the performance measures included are

correctly classified instances, incorrectly classified instances, kappa statistic, mean

absolute error, root mean squared error, relative absolute error, root relative squared

error, total number of instances, and time taken to build a model.

 Table 4.45: Performance Measures for IBK at 10-fold Cross-Validation

Measures Values

Correctly Classified Instances 117 (58.5%)

Incorrectly Classified Instances 83 (41.5%)

Kappa statistic 0.39

Mean absolute error 0.21

Root mean squared error 0.45

Relative absolute error 58.65%

Root relative squared error 106.44%

Total Number of Instances 200

Time taken to build model: 0.001 seconds

Table 4.45 IBK model was built using 10-fold cross-validation on a dataset containing

a total of 200 instances. The time taken to build the model was 0.001 seconds,

indicating the model's efficiency in training.

53

Detailed Accuracy by Class

Based on table 4.46 which shows accuracy class-wise shown below it can be

concluded that Node 3 and Node 4 have shown higher precision as compared to other

two nodes. Similarly, the recall value is found to be higher in case of Node 4 and

Node 1 with values 1, and 0.95 respectively.

Table 4.46: Accuracy Class Wise (IBK)

Sr. No.
TP

Rate

FP

Rate
Precision Recall

F-

Measure
MCC

ROC

Area

PRC

Area
Class

1 0.95 0.35 0.64 0.95 0.77 0.59 0.66 0.63 Node1

2 0 0.26 0 0 0 -0.25 0.09 0.16 Node2

3 0.03 0 1 0.02 0.05 0.14 0.58 0.24 Node3

4 1 0 1 1 1 1 1 1 Node4

Wt.Avg. 0.59 0.19 0.65 0.59 0.52 0.41 0.60 0.53

Table 4.47 shows Confusion Matrix: The confusion matrix for the IBK (Instance-

Based k-nearest Neighbor) model shows its performance in classifying instances into

different classes (Node1, Node2, Node3, and Node4). It reveals that Node1 has 76

true positives and 4 false positives, while Node2 has all 40 instances misclassified as

Node1 (false negatives). Node3 has 1 true positive, 2 false positives, and 37 false

negatives, and Node4 has all 40 instances correctly classified as true positives. The

matrix provides a comprehensive evaluation of the model's accuracy and

misclassification patterns for each class, offering valuable insights into its

classification capabilities using the IBK algorithm.

 Table 4.47: Confusion Matrix (IBK)

 a b c d  classified as

 76 4 0 0 | a = Node1

40 0 0 0 | b = Node2

 2 37 1 0 | c = Node3

 0 0 0 40 | d = Node4

Accordingly, it was found that in case of IBK, the correctly classified instances were

about 58.5% which is quite less showing low level of accuracy as compared with

other classification techniques such as Logistic Regression, K-Star, and AdaBoostM1.

Similarly, the precision, recall, and F-measure values of 0.65, 0.58, and 0.51

54

respectively were lower in comparison to other classifiers being considered also the

mean absolute error value was found to be 0.21, and FP rate value 0.19.

4.6.3 K-Star (Stratified Cross-Validation: 10-fold)

The performance measures for the K-Star model at 10-fold cross-validation provide

valuable insights into its classification accuracy and predictive capabilities. Common

metrics such as accuracy, precision, recall (sensitivity), and F1 score offer a

comprehensive assessment of the model's correctness in predicting class labels and its

ability to avoid false positives and negatives.

Table 4.48: Performance Measures for K-Star at 10-fold Cross-Validation

Measures Values

Correctly Classified Instances 182(91%)

Incorrectly Classified Instances 18 (9%)

Overall Accuracy 91%

Kappa statistic 0.87

Mean absolute error 0.04

Root mean squared error 0.19

Relative absolute error 13.54%

Root relative squared error 44.24%

Total Number of Instances 200

Time taken to build model: 0.001 seconds

Table 4.48 shows K-Star model was built using 10-fold cross-validation on a dataset

containing a total of 200 instances. The time taken to build the model was 0.001

seconds, indicating the model's efficiency in training.

Detailed Accuracy by Class

Based on the table 4.49 accuracy class-wise shown below it can be concluded that

Node 2, Node 3, and Node 4 have shown higher precision as compared to Node 1.

Similarly, the recall value is found to be higher in case of Node 1 and Node 2 with

values 1 and, 1 respectively.

55

Table 4.49: Accuracy Class Wise (K-Star)

S.

No.

TP

Rate

FP

Rate
Precision Recall

F-

Measure
MCC

ROC

Area

PRC

Area
Class

1 1 0.15 0.81 1 0.90 0.83 1 1 Node1

2 0.575 0 1 0.57 0.73 0.72 1 1 Node2

3 0.975 0 1 0.97 0.98 0.98 1 1 Node3

4 1 0 1 1 1 1 1 1 Node4

Wt.

Avg.

0.91 0.06 0.92 0.91 0.90 0.87 1 1

Table 4.50 shows Confusion Matrix: The K-Star model's confusion matrix shows

excellent performance in correctly classifying instances into their respective classes,

particularly for Node4, with all 40 instances correctly classified. It has minimal

misclassifications for Node1 and Node3. However, there are 17 misclassifications for

Node2, where 17 instances were classified as Node1 instead.

Table 4.50: Confusion Matrix (K-Star)

a b c d  classified as

80 0 0 0 | a = Node1

17 23 0 0 | b = Node2

1 0 39 0 | c = Node3

0 0 0 40 | d = Node4

It was found that in case of K-Star classifier being used for task scheduling correctly

classified instances were about 91% which was quite higher than the considered

classification techniques such as IBK, Logistic Regression, and AdaBoostM1.

Similarly, the precision, recall, and F-measure values of 0.927, 0.91, and 0.903

respectively were higher in comparison to IBK, Logistic Regression, and

AdaBoostM1 also the mean absolute error value was found to be 0.05 and FP rate

value 0.04.

4.6.4 AdaBoostM1 (Stratified Cross-Validation: 10-fold)

AdaBoostM1 is an ensemble learning method based on table 4.51, AdaBoost

algorithm, and stratified 10-fold cross-validation is a popular technique used to

evaluate its performance. In this evaluation, the dataset is divided into ten subsets,

ensuring that each subset has a similar distribution of classes as the original dataset.

The AdaBoostM1 model is trained and tested ten times, each time using a different

subset as the test set and the remaining nine subsets as the training set.

56

Table 4.51: Performance Measures forAdaBoostM1 at 10-fold Cross-Validation

Measures Values

Correctly Classified Instances 120(60%)

Incorrectly Classified Instances 80 (40%)

Kappa statistic 0.41

Mean absolute error 0.32

Root mean squared error 0.38

Relative absolute error 88.46%

Root relative squared error 88.54%

Total Number of Instances 200

Time taken to build a model: 0.03 seconds

The AdaBoostM1 model was built using 10-fold cross-validation on a dataset

containing a total of 200 instances. The time taken to build the model was 0.03

seconds which is higher than IBK and K-Star.

Detailed Accuracy by Class

Based on table 4.52 shows accuracy class-wise below it can be concluded that Node

1, Node 2, Node 3, and Node 4 have shown higher precision with value 1. Similarly,

the recall value is found to be higher in case of Node 1 and Node 2 with values 1 and,

1 respectively.

Table 4.52: Accuracy Class Wise (AdaBoostM1)

S. No.
TP

Rate

FP

Rate
Precision Recall

F-

Measure
MCC

ROC

Area

PRC

Area
Class

1 1 0.33 0.66 1 0.8 0.66 1 1 Node1

2 1 0.25 0.5 1 0.66 0.61 1 1 Node2

3 0 0 - 0 - - 1 1 Node3

4 0 0 - 0 - - 1 1 Node4

Weighted

Avg.
0.60 0.18 - 0.6 - - 1 1

Table 4.53 shows Confusion Matrix: The confusion matrix for the AdaBoostM1

model shows perfect performance in correctly classifying instances into their

respective classes, with 80 instances correctly classified as Node1, 40 instances as

Node2, 40 instances as Node3, and 40 instances as Node4. There are no

misclassifications observed in the model's predictions for any of the classes.

57

Table 4.53: Confusion Matrix (AdaBoostM1)

 ab c d  classified as

80 0 0 0 | a = Node1

0 40 0 0 | b = Node2

 40 0 0 0 | c = Node3

 0 40 0 0 | d = Node4

Accordingly, it was found that in case of AdaBoostM1 the correctly classified

instances were about 60% which is quite less showing low level of accuracy as

compared with other classification techniques such as Logistic Regression and K-Star.

Similarly, the precision, recall, and F-measure were lower in comparison to other

classifiers such as Logistic Regression and K-Star and FP rate value 0.18.

4.6.5 Comparative Analysis of Classification Algorithms

In the performance-wise analysis of classification algorithms using 10-fold cross-

validation with 40 tasks and 4 nodes, various performance metrics were evaluated to

assess the effectiveness of the algorithms in classifying instances.

Experiment 1: Number of Tasks: 40 and Nodes: 4:

In Experiment 1, the number of tasks was set to 40, and the number of nodes was set

to 4. The evaluation of the model was performed using 10-fold cross-validation, a

common technique to assess the performance of machine learning algorithms. In this

approach, the dataset is divided into 10 subsets, and the model is trained and tested 10

times, each time using a different subset as the test set and the remaining subsets as

the training set.

58

Table 4.54: Performance-Wise Analysis of Classification Algorithms

(10 folds, Number of Tasks: 40 and Nodes: 4)

Performance

Measure

Logistic

Regression

K-

Star
IBK AdaBoostM1

Accuracy 0.88 0.91 0.58 0.60

Precision 0.88 0.92 0.65 -

Recall 0.88 0.91 0.58 0.60

F-Measure 0.87 0.90 0.51 -

ROC Area 0.98 1.00 0.60 1.00

Mean

absolute error
0.05 0.04 0.21 0.32

Execution

Time Model
15ms 10ms 10ms 30ms

Based on table 4.54, which provided performance measures, K-Star appears to be the

best-performing algorithm, achieving the highest accuracy and precision among the

four. Logistic Regression also shows respectable performance with high accuracy and

precision. On the other hand, IBK and AdaBoostM1 have lower accuracy scores,

making them less suitable choices for the given classification tasks.

59

Figure 4.8: Evaluation of Classifier at 10-fold Cross-Validation based on

Various Performance Measures

From the above Figure 4.8, it is clear that Logistic Regression and K-star are the most

appropriate algorithms for task scheduling while considering the configuration

setting; cross-validation 10 folds.

0.88

0.887

0.88

0.871

0.988

0.0599

0.91

0.927

0.91

0.903

1

0.0488

0.58

0.658

0.585

0.517

0.602

0.2114

0.6

0.5

0.6

0.667

1

0.3188

0 0.2 0.4 0.6 0.8 1 1.2

Accuracy

Precision

Recall

F-Measure

ROC Area

Mean absolute error

AdaBoostM1 IBK K-Star Logistic Regression

60

Cross-validation – 25-fold: In the performance-wise analysis of classification

algorithms for task allocation and resource management in an IoT environment with

40 tasks and 4 nodes, using 25-fold cross-validation, the evaluation provides a

comprehensive understanding of the effectiveness of different algorithms in this

specific scenario.

Table 4.55: Performance-Wise Analysis of Classification Algorithms (25 folds,

Number of Tasks: 40 and Nodes: 4)

Performance

Measure

Logistic

Regression
K-Star IBK AdaBoostM1

Accuracy 0.89 0.92 0.64 0.52

Precision 0.91 0.94 0.68 0.46

Recall 0.89 0.93 0.64 0.53

F-Measure 0.89 0.92 0.56 0.46

ROC Area 0.99 1.00 0.48 0.95

Mean

absolute error
0.05 0.04 0.18 0.32

Execution

Time Model

Building

15ms 10ms 10ms 35ms

Table 4.55 shows the 25-fold cross-validation involves dividing the dataset of 40

tasks into 25 equal subsets (folds). Each classification algorithm is trained on 24 folds

and then tested on the remaining fold. This process is repeated 25 times, with each

fold serving as the testing set once.

61

Figure 4.9: Evaluation of Classifier at 25-fold Cross-Validation based on various

Performance Measures

From the above Figure 4.9, it is clear that Logistic Regression and K-star are the most

appropriate algorithms for task scheduling with a mean absolute error of 0.044 while

considering the configuration setting; cross-validation 25 folds.

0.89

0.911

0.895

0.888

0.99

0.0526

0.92

0.937

0.925

0.92

1

0.044

0.64

0.68

0.64

0.56

0.488

0.1844

0.52

0.459

0.525

0.46

0.955

0.3186

0 0.2 0.4 0.6 0.8 1 1.2

Accuracy

Precision

Recall

F-Measure

ROC Area

Mean absolute error

AdaBoostM1 IBK K-Star Logistic Regression

62

Figure 4.10: Average Execution Time (ms): 25 folds

From Figure 4.10, the average execution time of the most appropriate algorithms is

found to be IBK, K-Star, and Logistic Regression while considering 40 tasks and 4

nodes and cross-validation 25 folds. These three algorithms as the most appropriate

ones are based on their ability to achieve satisfactory classification performance while

offering faster average execution times. The 25-fold cross-validation ensures a robust

evaluation of the algorithms' performance, considering different subsets of the data for

training and testing.

By considering execution time as an important criterion, the analysis aims to select

algorithms that can handle task allocation and resource management efficiently in

real-time IoT environments with 40 tasks and 4 nodes.

0 5 10 15 20 25 30 35

Logistic Regression

K-Star

IBK

AdaBoostM1

15

10

10

35

63

Experiment 2: Number of Tasks: 160 and Nodes: 4

Cross-validation – 10 folds: The performance-wise analysis of classification

algorithms for task allocation and resource management in an IoT environment with

10-fold cross-validation, 160 tasks, and 4 nodes provides valuable insights into the

effectiveness of different algorithms in this specific scenario. Using the 10-fold cross-

validation, the dataset of 160 tasks is divided into ten equal subsets (folds).

Table 4.56: Performance-Wise Analysis of Classification Algorithms

(10 folds,160number of tasks and Nodes: 4)

Performance

Measure

Logistic

Regression
K-Star IBK AdaBoostM1

Accuracy 0.81 0.90 0.25 0.50

Precision 0.83 0.91 0.26 -

Recall 0.81 0.90 0.26 0.50

F-Measure 0.82 0.90 0.26 -

ROC Area 0.95 0.96 0.50 0.83

Mean absolute error 0.09 0.07 0.37 0.25

Execution Time

Model Building
1660ms 20ms 20ms 25ms

Each algorithm is trained on 10 folds and tested on the remaining fold. This process is

repeated ten times, with each fold serving as the testing set once and the results are

shown above in table 4.56.

64

Figure 4.11: Evaluation of Classifier at 10-fold Cross-Validation Based on

Various Performance Measures (Number of Tasks: 160 and Nodes: 4)

Figure 4.11, it is clear that Logistic Regression and K-star are the most appropriate

algorithms for task scheduling while considering the configuration setting; cross-

validation 10 folds and 160 tasks and 4 nodes.

0.81

0.833

0.814

0.816

0.953

0.0931

0.9

0.906

0.903

0.904

0.963

0.0691

0.25

0.257

0.255

0.255

0.503

0.3727

AdaBoostM1

0

0.5

0

0.833

0.25

0 0.2 0.4 0.6 0.8 1 1.2

Accuracy

Precision

Recall

F-Measure

ROC Area

Mean absolute error

AdaBoostM1 IBK K-Star Logistic Regression

65

Figure 4.12: Average Execution Time (ms): 10 folds

(Number of Tasks: 160 and Nodes: 4)

From the Figure 4.12, for average execution time, the most appropriate algorithms are

found to be IBK and K-Star while considering 160 number of tasks and 4 nodes and

cross validation 10 folds. In a Fog Computing environment with 160 tasks across 4

nodes and using 10-fold cross-validation, IBK, and K-Star algorithms are identified as

optimal based on average execution time known for efficiency in classification tasks,

both algorithms demonstrate effective task processing and classification with

relatively low execution times, making them suitable choices for distributed Fog

Computing scenarios.

0 500 1000 1500 2000

Logistic Regression

K-Star

IBK

AdaBoostM1

1660

20

20

25

66

Cross-validation - 25 folds: In Table 4.34, the performance-wise analysis of

classification algorithms is presented using 25-fold cross-validation with 160 tasks

and 4 nodes.

Table 4.57: Performance-Wise Analysis of Classification Algorithms

(25 folds, 160 number of tasks and Nodes: 4)

Performance

Measure

Logistic

Regression
K-Star IBK AdaBoostM1

Accuracy 0.89 0.90 0.25 0.47

Precision 0.90 0.91 0.25 0.47

Recall 0.89 0.91 0.25 0.47

F-Measure 0.89 0.91 0.25 0.45

ROC Area 0.98 0.96 0.50 0.80

Mean absolute

error
0.05 0.07 0.38 0.29

Execution

Time Model

Building

1860ms 20ms 20ms 25ms

Table 4.57 shows updated performance measures, K-Star remains the best-performing

algorithm, achieving the highest accuracy and precision among the four. Logistic

Regression also shows respectable performance with high accuracy and precision

scores. However, both IBK and AdaBoostM1 have significantly lower accuracy and

precision values, making them less suitable choices for the given classification tasks.

67

Figure 4.13: Evaluation of classifier at 25-fold Cross-Validation based on

Various Performance Measures (Number of Tasks: 160 and Nodes: 4)

Figure 4.13, it is clear that Logistic Regression and K-star are the most appropriate

algorithms for task scheduling while considering the configuration setting; cross-

validation 25 folds and 160 tasks and 4 nodes.

0.89

0.899

0.892

0.893

0.976

0.0541

0.9

0.907

0.905

0.906

0.961

0.0706

0.25

0.25

0.25

0.25

0.498

0.375

0.47

0.472

0.477

0.449

0.801

0.2988

0 0.2 0.4 0.6 0.8 1 1.2

Accuracy

Precision

Recall

F-Measure

ROC Area

Mean absolute error

AdaBoostM1 IBK K-Star Logistic Regression

68

Figure 4.14: Average Execution Time (ms): 25 folds

(Number of Tasks: 160 and Nodes: 4)

Based on the above Figure 4.14, average execution time the most appropriate

algorithms are found to be K-Star and IBK while considering 160 number of tasks and

4 nodes and cross-validation 25 folds. The consistent performance in minimizing

average execution time underscores their suitability for real-time task execution and

classification in resource-constrained environments. This reinforces their selection as

optimal choices for achieving efficient task processing in Fog Computing systems.

0 500 1000 1500 2000

Logistic Regression

K-Star

IBK

AdaBoostM1

1860

20

20

25

69

4.7 Clustering Algorithms Used for Task Scheduling

Cloud computing offers several benefits, including immense processing power, ample

storage, a massive network connecting processing nodes and data sources, and a pay-

per-use approach. Cloud computing is a strong technology that provides these

paradigms as well as many other benefits such as flexibility, cheaper costs, scalability,

and ease of software installation. However, despite these benefits, Cloud computing

has certain disadvantages. Some of the disadvantages include: the client and Cloud

layer may be geographically separated, which can cause transmission delays; there

may be a scarcity of resources for task execution; many resources may be idle even if

tasks must be performed instantly and so on.

Virtualized Fog computing technology is used to solve these issues. Fog is a layer that

sits between end users and cloud data centers. Fog computing can be useful for

executing applications that require low latency and real-time responses, depending on

the location of the data producer. This layer can include a large number of virtual

servers to handle incoming requests. "Resource allocation is the systematic approach

of allocating available resources to the needed Cloud clients over the Internet,"

according to Agarwal, Yadav, and Yadav. The timing and order in which resources

are allotted are critical for maximizing the benefits of employing a virtual server,

since the system's throughput may be increased while customers are not overcharged.

The availability of resources should ensure that high-priority jobs do not wind up at

the bottom of the task queue. This might result in inefficient utilization of virtual

servers and possibly company loss. As a result, allocating resources in a prioritized

manner to maximize profit is a critical and promising study topic. Furthermore, ML,

an important field, has made significant advances in a variety of academic areas,

including robotics, neuromorphic computing, computer graphics, NLP33, decision-

making, and speech recognition. Several researches have been presented to look at

ways to use machine learning to solve fog computing issues. In recent years, there has

been an increase in the use of ML to improve fog computing applications and deliver

fog services, such as efficient resource management, security, latency and energy

reduction, and traffic modeling.

33 Natural Language Processing

70

There are many different types of fog computing devices, sensors, and objects, and

each one generates a large amount of data that must be processed. Real-time

processing has the potential to improve efficiency. In some cases, it may be necessary.

Sensors, devices, and by sending requests, objects will completely utilize resources.

As a result, fog computing requires resource management and should be implemented

with caution. In this section, we looked at studies that used ml algorithms to manage

fog computing resources. This paper proposes a Scheduling Algorithm which is used

to schedule tasks at fog level. A task is scheduled to the VM that plays a role in the

execution of request / response model in fog computing. We use a K-means clustering

algorithm for scheduling fog devices. The default resource scheduler in the simulator

equally divides fog device’s resources among all active application modules.

Clustering makes it easy to find a set of tasks for VM with minimum cost. Therefore,

the integration of ML method i.e. Clustering in scheduling tasks in fog computing will

give a better quality of services (QoS) with low execution cost and low network

usage. The study includes:

1. Presentation of Clustering Scheduling in Fog Computing.

2. Implementation of proposed algorithm in iFogsim.

3. Reduction of Execution Cost.

Clustering algorithms group data points based on their similarity or proximity.

Common types include K-means, which partitions data into K clusters; DBSCAN,

which identifies clusters based on density; and Hierarchical clustering, which builds a

tree-like structure of nested clusters.

4.7.1 Canopy Clustering

Table 4.58 shows that Canopy Clustering is a pre-processing technique used in data

clustering to reduce the computational complexity of subsequent clustering

algorithms. It acts as a data summarization step by creating overlapping regions

(canopies) that cover subsets of data points based on a similarity threshold. Data

points falling within each canopy are then passed to another clustering algorithm for

further refinement.

71

Table 4.58: Accuracy Canopy Clustering

Measures Values

Correctly Classified Instances 149 (74.5%)

Incorrectly Classified Instances 51 (25.5%)

Overall Accuracy 74.5%

Total Number of Instances 200

Time taken to build a model 0.001 seconds

Figure 4.15, shows that the accuracy results for Canopy Clustering show that the

model correctly classified 149 instances, representing 74.5% of the total instances in

the dataset. There were 51 instances misclassified, amounting to 25.5% error. The

overall accuracy of 74.5% indicates its effectiveness in classifying data points, and the

model was built efficiently in just 0.001 seconds for a total of 200 instances.

Figure 4.15: Overall Accuracy Canopy Clustering

Accordingly, Figure 4.15, it was found that in case of Canopy Clustering the correctly

classified instances were about 74.5% which is quite high and showing high level of

149

51

74.5

0 50 100 150 200

Correctly Classified Instances

Incorrectly Classified Instances

Overall Accuracy

Percentage (%)

P
er

fo
rm

a
n

ce
 M

ea
su

re
s

72

accuracy as compared with other clustering techniques such as Hierarchical

Clustering and Density-Based Clustering. Similarly, the precision, recall, and F-

measure values of 0.75, 0.70, and 0.70 respectively were higher in comparison to

other clustering techniques such as Hierarchical Clustering and Make Density Based

Clustering.

Table 4.59: Performance Measure Class Wise (Canopy Clustering)

S.

No.

n

(truth)

n

(classified)
Accuracy Precision Recall

F1

Score
Class

1 86 80 0.77 0.75 0.70 0.72 Node1

2 30 40 0.76 0.28 0.37 0.31 Node2

3 44 40 0.96 0.95 0.86 0.90 Node3

4 40 40 1.00 1.00 1.00 1.00 Node4

Based on the above table 4.59, it can be concluded that Node 4 has shown higher

precision with value 1. Similarly, the recall value is found to be higher in case of

Node 1.

Figure 4.16: Class-wise performance measures

0.77 0.75
0.7 0.72

0.76

0.28

0.37

0.31

0.96 0.95

0.86
0.9

1 1 1 1

0

0.2

0.4

0.6

0.8

1

1.2

Accuracy Precision Recall F1 Score

Node1 Node2 Node3 Node4

73

As shown in Figure 4.16, Class-wise performance measures the accuracy of the Node

4 is found to be highest with the value of 1 whereas the accuracy of Node 2 is found

to be lowest with the value of 0.28.

 Table 4.60: Confusion Matrix (Canopy Clustering)

0 1 2 3 assigned to cluster

 60 18 2 0 | Cluster 0: Node1

 25 11 4 0 | Cluster 1: Node2

 1 1 38 0 | Cluster 2: Node3

0 0 0 40 | Cluster 3: Node4

From Table 4.60 the confusion matrix for Canopy Clustering shows the distribution of

data points across clusters. It reveals correct and incorrect cluster assignments,

helping assess the algorithm's performance. Cluster 0 (Node1) has 60 correct, 18, and

2 incorrect assignments; Cluster 1 (Node2) has 25 correct, 11 and 4 incorrect; Cluster

2 (Node3) has 1 correct, 1 and 38 incorrect; and Cluster 3 (Node4) has 40 correct

assignments.

4.7.2 Hierarchical Clustering

Table 4.61: Overall Accuracy Hierarchical Clustering

Measures Values

Correctly Classified Instances 118 (59%)

Incorrectly Classified Instances 82 (41%)

Overall Accuracy 38.14%

Total Number of Instances 200

Time taken to build a model 0.03 seconds

Table 4.61 the overall accuracy of Hierarchical Clustering is 38.14%, indicating that

only 38.14% of the instances were correctly classified, while the remaining instances

were misclassified. This relatively low accuracy suggests that the clustering algorithm

may not be performing well on the given dataset.

Table 4.62: Class or Node-wiseHierarchical Clustering Performance Measures

S.

No.

n

(truth)

n

(classified)
Accuracy Precision Recall

F1

Score
Class

1 150 74 58 0.97 0.48 0.64 Node1

2 4 40 78 0.03 0.25 0.05 Node2

3 39 40 59 0.00 0.00 0.00 Node3

4 1 40 79 0.03 1.00 0.05 Node4

74

Table 4.62 shows performance metrics for different classes in a classification task.

Node1 achieved high accuracy 58% and precision 0.97 but lower recall 0.48 and F1

Score 0.64. Node2 had good accuracy 78% but low precision of 0.03 and recall 0.25.

Figure 4.17: Class or Node-wiseHierarchical Clustering Performance Measures

As shown in Figure 4.17, Node3 showed moderate accuracy 59% but had no

precision, recall, or F1 Score due to zero true positives. Node4 had high accuracy

79% and recall 1 but low precision 0.03 and F1 Score 0.05. The evaluation highlights

the varying strengths and weaknesses of each class's classification performance.

Confusion Matrix: It was found that in case of Hierarchical Clustering the correctly

classified instances were about 59% which is quite less and shows a low level of

accuracy as compared with other clustering techniques such as Canopy Clustering.

0.58

0.97

0.48

0.64

0.78

0.025

0.25

0.045

0.59

0 0 0

0.79

0.025

1

0.049

0

0.2

0.4

0.6

0.8

1

1.2

Accuracy Precision Recall F1 Score

Node1 Node2 Node3 Node4

75

 Table 4.63: Confusion Matrix (Hierarchical Clustering)

0 1 2 3 assigned to cluster

 7220 0 | Cluster 0: Node1

39 1 0 0 | Cluster 1: Node2

39 1 0 0 | Cluster 2: Node3

0 0 391| Cluster 3: Node4

Similarly, From Table 4.63 the precision and F-measure values of 0.02 and 0.04

respectively were lower in comparison to other clustering techniques.

4.8.3 Make Density-Based Clustering

The overall accuracy of Density-Based Clustering is 19.5%, indicating that only

19.5% of the instances were correctly classified.

Table 4.64: Overall Accuracy Make Density-Based Clustering

Measures Values

Correctly Classified Instances 97 (48.5%)

Incorrectly Classified Instances 103 (51.5%)

Overall Accuracy 19.5%

Total Number of Instances 200

Time taken to build model 0.01 seconds

From Table 4.64 the classification model achieved an accuracy of 19.5%, with 97

instances correctly classified and 103 instances incorrectly classified out of a total of

200 instances. This indicates that the model's performance is relatively poor, as it

correctly classified less than half of the instances. This low accuracy suggests that the

clustering algorithm may not be performing well on the given dataset.

76

Figure 4.18: Overall Accuracy Make Density-Based Clustering

As shown in Figure 4.18, The Density-Based Clustering model has a relatively high

error rate, with 103 instances and 51.5% being incorrectly classified. However, it is

important to note that the model was built quickly, taking only 0.01 seconds to

complete.

Table 4.65: Class or Node wise Make Density-Based Clustering Performance

Measures

S.

No.

n

(truth)

n

(classified)
Accuracy Precision Recall

F1

Score
Class

1 50 80 61 0.33 0.52 0.40 Node1

2 40 40 60 0.00 0.00 0.00 Node2

3 55 40 65 0.33 0.24 0.27 Node3

4 55 40 52 0.00 0 0.00 Node4

Table 4.65 Node1 achieved moderate accuracy 61% with relatively low precision 0.33

and recall 0.52, resulting in an F1 Score of 0.40. Node2 had a similar accuracy 60%,

but it had no precision, recall, or F1 Score due to zero true positives.

48.5

51.5

19.5

0 10 20 30 40 50 60

Correctly Classified Instances

Incorrectly Classified Instances

Overall Accuracy

Percentage (%)

P
er

fo
rm

a
n

ce
 M

ea
su

re
s

77

Figure 4.19: Class or Node wise Make Density-Based Clustering Performance

Measures

As shown in Figure 4.19, it observes that Node3 performed slightly better with higher

accuracy 65% and precision 0.33, but its recall 0.24, and F1 Score 0.27 remained

relatively low. Node4 had the lowest accuracy 52%, and its precision, recall, and F1

Score were all zero.

Confusion Matrix

The confusion matrix for the Density-Based Clustering shows the distribution of data

points across clusters. Cluster 0 (Node1) contains 2,602,628 data points correctly

assigned to it. Cluster 1 (Node2) contains 1, 101, and 613 data points correctly

assigned to it. Cluster 2 (Node3) has 130 data points correctly assigned, but 1, 314

data points were mistakenly placed in other clusters. Cluster 3 (Node4) contains 40

data points correctly assigned to it. The matrix provides valuable insights into the

clustering performance, with most data points correctly clustered in Cluster 0 and

Cluster 1, but some misclassifications in Cluster 2.

0.61

0.33

0.52

0.4

0.6

0 0 0

0.65

0.33

0.24
0.27

0.52

0 0 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Accuracy Precision Recall F1 Score

Node1 Node2 Node3 Node4

78

 Table 4.66: Confusion Matrix (Make Density-Based Clustering)

0 1 2 3 assigned to cluster

2602628 | Cluster 0: Node1

1101613 | Cluster 1: Node2

130 1314| Cluster 2: Node3

0 40 0 0| Cluster 3: Node4

Accordingly, Table 4.66 found that in case of Make Density Clustering the correctly

classified instances were about 48.5% which is quite low and shows a low level of

accuracy as compared with other clustering techniques such as Hierarchical

Clustering and Canopy Clustering. Similarly, the precision, recall, and F-measure

values were lower in comparison to other clustering techniques such as Hierarchical

Clustering and Canopy Clustering.

