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Across the globe, billions of devices are today communicating and exchanging data 

with each other. IoT communication protocols protect and ensure the security of the 

data being exchanged between these devices. This research work covers the most 

popular protocols in use today. 

4.1 Analyzing IoT Infrastructure for Smart Fog Protocol Design 

The Smart Fog Protocol-Based Technique involves the utilization of intelligent fog 

nodes at the edge of the network to process data locally and reduce the burden on 

centralized cloud servers. To design this technique, various layers of communication 

protocols are essential. The physical layer focuses on selecting appropriate 

communication technologies for IoT devices, while the data link layer ensures 

reliable data transmission. The network layer facilitates efficient communication 

paths between fog nodes and IoT devices, while the transport layer ensures orderly 

data delivery and minimizes latency. At the top layer, the application layer enables 

seamless integration with fog-based services and applications, optimizing real-time 

data processing at the edge and offering advantages in latency reduction, bandwidth 

optimization, and scalability for IoT applications. 

4.1.1 Message Queue Telemetry Transport Protocol 

This publish/subscribe message transport protocol is open source and highly 

lightweight, making it a great choice for connecting tiny devices to restricted 

networks. It was developed to function in environments with low bandwidth, such as 

sensors and mobile devices, and on networks that are not completely stable. Because 

of this feature, it is the protocol of choice for connecting devices that have a tiny 

code footprint. It is also the protocol of choice for wireless networks that have 

different amounts of delay as a result of bandwidth limits or unstable connections. It 

accomplishes this by operating on top of TCP/IP1, which is the foundation of the 

Internet. MQTT is comprised of these three primary parts: Subscriber. Publisher and 

Broker in this protocol's most fundamental process, the publisher is responsible for 

creating and sending information to subscribers via a broker. This information is 

then received by the subscribers. The authorization of subscribers and publishers is 

checked by the broker as part of the broker's primary responsibility, which is to 

 
1Transmission Control Protocol and Internet Protocol 
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maintain data security. This protocol is favored for usage in IoT devices because it 

can deliver well-organized information routing features to low-bandwidth networks 

as well as tiny, low-cost, low-memory, and power devices. MQTT employs three 

different degrees of quality of service to assure the dependability of its messages. 

MQTT is a communication protocol that can go in both directions, meaning that 

clients may both generate and receive data through the process of publishing 

messages and subscribing to topics. IoT devices that are equipped with connectivity 

in both directions can concurrently deliver sensor data and receive configuration 

information and control commands. MQTT makes it considerably simpler to 

validate clients using contemporary authentication methods and encrypt 

communications using TLS2. 

CoAP message flows involve lightweight and efficient communication between IoT 

devices and servers. CoAP messages include GET, PUT, POST, and DELETE 

methods, enabling device data exchange. Devices send requests to servers, which 

respond with corresponding acknowledgments or data. CoAP's simplicity and low 

overhead make it ideal for resource-constrained IoT devices. 

4.1.2 Constrained Application Protocol 

CoAP is a Web transfer protocol designed for use in the IoT with restricted devices 

and networks. It is meant for applications that have a limited capacity to connect 

utilizing LWM2M3, such as smart energy and building automation, and it may be 

implemented through a UDP4.LWM2M makes it possible to remotely manage IoT 

devices and provides interfaces for safely monitoring and controlling those devices. 

The design of CoAP is based on the well-known REST5 paradigm. According to this 

model, servers make resources available under a URL6, and clients may access these 

resources by utilizing methods such as GET, PUT, POST, and DELETE. Both the 

CoAP and HTTP protocols have many similarities; however, the CoAP protocol has 

been improved for the IoT, and more especially for machine-to-machine 

communication. It has a minimal overhead, combined with the ability to proxy and 

 
2Transport Layer Security 
3Light-Weight Machine-To-Machine Communication 
4User Datagram Protocol 
5Representational State Transfer 
6Uniform Resource Locator 
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cache messages, and it asynchronously exchanges messages. The architecture of 

CoAP is broken down into two primary categories: messaging, which is in charge of 

the dependability and duplication of messages, and request/response, which is in 

charge of communication between clients and servers. 

The message layer sits above UDP and is in charge of the communication protocol 

that enables IoT devices and the internet to exchange messages with one another. 

Confirmable messages, non-confirmable messages, acknowledgment messages, and 

reset messages are the four distinct varieties of CoAP communications. When two 

endpoints communicate with one another, a CON7is a message that can be relied 

upon. It is repeated until the receiving end sends an acknowledgment message, at 

which point it is stopped. The message ID of an ACK8 the message is identical to the 

message ID of a CON message. If the server is unable to successfully manage the 

incoming request, it may respond with a RST rather than an ACK. Unreliable NON9 

messages, in which the server does not acknowledge the message, can be used for 

transferring messages that are not vital to the operation of the system. To avoid 

sending duplicate messages, NON-messages are given unique message identifiers. 

The Request/Response layer is the second tier of the CoAP abstraction layer. 

Requests can be sent using either CON or NON-messages in this layer. In situations 

in which a server can instantly react to a request, the request is communicated using 

a CON message, followed by an ACK message that contains the answer or the error 

code that was generated by the server. The message ID is not included in either the 

request or the response's token, which means they have their unique token. When the 

server is in a position where it is unable to instantly react, it will send an ACK 

message that has no content as the response. After the response is complete, a new 

CON message that includes the response is sent back to the client. The client then 

acknowledges the response that it has received in this new CON message. 

 

 

4.1.3 Advanced Message Queuing Protocol 
 

 
7Confirmable Message 
8Acknowledgement 
9Non-confirmable 
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Figure 4.1, shows AMQP is an open standard application layer protocol that was 

developed with the goals of providing increased security and dependability while 

still being easy to deploy and interoperable. Because TCP is employed as a transport 

protocol, it is a connection-oriented protocol. This means that to transmit data, both 

the client and the broker need to first establish a connection with one another. 

AMQP provides two levels of quality of service for the dependable delivery of 

messages: the unsettle format, which is comparable to MQTT's QoS0, and the settle 

format. The primary distinction between AMQP and MQTT standards is that AMQP 

brokers are composed of two primary parts: exchange and queues. MQTT brokers 

only have one primary part. Exchange is in charge of both receiving messages from 

publishers and delivering them to the appropriate queues. Subscribers establish 

connections to the queues, which in essence stand in for the topics, and begin 

receiving sensory input as soon as it becomes available. 

 

Figure 4.1: AMQP Architecture (Macarulla, 2016) 

AMQP architecture is a messaging protocol designed for reliable and efficient 

message communication between distributed systems. It employs a client-server 

model with message brokers as intermediaries. Producers send messages to the 

broker, which then delivers them to appropriate consumers based on routing rules 

and message queues. 

4.1.4 Data Distribution Service 

DDS is a middleware protocol for data-centric connection that was developed by the 

object management group. It offers commercial and mission-critical IoT applications 

low-latency data communication, exceptional dependability, and a scalable design. 

This protocol enables the use of multicasting techniques during data transmission 

and enables high-quality QoS to be provided by applications and devices with a tiny 
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memory footprint. Both a DCPS10 layer and a data-local reconstruction layer make 

up DDS's communications paradigm. These levels are referred to as the interface 

layers. 

Throughout the publish/subscribe process, the DCPS layer is the one that is in 

charge of binding the values of data objects included inside an application. At the 

application level, the DLRL11 is a layer that is used for integrating DDS, but its use 

is optional. 

4.2 Task Scheduling and Allocation in Smart Fog Computing Nodes 

The previous survey results were analyzed and a detailed treatment of the 

fundamentals of scheduling and scheduling types, such as task scheduling, workflow 

scheduling, resource allocation, and the many optimization measures used to 

evaluate these methods. Classification and extensive assessment of existing 

scheduling algorithms, with a special emphasis on intelligent dynamic scheduling 

strategies based on machine learning, fuzzy logic, reinforcement learning, and deep 

reinforcement learning, with descriptions of their strengths and shortcomings. 

Identification of research gaps and problems for task scheduling and resource 

allocation in fog computing for future research efforts in this subject through the 

presentation of various simulation settings and tools utilized in diverse studies. 

 

 

 

 

 

 

 

 
10Data-Centric Publish-Subscribe 
11Data Local Reconstruction Layer 
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Comparison of Traditional Scheduling Algorithms 

Table 4.1, shows compares several traditional scheduling algorithms based on their 

type and the specific performance measures they optimize. 

Table 4.1: Comparison of Traditional Scheduling Algorithms 

Name 
Type of 

Scheduling 

Optimize the following Performance Measure 

Latency 
Execution 

Time 

Network 

Usage 

Energy 

Consumption 
Cost 

FCFS12 
Task 

Scheduling 
Optimized Unoptimized Optimized Optimized Unoptimized 

PERA13 
Task 

Scheduling 
Optimized Unoptimized Unoptimized Unoptimized Optimized 

WRR14 
Task 

Scheduling 
Optimized Unoptimized Unoptimized Unoptimized Unoptimized 

FCFS 
Resource 

Scheduling 
Optimized Unoptimized Optimized Optimized Unoptimized 

 

FCFS task scheduling algorithm when applied in Fog and cloud environment 

suggests that FCFS in Fog environment optimizes latency, total network usage, and 

energy consumption when compared with FCFS in cloud environment. PERA, a 

Priority-based task scheduling algorithm optimizes latency and cost. 

FCFS is a task-scheduling algorithm that optimizes latency, network usage, and 

energy consumption but does not focus on minimizing execution time or cost 

efficiency. Priority-based Scheduling also deals with task scheduling, optimizing 

latency and cost, while neglecting execution time, network usage, and energy 

consumption. Weighted Round Robin, another task scheduling algorithm, primarily 

optimizes latency without targeting execution time, network usage, energy 

consumption, or cost. The combined FCFS, Delay Priority, and Concurrent 

approach, a resource scheduling method, optimizes latency, network usage, and 

energy consumption but does not focus on execution time or cost efficiency. Each 

algorithm is tailored to enhance specific aspects of performance, demonstrating the 

trade-offs inherent in scheduling decisions 

 

 

 
12First-Come, First-Served 
13Packetized Ensemble Resource Allocation 
14Weighted Round Robin 
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Integer Linear Programming 

Table 4.2 compares various Integer Linear Programming scheduling algorithms 

based on their type and the performance measures they optimize.  

Table 4.2: Integer Linear Programming 

Name 
Type of 

Scheduling 

Optimize the following Performance Measure 

Latency Makespan QoS Cost 

ILP15 
Resource 

Scheduling 
Optimized Unoptimized Optimized Optimized 

MILP16 
Resource 

Scheduling 
Unoptimized Unoptimized Optimized Optimized 

 

ILP, a resource scheduling algorithm based on integer linear programming when 

used in Fog environment optimizes the latency, QoS, and cost when compared with 

a cloud environment. ILP is a resource scheduling algorithm that optimizes latency, 

Quality of Service, and cost but does not focus on minimizing makespan. Min-CCV 

and Min-V, also resource scheduling algorithms, prioritize QoS and cost efficiency, 

without optimizing latency or makespan.  

Comparison of Heuristic Scheduling Algorithms 

Table 4.3, shows compare various heuristic scheduling algorithms based on their 

type and optimized performance measures.  

Table 4.3: Comparison of Heuristic Scheduling Algorithms 

Name 
Type of 

Scheduling 

Optimize the following Performance Measure 

Latency Makespan QoS Cost 
Energy 

Consumption 

Network 

Usage 

SJF17 Task  Optimized Unoptimized Unoptimized Unoptimized Optimized Unoptimized 

PTPN18 Resource  Unoptimized Unoptimized Optimized Unoptimized Optimized Unoptimized 

MCCV 
19 

Resource  Unoptimized Unoptimized Optimized Optimized Unoptimized Unoptimized 

EDF 
&LFC20 

Resource  Optimized Optimized Unoptimized Optimized Unoptimized Unoptimized 

DOTS21 Resource  Optimized Unoptimized Unoptimized Optimized Unoptimized Unoptimized 

TIPS22 
Task / 

Resource  
Unoptimized Unoptimized Optimized Unoptimized Unoptimized Unoptimized 

 

 
15Integer Linear Programming 
16Mixed Integer Linear Programming 
17Shortest Job First  
18Preemptive Task Priority Network 
19Minimum Critical-Cycle Variance  
20Earliest Deadline First and Least Slack Time  
21Dynamic Optimization of Time Sequences  
22Time-Invariant Power Scheduling  
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SJF task scheduling algorithm optimizes latency and energy consumption. Similarly, 

PTPN resource allocation algorithm highly optimizes QoS and energy consumption. 

SJFfor task scheduling optimizes latency and energy consumption but not 

makespan, QoS, cost, or network usage. PTPN for resource scheduling focuses on 

optimizing QoS and energy consumption, neglecting other factors.  

Min-CCV and Min-V for resource scheduling enhance QoS and cost efficiency but 

do not optimize latency, makespan, energy consumption, or network usage. EDF & 

Static LFC for resource scheduling optimize latency, makespan, and cost, leaving 

QoS, energy consumption, and network usage unoptimized. DOTS for resource 

scheduling focuses on minimizing latency and cost but does not optimize makespan, 

QoS, energy consumption, or network usage. Finally, TIPS for both task and 

resource scheduling prioritizes QoS without addressing latency, makespan, cost, 

energy consumption, or network usage. 

Comparison of Fuzzy-Based Scheduling Algorithms 

Table 4.4, shows a Comparison of Fuzzy-Based Scheduling Algorithms Fog 

computing is not a replacement for cloud computing but instead, an extension of 

cloud computing that enhances the already established cloud architecture. Here’s 

how While the server nodes of cloud computing are located within the internet, fog 

computing has them at the edge of the networks. With this parameter, fog computing 

enhances cloud computing by functionally managing data from mobile devices thus 

reducing latency and improved response time. 

Table 4.4:  Comparison of Fuzzy-Based Scheduling Algorithms 

Name 
Type of 

Scheduling 

Optimize the following Performance Measure 

Latency Makespan QoS Cost 
Energy 

Consumption 

Network 

Usage 

RFN23 
Resource 

Scheduling 
Optimized Unoptimized Unoptimized Unoptimized Optimized Unoptimized 

FLPSO24 
Resource 

Scheduling 
Unoptimized Unoptimized Optimized Unoptimized Unoptimized Unoptimized 

FPFTS25 
Resource 

Scheduling 
Optimized Unoptimized Unoptimized Unoptimized Optimized Optimized 

EDA26 
Resource 

Scheduling 
Optimized Unoptimized Optimized Unoptimized Optimized Optimized 

 

 
23 Rule-based Fuzzy Network 
24 Fuzzy Logic and Particle Swarm Optimization 
25 Fuzzy-Possibilistic Fuzzy Time Series 
26 Estimation of Distribution Algorithm 
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RFN, a fuzzy-based scheduling algorithm is a resource scheduling algorithm that 

optimizes latency and energy consumption. Similarly, FLPSO algorithm highly 

optimizes QoS. 

Fog computing is not a replacement for cloud computing but instead, an extension of 

cloud computing that enhances the already established cloud architecture. Here’s 

how – While the server nodes of cloud computing are located within the internet, fog 

computing has them at the edge of the networks. With this parameter, fog computing 

enhances cloud computing by functionally managing data from mobile devices thus 

reducing latency and improved response time. 

4.3 Challenges in Implementing Fog Computing 

Implementing Fog computing faces challenges such as heterogeneous device 

integration, security concerns at the edge, resource optimization, reliability 

maintenance, and scalability issues. Ensuring seamless interoperability between 

diverse devices, managing security risks at the edge, and optimizing resource 

allocation are crucial tasks. Additionally, maintaining reliability in a decentralized 

environment and addressing scalability concerns pose significant challenges that 

require comprehensive solutions. Fog computing is really necessary. There are, 

however, many obstacles to overcome to put it into practice: 

Data Privacy 

By placing fog nodes in the network's periphery, fog computing makes them 

available to a wider audience of end users. This makes the fog nodes more of a 

target for cyber-attacks as they collect a greater volume of sensitive data than the 

distant cloud. 

Security 

As fog computing requires authentication of devices at several gateways, the 

possibility of a rogue user using a spoofed IP address to access the data stored in a 

specific fog node is the most crucial security concern. This resulted in the 

installation of intrusion detection systems throughout the whole platform. 
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Network Management 

Because they are linked to disparate hardware types, managing the fog's nodes, 

network, and inter-node connections can be arduous without software-defined 

networking and network function virtualization approaches. 

Positioning the FOG Servers 

Positioning Fog servers, or Fog nodes, is essential in Fog Computing architecture to 

enhance performance by bringing data processing closer to the data sources. This 

proximity reduces latency, conserves bandwidth, and improves network efficiency, 

particularly for real-time applications like autonomous vehicles, industrial 

automation, and smart grids. Effective placement involves a distributed and 

hierarchical network topology to balance load and prevent bottlenecks, considering 

workload characteristics and dynamically adjusting based on network conditions. It 

also requires modular and scalable deployment to accommodate varying demands, 

ensuring high availability through redundancy. Security is paramount, with robust 

measures to protect sensitive data and compliance with local regulations. 

Additionally, energy efficiency is critical, achieved through strategic placement with 

reliable power sources and green computing practices. Practical scenarios include 

smart cities for traffic management and public safety, industrial IoT for predictive 

maintenance and automation control, healthcare for remote monitoring and 

telemedicine, and retail for in-store analytics and reliable point-of-sale systems. To 

maximize the service provided by fog computing and reduce maintenance costs, it is 

necessary to analyze the work performed in each node of the servers before deciding 

where to arrange the group of fog servers. 

Positioning Fog servers effectively is a multifaceted challenge that requires careful 

consideration of proximity to data sources, network topology, workload distribution, 

scalability, security, and energy efficiency. By strategically placing these nodes, 

organizations can leverage the benefits of Fog computing, such as reduced latency, 

improved bandwidth utilization, enhanced data security, and greater overall network 

efficiency. This approach is particularly beneficial in applications requiring real-

time processing and analysis, making it a vital component of modern distributed 

computing architectures. 
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Energy consumption is a critical consideration in Fog Computing systems due to the 

extensive deployment of fog nodes across distributed environments. These fog 

nodes, which are responsible for processing and managing data at the edge of the 

network, often operate in resource-constrained settings with limited power sources. 

Energy consumption is significant because of the large number of fog nodes used in 

fog computing systems. Our research work focuses on the above-stated objective 

which aims to use the computational power of computation-enabled devices to 

collaboratively perform tasks and speed up the processing. 

4.4 Hypothesis Testing Results 

The null hypothesis H01 as stated Smart Fog protocol-based technique to create a 

Fog Computing environment will not share computational power with IoT devices 

with low computational power and other aspects are being categorized into various 

sub-hypotheses H01, H02, H03, H04, H05, and H06 to compare the impact of various 

aspects related to efficiency and various measures of SMART FOG protocol-based 

system with the cloud-based system. 

 

H01: There is no significant difference between SMART FOG protocol-based 

system and cloud-based system based on the performance measure execution time. 

 

An alternative hypothesis is as follows  

 

Ha1: There is a significant difference between SMART FOG protocol-based system 

and cloud-based system based on the performance measure execution time. 

 

When comparing Fog Computing to Cloud Computing in terms of average 

execution time, it's essential to consider how each architecture processes tasks and 

their implications for task completion speed. Fog Computing, which processes tasks 

closer to the edge of the network, can potentially reduce latency and speed up 

execution times, particularly for time-sensitive tasks, by minimizing the distance 

data needs to travel. However, the effectiveness of Fog Computing depends on 

factors such as task complexity, resource availability at the edge, and network 

efficiency. Cloud Computing, while offering scalability and computational power, 

may introduce latency due to the distance between edge devices and centralized data 

centers, impacting average execution time. The choice between Fog Computing and 



13 
 

Cloud Computing should be based on the specific requirements of the application, 

considering factors such as task type, network latency, resource availability, and 

scalability needs.  

 

Figure 4.2: Fog Vs Cloud System Based on Average Execution Time 

Figure 4.2, shows comparative analysis between Fog fog-based systems and Cloud 

cloud-based systems based on reduction in execution time as shown below confirms 

that there is a large reduction in execution time with the use of Smart Fog-based 

systems as compared to Cloud-based systems. 
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Table 4.5: Execution Time Reduced due to Fog Computing Environment 

 

Table 4.5 shows Execution Time Reduced due to Fog Computing Environment in 

Fog system 8:10, 9:9, 7:10, 6:10, 6:6, 4:10, and 2:6 there is a large reduction in 

execution time with values 9872, 3008, 7866, 5417, 4533, 4024, and 8703 

respectively. So, it is very clear that Fog layer plays an important role in the 

execution time reduction. The Smart Fog system 9:9 which means 9 areas and 9 

cameras takes a lower execution time of 7315 as compared to the cloud system 9:9 

with an execution time of 10323. The experimental outcomes are further represented 

or categorized into high and low as shown below in the crosstabulation table.   

Table 4.6 shows the FOG SYSTEM operates over two distinct execution time 

ranges, categorized into "Low" and "High." The "Low" range includes values from 0 

to 500, while the "High" range covers values from 501 to 10000. Similarly, the 
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CLOUD SYSTEM is categorized into "Low" and "High" ranges, with the "Low" 

range spanning from 0 to 250 and the "High" range covering 251 to 10000.  

Table 4.6: Classification of Fog and Cloud for Execution Time 

Obs 
Fog 

System 

Execution 

Time 
Rank 

Cloud 

System 

Execution 

Time 
Rank 

1 Fog-1:1 312 Low Cloud-1:1 684 High 

2 Fog-1:2 210 High Cloud-1:2 933 High 

3 Fog-1:3 359 High Cloud-1:3 1198 High 

4 Fog-1:4 502 High Cloud-1:4 1133 High 

5 Fog-1:5 692 High Cloud-1:5 1348 High 

6 Fog-2:2 384 High Cloud-2:2 1203 High 

7 Fog-2:3 525 Low Cloud-2:3 531 High 

8 Fog-2:4 494 High Cloud-2:4 690 High 

9 Fog-2:5 677 Low Cloud-2:5 1048 Low 

10 Fog-2:6 769 Low Cloud-2:6 8703 Low 

11 Fog-2:7 1122 Low Cloud-2:7 1153 High 

12 Fog-2:8 1032 High Cloud-2:8 1502 High 

13 Fog-2:9 1193 Low Cloud-2:9 1632 Low 

14 Fog-2:10 1278 Low Cloud-2:10 1547 High 

15 Fog-3:5 1010 Low Cloud-3:5 3429 High 

16 Fog-3:6 1253 Low Cloud-3:6 1877 Low 

17 Fog-3:10 2036 High Cloud-3:10 2237 High 

18 Fog-4:4 893 High Cloud-4:4 1328 High 

19 Fog-4:5 1121 High Cloud-4:5 1513 High 

20 Fog-4:10 1816 Low Cloud-4:10 4024 High 

21 Fog-5:5 1400 Low Cloud-5:5 1908 High 

22 Fog-5:10 2091 High Cloud-5:10 2686 High 

23 Fog-6:6 1648 High Cloud-6:6 6181 High 

24 Fog-6:10 1986 High Cloud-6:10 7403 High 

25 Fog-7:10 2229 High Cloud-7:10 10095 High 

26 Fog-8:10 2636 High Cloud-8:10 12508 High 

27 Fog-9:9 7315 High Cloud-9:9 10323 High 

28 Fog-10:5 2254 High Cloud-10:5 3373 High 

Table 4.7 shows specific ranges chosen to comprehensively understand each 

system's performance across varying operational scenarios. By distinguishing 

between lower and higher values, managing and optimizing the behaviours of the 

system becomes easier, ensuring they operate efficiently under different conditions. 

The "Low" range typically represents scenarios with minimal operational load, while 

the "High" range accounts for more intensive usage, allowing for tailored strategies 

to maintain optimal performance. 
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Table 4.7: Type of System (Fog or Cloud) and Average Execution Time  

Crosstabulation: Type of System (Fog or Cloud) and Average 

Execution Time  

Type 

 

Average Execution 

Time Total 

 High Low 

System 

(Fog or Cloud) 

Cloud-Based System 24 4 28 

Fog Based System 17 11 28 

Total 41 15 56 

 

Table 4.8 shows the approach for calculating the expected value from the row total 

of average execution time and column total of type of system (Fog or Cloud) also 

the total number of observations is 56. 

 Table 4.8: Expected Frequency 

Calculation of Expected Frequency 

Total Average 

Execution Time 

Total Type 

(Fog or Cloud) 

Expected 

Frequency 

Expected 

Frequency 

41 28 (41* 28) / 56 20.5 

15 28 (15* 28) / 56 7.5 

41 28 (41* 28) / 56 20.5 

15 28 (15* 28) / 56 7.5 

 

Table 4.9: 2 Calculation 

Observed and Expected Frequency for the calculation of 2 

Observed 

Frequency (OF) 

Expected 

Frequency (EF) 
(OF - EF)2 

(OF - EF)2 

/ EF 

24 20.5 12.25 0.5975 

4 7.5 12.25 1.6333 

17 20.5 12.25 0.5975 

11 7.5 12.5 1.6333 
  Total () 4.4616 

 

 

Degree of Freedom     = (r-1) * (c-1) 

     = (2-1) * (2-1) 

  = 1 

Table value @ 5% level of significance = 3.84 

Therefore, 
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The calculated value of Chi-Square is found to be 4.4616 

The tabulated value of Chi-Square is found to be 3.84 

Accordingly, table 4.9 represents the calculation of Chi-Square test value using the 

observed and expected frequencies. The results confirm that the calculated value of 

Chi-Square 4.4616 is greater than the tabulated value of 3.84 at a 5% level of 

significance. So, it is clear that the null hypothesis is rejected. 

It concludes that there is a significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure execution 

time. A notable contrast in performance, measured by execution time, emerged 

between the SMART FOG protocol-based and cloud-based systems. The findings 

reveal that the SMART FOG system exhibited superior performance with notably 

shorter execution times compared to its cloud-based counterpart. 

H02: There is a significant difference between SMART FOG protocol-based 

systems and cloud-based systems based on the performance measure latency. 

An alternative hypothesis is as follows  

Ha2: There is no significant difference between SMART FOG protocol-based 

system and cloud-based system based on the performance measure latency. 
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Figure 4.3: Fog Vs Cloud System Based on Latency 

Figure 4.2, shows a comparative analysis between Fog fog-based system and Cloud-

based system based on reduction in latency, as shown above, confirms that there is a 

large reduction in latency with use of Smart Fog based systems as compared to 

Cloud-based systems. In Fog system 10:5, 4:4, 2:5, 2:4, 2:3, 2:2, 1:5, 1:4, 1:3, 1:2, 

and 1:1 there is a large reduction in latency value such as 453. 523, 198.926, 

190.698, 198.131, 199.715, 201.366, 191.913, 197.730, 199.413, 201.161, and 

194.086 respectively. So, it is very clear that Fog layer plays an important role in 

latency reduction.  
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Table 4.10: Latency Reduced due to Fog Computing Environment 

 

Table 4.10, shows that Smart Fog system 10:5 which means 10 areas and 5 cameras 

takes a lower latency value of 218.62 as compared to the cloud system 10:5 with a 

latency value of 672.14.  The experimental outcomes are further represented or 

categorized into high and low as shown below in the crosstabulation table. 

Table 4.11 shows latency for the FOG SYSTEM is categorized into "Low" and 

"High" ranges, with the "Low" range including values from -5600.0000 to 1.0000 

and the "High" range covering values from 1.0001 to 2100.0000. Similarly, the 

CLOUD SYSTEM latency is divided into "Low" and "High" ranges, where the 

"Low" range spans from 1.0001 to 15000.0000, and the "High" range includes 

values from -55000 to 1.0000.  

System Latency (Fog) Latency (Cloud)

Latency Reduced Using 

Fog System

Fog/Cloud-1:1 16.414 210.499 194.086

Fog/Cloud-1:2 9.493 210.654 201.161

Fog/Cloud-1:3 11.278 210.692 199.413

Fog/Cloud-1:4 13.064 210.794 197.730

Fog/Cloud-1:5 18.946 210.859 191.913

Fog/Cloud-2:2 9.493 210.859 201.366

Fog/Cloud-2:3 11.278 210.993 199.715

Fog/Cloud-2:4 13.064 211.195 198.131

Fog/Cloud-2:5 20.707 211.405 190.698

Fog/Cloud-2:6 211.577 211.599 0.022

Fog/Cloud-2:7 211.787 211.857 0.070

Fog/Cloud-2:8 211.941 211.965 0.024

Fog/Cloud-2:9 212.107 212.184 0.077

Fog/Cloud-2:10 212.376 212.365 -0.011

Fog/Cloud-3:5 331.999 211.814 -120.186

Fog/Cloud-3:6 212.108 212.150 0.042

Fog/Cloud-3:10 366.026 365.965 -0.062

Fog/Cloud-4:4 13.064 211.990 198.926

Fog/Cloud-4:5 218.450 212.354 -6.096

Fog/Cloud-4:10 557.410 557.302 -0.108

Fog/Cloud-5:5 217.757 212.806 -4.952

Fog/Cloud-5:10 672.095 672.236 0.141

Fog/Cloud-6:6 493.522 493.557 0.035

Fog/Cloud-6:10 748.737 748.728 -0.008

Fog/Cloud-7:10 803.448 803.375 -0.073

Fog/Cloud-8:10 844.404 844.350 -0.054

Fog/Cloud-9:9 847.908 847.990 0.083

Fog/Cloud-10:5 218.625 672.148 453.523
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Table 4.11: Classification of Fog and Cloud for Latency 

Obs 
Fog 

System 
Latency Rank  

Cloud 

System 
Latency Rank  

1 Fog-1:1 16.41 Low Cloud-1:1 210.50 High 

2 Fog-1:2 9.49 Low Cloud-1:2 210.65 High 

3 Fog-1:3 11.28 Low Cloud-1:3 210.69 High 

4 Fog-1:4 13.06 Low Cloud-1:4 210.79 High 

5 Fog-1:5 18.95 Low Cloud-1:5 210.86 High 

6 Fog-2:2 9.49 Low Cloud-2:2 210.86 High 

7 Fog-2:3 11.28 Low Cloud-2:3 210.99 High 

8 Fog-2:4 13.06 Low Cloud-2:4 211.19 High 

9 Fog-2:5 20.71 Low Cloud-2:5 211.41 High 

10 Fog-2:6 211.58 High Cloud-2:6 211.60 High 

11 Fog-2:7 211.79 Low Cloud-2:7 211.86 High 

12 Fog-2:8 211.94 Low Cloud-2:8 211.97 High 

13 Fog-2:9 212.11 Low Cloud-2:9 212.18 High 

14 Fog-2:10 212.38 High Cloud-2:10 212.37 Low 

15 Fog-3:5 332.00 High Cloud-3:5 211.81 Low 

16 Fog-3:6 212.11 Low Cloud-3:6 212.15 High 

17 Fog-3:10 366.03 High Cloud-3:10 365.96 Low 

18 Fog-4:4 13.06 Low Cloud-4:4 211.99 High 

19 Fog-4:5 218.45 High Cloud-4:5 212.35 Low 

20 Fog-4:10 557.41 High Cloud-4:10 557.30 Low 

21 Fog-5:5 217.76 High Cloud-5:5 212.81 Low 

22 Fog-5:10 672.10 Low Cloud-5:10 672.24 High 

23 Fog-6:6 493.52 Low Cloud-6:6 493.56 High 

24 Fog-6:10 748.74 High Cloud-6:10 748.73 High 

25 Fog-7:10 803.45 High Cloud-7:10 803.37 Low 

26 Fog-8:10 844.40 High Cloud-8:10 844.35 Low 

27 Fog-9:9 847.91 Low Cloud-9:9 847.99 High 

28 Fog-10:5 218.62 Low Cloud-10:5 672.15 High 

 

Table 4.12 shows specific ranges are chosen to provide a comprehensive 

understanding of each system's performance across various latency conditions. By 

distinguishing between lower and higher latency values, it becomes easier to 

optimize the systems' behaviors, ensuring they operate efficiently under different 

scenarios. This categorization aids in tailoring strategies to maintain optimal 

performance by addressing minimal and intensive latency conditions separately. 
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Table 4.12: Type of System (Fog or Cloud) and Latency 

Crosstabulation: Type of System (Fog or Cloud) and Latency 

Type 
Latency 

Total 
High Low 

System 

(Fog or 

Cloud) 

Cloud-Based System 20 8 28 

Fog Based System 10 18 28 

Total 30 26 56 

 

Table 4.13 shows the approach for calculating the expected value from the row total 

of latency and column total type of system (Fog or Cloud) also the total number of 

observations is 56. 

 Table 4.13: Expected Frequency 

Calculation of Expected Frequency 

Total of 

Latency 

Total Type 

(Fog or Cloud) 

Expected 

Frequency 

Expected 

Frequency 

30 28 (30 * 28) / 56 15 

26 28 (26 * 28) / 56 13 

30 28 (30 * 28) / 56 15 

26 28 (26 * 28) / 56 13 

 

Table 4.14:2 Calculation 

Observed and Expected Frequency for the calculation of 2 

Observed 

Frequency (OF) 

Expected 

Frequency (EF) 
(OF - EF)2 

(OF - EF)2 / 

EF 

20 15 25 1.67 

8 13 25 1.92 

10 15 25 1.67 

18 13 25 1.92 
  Total () 7.18 

 

Degree of Freedom = (r-1) * (c-1) 

           = (2-1) * (2-1) 

                                 = 1 

Table value @ 5% level of significance = 3.841 

Therefore, 

The calculated value of Chi-Square is found to be 7.18. 

The tabulated value of Chi-Square is found to be 3.841. 
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Accordingly, table 4.14 represents the calculation of Chi-Square test value using the 

observed and expected frequencies. The results confirm that the calculated value of 

Chi-Square 7.18 is greater than the tabulated value of 3.841 at a 5% level of 

significance. So, it is clear that the null hypothesis is accepted. 

It concludes that there is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure latency. A 

notable contrast in performance, measured by latency, emerged between the 

SMART FOG protocol-based and cloud-based systems. The findings reveal that the 

SMART FOG system exhibited superior performance with notably shorter latency 

compared to its cloud-based counterpart. 

H03: There is no significant difference between SMART FOG protocol-based 

system and cloud-based system based on the performance measure energy 

consumed. 

An alternative hypothesis is as follows  

Ha3: There is significant difference between SMART FOG protocol-based system 

and cloud-based system based on the performance measure energy consumed. 



23 
 

 

Figure 4.4: Fog Vs Cloud System Based on Energy Consumption (Joules)

Figure 4.4, shows a comparative analysis between Fog fog-based system and Cloud-

based system based on reduction in energy consumption as shown below confirming 

that there is a large reduction in energy consumption with the use of a Smart Fog 

based system as compared to Cloud-based systems. In Fog system 10:5, 5:5, 4:5, 

4:4, 3:5, 2:5, 2:4, 2:3, 2:2, 1:5, 1:4, 1:3, 1:2, and 1:1 there is a large reduction in 

energy consumption such as 273694.729, 384391.984, 316112.779, 331766.905, 

211288.876, 177375.370, 137333.715, 96247.432, 129245.955, 96035.138, 

103230.811, 53272.127 and 36660.736 respectively.  
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Table 4.15: Energy Consumption Reduced due to Fog Computing Environment 

 

 

Table 4.15 shows that The Smart Fog system 10:5 which means 10 areas and 5 

cameras takes a lower energy consumption of 2903894.713 as compared to the cloud 

system 10:5 with an energy consumption of 3177589.443. The experimental 

outcomes are further represented or categorized into very high to very low as shown 

below in the crosstabulation table. 

Table 4.16 shows that energy consumption ranges for both FOG SYSTEM and 

CLOUD SYSTEM are tailored to categorize their respective usage levels 

effectively. FOG SYSTEM's categories range from "Very High" (below -1150.0000) 

for extremely low consumption to "Very Low" (400.0000 to 400000.0000) for 

higher usage scenarios. In contrast, CLOUD SYSTEM starts with "Very Low" 

(below -1550.0000) and goes up to "Very High" (400.0000 to 400000.0000). 

System

Energy Consumed 

(Fog)

Energy Consumed 

(Cloud)

Energy Consumption Reduced 

Using Fog

Fog/Cloud-1:1 2666906.9783 2703567.7143 36660.736

Fog/Cloud-1:2 2670956.3531 2724228.4804 53272.127

Fog/Cloud-1:3 2668402.4564 2771633.2679 103230.811

Fog/Cloud-1:4 2668904.0258 2764939.1634 96035.138

Fog/Cloud-1:5 2669934.3309 2799180.2862 129245.955

Fog/Cloud-2:2 2668603.1406 2764850.5729 96247.432

Fog/Cloud-2:3 2670441.5028 2807775.2177 137333.715

Fog/Cloud-2:4 2671749.8597 2849125.2299 177375.370

Fog/Cloud-2:5 2675762.8380 2887051.7140 211288.876

Fog/Cloud-2:6 2928104.6330 2926944.7498 -1159.883

Fog/Cloud-2:7 2969367.4582 2968703.5879 -663.870

Fog/Cloud-2:8 3009438.8046 3007902.8161 -1535.989

Fog/Cloud-2:9 3048411.7523 3048899.5858 487.834

Fog/Cloud-2:10 3089402.5999 3088658.5915 -744.008

Fog/Cloud-3:5 2677098.6434 2993796.5055 316697.862

Fog/Cloud-3:6 3049029.0903 3048668.7878 -360.303

Fog/Cloud-3:10 3178035.5090 3176881.5438 -1153.965

Fog/Cloud-4:4 2676983.1865 3008750.0915 331766.905

Fog/Cloud-4:5 2773838.5932 3089951.3720 316112.779

Fog/Cloud-4:10 3177518.9069 3177179.7693 -339.138

Fog/Cloud-5:5 2792816.8478 3177208.8314 384391.984

Fog/Cloud-5:10 3177556.9957 3177196.9814 -360.014

Fog/Cloud-6:6 3176917.6581 3177369.9354 452.277

Fog/Cloud-6:10 3177409.1509 3177226.8895 -182.261

Fog/Cloud-7:10 3177797.6631 3177507.3385 -290.325

Fog/Cloud-8:10 3177042.9305 3177065.2212 22.291

Fog/Cloud-9:9 3177160.0221 3177118.2621 -41.760

Fog/Cloud-10:5 2903894.7132 3177589.4426 273694.729
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Table 4.16: Classification of Fog and Cloud for Energy Consumption 

O

bs

. 

Fog 

System 

Energy 

Consum-

ption 

Rank 
Cloud 

System 

Energy 

Consum-

ption 

Rank 

1 Fog-1:1 2666906.98 Very Low Cloud-1:1 2703567.71 Very High 

2 Fog-1:2 2670956.35 Very Low Cloud-1:2 2724228.48 Very High 

3 Fog-1:3 2668402.46 Very Low Cloud-1:3 2771633.27 Very High 

4 Fog-1:4 2668904.03 Very Low Cloud-1:4 2764939.16 Very High 

5 Fog-1:5 2669934.33 Very Low Cloud-1:5 2799180.29 Very High 

6 Fog-2:2 2668603.14 Very Low Cloud-2:2 2764850.57 Very High 

7 Fog-2:3 2670441.50 Very Low Cloud-2:3 2807775.22 Very High 

8 Fog-2:4 2671749.86 Very Low Cloud-2:4 2849125.23 Very High 

9 Fog-2:5 2675762.84 Very Low Cloud-2:5 2887051.71 Very High 

10 Fog-2:6 2928104.63 High  Cloud-2:6 2926944.75 Low 

11 Fog-2:7 2969367.46 High  Cloud-2:7 2968703.59 Low 

12 Fog-2:8 3009438.80 Very High Cloud-2:8 3007902.82 Low 

13 Fog-2:9 3048411.75 Very Low Cloud-2:9 3048899.59 Very High 

14 Fog-2:10 3089402.60 High  Cloud-2:10 3088658.59 Low 

15 Fog-3:5 2677098.64 Very Low Cloud-3:5 2993796.51 Very High 

16 Fog-3:6 3049029.09 High  Cloud-3:6 3048668.79 Low 

17 Fog-3:10 3178035.51 High  Cloud-3:10 3176881.54 Low 

18 Fog-4:4 2676983.19 Very Low Cloud-4:4 3008750.09 Very High 

19 Fog-4:5 2773838.59 Very Low Cloud-4:5 3089951.37 Very High 

20 Fog-4:10 3177518.91 High  Cloud-4:10 3177179.77 Low 

21 Fog-5:5 2792816.85 Very Low Cloud-5:5 3177208.83 Very High 

22 Fog-5:10 3177557.00 High  Cloud-5:10 3177196.98 Low 

23 Fog-6:6 3176917.66 Very Low Cloud-6:6 3177369.94 Very High 

24 Fog-6:10 3177409.15 High  Cloud-6:10 3177226.89 Low 

25 Fog-7:10 3177797.66 High  Cloud-7:10 3177507.34 Low 

26 Fog-8:10 3177042.93 Low Cloud-8:10 3177065.22 High  

27 Fog-9:9 3177160.02 High  Cloud-9:9 3177118.26 Low 

28 Fog-10:5 2903894.71 Very Low Cloud-10:5 3177589.44 Very High 

 

Table 4.17 shows, specific ranges are chosen to provide a comprehensive 

understanding of each system's performance across various Energy Consumption 

conditions. By distinguishing between Very Low, Low, High, Very High values, it 

becomes easier to optimize the systems' behaviors, ensuring they operate efficiently 

under different scenarios. 
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Table 4.17: Type of System (Fog or Cloud) and Energy Consumption 

Crosstabulation: Type of System (Fog or Cloud) and Energy 

Consumption 

Count 

Type 

 

Energy Consumption 

Total 

 

Very 

Low Low High 

Very 

High 

System (Fog or 

Cloud) 

Cloud 0 11 1 16 28 

Fog 16 1 10 1 28 

Total 16 12 11 17 56 

 

Table 4.18, shows the approach for calculating the expected Frequency value from 

the row total of energy consumption and column total of type of system (Fog or 

Cloud) also the total number of observations is 56. 

 Table 4.18: Expected Frequency 

Calculation of Expected Frequency  

Total of Energy 

Consumption 

Total Type 

(Fog or Cloud) 

Expected 

Frequency  

Expected 

Frequency 

16 28 (16 * 28) / 56 8.0 

12 28 (12 * 28) / 56 6.0 

11 28 (11 * 28) / 56 5.5 

17 28 (17 * 28) / 56 8.5 

16 28 (16 * 28) / 56 8.0 

12 28 (12 * 28) / 56 6.0 

11 28 (11 * 28) / 56 5.5 

17 28 (17 * 28) / 56 8.5 

Table 4.19: 2 Calculation 

Observed and Expected Frequency for the calculation of 2 

Observed 

Frequency (OF) 

Expected 

Frequency (EF) 
(OF - EF)2 

(OF - EF)2 

/ EF 

0 8.0 64.00 8.00 

11 6.0 25.00 4.17 

1 5.5 20.25 3.68 

16 8.5 56.25 6.62 

16 8.0 64.00 8.00 

1 6.0 25.00 4.17 

10 5.5 20.25 3.68 

1 8.5 56.25 6.62 

  Total () 44.93 
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Degree of Freedom =(r-1) * (c-1) 

          = (2-1) * (4-1) 

                                = 3 

Table value @ 5% level of significance = 7.81 

Therefore, 

The calculated value of Chi-Square is found to be 44.93 

The tabulated value of Chi-Square is found to be 7.81 

Accordingly, table 4.19 represents the calculation of Chi-Square test value using the 

observed and expected frequencies. The results confirm that the calculated value of 

Chi-Square 44.93 is much greater than the tabulated value of 7.81 at a 5% level of 

significance. So, it is clear that the null hypothesis is rejected. 

It concludes that there is significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure energy 

consumed. A notable contrast in performance, measured by energy consumption, 

emerged between the SMART FOG protocol-based and cloud-based systems. The 

findings reveal that the SMART FOG system exhibited superior performance with 

notably lower energy consumption as compared to its cloud-based counterpart. 

H04: There is significant difference between SMART FOG protocol-based system 

and cloud-based system based on the performance measure cost of execution. 

An alternative hypothesis is as follows  

Ha4: There is no significant difference between SMART FOG protocol-based 

system and cloud-based system based on the performance measure cost of 

execution. 
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Figure 4.5: Fog Vs Cloud System Based on Cost of Execution (ms) 

Figure 4.5, shows comparative analysis between Fog based system and Cloud based 

system based on a reduction in cost of execution as shown below confirms that there 

is a large reduction in cost of execution with the use of a Smart fog-based system as 

compared to Cloud-based systems.  
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Table 4.20: Cost of Execution Reduced due to Fog Computing Environment 

 

Table 4.20 shows Fog system 10:5, 6:10, 5:5, 4:5, 4:4, 3:10, 3:5, 2:9, 2:8, 2:6, 2:5, 

2:4, 2:3, 2:2, 1:5, 1:4, 1:3,1:2 and 1:1 there is large reduction in cost of execution 

such as 288022.9075, 99741, 60402, 544960.7869, 448159.0806, 98363.99866, 

448989.3741, 500691.6121, 98355.60871, 399548.7862, 251468.8792, 

194700.9629, 136452.056, 183234.7721, 183234.7721, 136151.0813, 146352.5429, 

75525.04129 and 51974.7142 respectively. The Smart Fog system 10:5 which 

means 10 areas and 5 cameras takes a lower cost of execution of 340103.8971 as 

compared to the cloud system 10:5 with a cost of execution of 628126.8047. The 

experimental outcomes are further represented or categorized into very high to very 

low as shown below in the crosstabulation table. 

Table 4.21 shows the FOG SYSTEM's "Very High" (below -950.0000) indicates 

exceptionally low costs due to optimized processes. "High" (-950.0001 to 30.0000) 

System Cost of execution (Fog)

Cost of execution 

(Cloud)

Cost of execution Reduced Using 

Fog System

Fog/Cloud-1:1 4121.285714 56096 51974.71429

Fog/Cloud-1:2 9862.171429 85387.21272 75525.04129

Fog/Cloud-1:3 6241.457143 152594 146352.5429

Fog/Cloud-1:4 6952.542857 143103.6241 136151.0813

Fog/Cloud-1:5 8413.228571 191648.0007 183234.7721

Fog/Cloud-2:2 6525.971429 142978.0275 136452.056

Fog/Cloud-2:3 9132.257143 203833.2201 194700.9629

Fog/Cloud-2:4 10987.14286 262456.0221 251468.8792

Fog/Cloud-2:5 16676.42857 416225.2147 399548.7862

Fog/Cloud-2:6 374426.8214 472782.4301 98355.60871

Fog/Cloud-2:7 432926.0167 431984.8335 -941.1832586

Fog/Cloud-2:8 469736.0268 487558.4228 17822.39598

Fog/Cloud-2:9 44988.81339 545680.4254 500691.6121

Fog/Cloud-2:10 603102.4201 602047.6234 -1054.796652

Fog/Cloud-3:5 18570.22857 467559.6027 448989.3741

Fog/Cloud-3:6 545864.0268 545353.2181 -510.8087055

Fog/Cloud-3:10 728759.2027 827123.2013 98363.99866

Fog/Cloud-4:4 18406.54286 488759.6234 470353.0806

Fog/Cloud-4:5 155720.5371 603880.4261 448159.889

Fog/Cloud-4:10 728026.8047 727546.002 -480.8026788

Fog/Cloud-5:5 182626.4171 727587.204 544960.7869

Fog/Cloud-5:10 728080.804 727570.404 -510.3999999

Fog/Cloud-6:6 727174.4013 727815.6047 641.2033483

Fog/Cloud-6:10 727871.2013 827612.8054 99741.60402

Fog/Cloud-7:10 728422.0033 728010.404 -411.5993303

Fog/Cloud-8:10 727352.0027 727383.6047 31.60200911

Fog/Cloud-9:9 727518.006 727458.802 -59.20401781

Fog/Cloud-10:5 340103.8971 628126.8047 288022.9075
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suggests moderate expenses with efficient operations, while "Low" (30.0001 to 

90000.0000) represents typical costs within budget. "Very Low" (90001.0000 to 

600000.0000) signifies higher expenses possibly from less optimized setups.  

For the CLOUD SYSTEM, "Very Low" (below -950.0000) and "Low" (-950.0001 

to 31.0000) denote economical costs and efficient management. "High" (31.0001 to 

100000.0000) reflects standard expenses akin to FOG SYSTEM's "Low" range, 

while "Very High" (100000.0001 to 600000.0000) indicates higher costs due to 

complex tasks.  

Table 4.21: Classification of Fog and Cloud for Execution 

Obs. 
Fog 

System 

Cost of 

Execution 

Classi- 

fication 

Cloud 

System 

Cost of 

Execution 
Rank  

1 Fog-1:1 4121.29 Low Cloud-1:1 56096.00 High     

2 Fog-1:2 9862.17 Low Cloud-1:2 85387.21 High     

3 Fog-1:3 6241.46 Very Low Cloud-1:3 152594.00 Very High     

4 Fog-1:4 6952.54 Very Low Cloud-1:4 143103.62 Very High     

5 Fog-1:5 8413.23 Very Low Cloud-1:5 191648.00 Very High     

6 Fog-2:2 6525.97 Very Low Cloud-2:2 142978.03 Very High     

7 Fog-2:3 9132.26 Very Low Cloud-2:3 203833.22 Very High     

8 Fog-2:4 10987.14 Very Low Cloud-2:4 262456.02 Very High     

9 Fog-2:5 16676.43 Very Low Cloud-2:5 416225.21 Very High     

10 Fog-2:6 374426.82 Very Low Cloud-2:6 472782.43 Very High     

11 Fog-2:7 432926.02 High Cloud-2:7 431984.83 Low 

12 Fog-2:8 469736.03 Low Cloud-2:8 487558.42 High     

13 Fog-2:9 44988.81 Very Low Cloud-2:9 545680.43 Very High     

14 Fog-2:10 603102.42 Very High Cloud-2:10 602047.62 Very Low 

15 Fog-3:5 18570.23 Very Low Cloud-3:5 467559.60 Very High     

16 Fog-3:6 545864.03 High Cloud-3:6 545353.22 Low 

17 Fog-3:10 728759.20 Very Low Cloud-3:10 827123.20 Very High     

18 Fog-4:4 18406.54 Very Low Cloud-4:4 488759.62 Very High     

19 Fog-4:5 155720.54 Very Low Cloud-4:5 603880.43 Very High     

20 Fog-4:10 728026.80 High Cloud-4:10 727546.00 Low 

21 Fog-5:5 182626.42 Very Low Cloud-5:5 727587.20 Very High     

22 Fog-5:10 728080.80 High Cloud-5:10 727570.40 Low 

23 Fog-6:6 727174.40 Low Cloud-6:6 727815.60 High     

24 Fog-6:10 727871.20 Very Low Cloud-6:10 827612.81 Very High     

25 Fog-7:10 728422.00 High Cloud-7:10 728010.40 Low 

26 Fog-8:10 727352.00 Low Cloud-8:10 727383.60 High     

27 Fog-9:9 727518.01 High Cloud-9:9 727458.80 Low 

28 Fog-10:5 340103.90 Very Low Cloud-10:5 628126.80 Very High     
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Table 4.22 These classifications help ranges guide cost-effective strategies and 

resource allocation cost of execution based on operational needs. specific ranges are 

chosen to provide a comprehensive understanding of each system's performance 

across various Energy Consumption conditions. By distinguishing between Very 

Low, Low, High, Very High values, it becomes easier to optimize the systems' 

behaviors, ensuring they operate efficiently under different scenarios. 

Table 4.22: Type of System (Fog or Cloud) and Cost of Execution 

Crosstabulation: Type of System (Fog or Cloud) and 

Cost of Execution 

Count 

Type 

 

Cost of Execution 
Total 

 
Very 

Low 
Low High 

Very 

High 

System (Fog 

or Cloud) 

Cloud 1 6 5 16 28 

Fog 16 5 6 1 28 

Total 17 11 11 17 56 

 

Table 4.23 shows the approach for calculating the expected value from the row total 

of cost of execution and column total of type of system (Fog or Cloud) also the total 

number of observations is 56. 

 Table 4.23: Expected Frequency 

Calculation of Expected Frequency  

Total Cost of 

Execution 

Total Type 

(Fog or Cloud) 

Expected 

Frequency 

Expected 

Frequency 

17 28 (17 * 28) / 56 8.5 

11 28 (11 * 28) / 56 5.5 

11 28 (11 * 28) / 56 5.5 

17 28 (17 * 28) / 56 8.5 

17 28 (17 * 28) / 56 8.5 

11 28 (11 * 28) / 56 5.5 

11 28 (11 * 28) / 56 5.5 

17 28 (17 * 28) / 56 8.5 
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Table 4.24: 2 Calculation 

Observed and Expected Frequency for the calculation of 2 

Observed 

Frequency (OF) 

Expected 

Frequency (EF) 
(OF - EF)2 

(OF - EF)2 / 

EF 

1 8.5 56.25 6.62 

6 5.5 00.25 0.05 

5 5.5 00.25 0.05 

16 8.5 56.25 6.62 

16 8.5 56.25 6.62 

5 5.5 00.25 0.05 

6 5.5 00.25 0.05 

1 8.5 56.25 6.62 

  Total () 26.65 
 

Degree of Freedom = (r-1) * (c-1) 

            = (2-1) * (4-1) 

                                  = 3 

Table value @ 5% level of significance = 7.81 

Therefore, 

The calculated value of Chi-Square is found to be 26.65 

The tabulated value of Chi-Square is found to be 7.81 

Accordingly, table 4.24 represents the calculation of the Chi-Square test value using 

the observed and expected frequencies. The results confirm that the calculated value 

of Chi-Square 26.65 is greater than the tabulated value of 7.81 at a 5% level of 

significance. So, it is clear that the null hypothesis is accepted. 

It concludes that there is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure cost of 

execution. A notable contrast in performance, measured by cost of execution, 

emerged between the SMART FOG protocol-based and cloud-based systems. The 

findings reveal that the SMART FOG system exhibited superior performance with a 

notably lower cost of execution as compared to its cloud-based counterpart. 
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H05: There is no significant difference between SMART FOG protocol-based 

system and cloud-based system based on the performance measure of total network 

usage. 

An alternative hypothesis is as follows  

Ha5: There is a significant difference between SMART FOG protocol-based system 

and cloud-based system based on the performance measure of total network usage. 

 

 

Figure 4.6: Fog Vs Cloud System Based on Total Network Usage (B/s) 

Figure 4.6, shows that comparative analysis between Fog-based system and Cloud 

based system based on reduction in total network usage as shown confirms that there 

is large reduction in total network usage with use of Smart Fog based system as 

compared to Cloud-based systems.  
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Table 4.25: Total Network Usage Reduced due to Fog Computing Environment 

 

 

Table 4.25 Total Network Usage Reduced due to Fog Computing Environment Fog 

system10:5, 9:9, 8:10, 5:5, 4:10, 4:5, 4:4, 3:10, 3:5, 2:8, 2:7, 2:5, 2:4, 2:3, 2:2, 1:5, 

1:4, 1:3, 1:2 and 1:1 there is large reduction in total network usage such as 813124, 

100000, 100000, 889585, 100000, 717690, 600582.6, 100000, 560311.2, 200000, 

100000, 376389.8, 300487.8, 226130, 151466.2, 187988.4, 150136.4, 112806.6, 

75270.6, and 38142.7 respectively.  

The Smart Fog system 10:5 which means 10 number of areas and 5 cameras reduces 

total network usage of 233479 as compared to the cloud system 10:5 with high total 

System

Total network 

usage (Fog)

Total network usage 

(Cloud)

Reduction in Total 

Network Usage 

Using Fog System

Fog/Cloud-1:1 2309.9 40452.6 38142.7

Fog/Cloud-1:2 5537.8 80808.4 75270.6

Fog/Cloud-1:3 8357.7 121164.2 112806.5

Fog/Cloud-1:4 11383.6 161520 150136.4

Fog/Cloud-1:5 13887.4 201875.8 187988.4

Fog/Cloud-2:2 10055.6 161521.8 151466.2

Fog/Cloud-2:3 16103.4 242233.4 226130

Fog/Cloud-2:4 22457.2 322945 300487.8

Fog/Cloud-2:5 27266.8 403656.6 376389.8

Fog/Cloud-2:6 484368.2 484368.2 0

Fog/Cloud-2:7 464879.8 564879.8 100000

Fog/Cloud-2:8 545391.4 745391.4 200000

Fog/Cloud-2:9 725903 725903 0

Fog/Cloud-2:10 806414.6 806414.6 0

Fog/Cloud-3:5 44826.2 605137.4 560311.2

Fog/Cloud-3:6 725904.8 725904.8 0

Fog/Cloud-3:10 1015474.4 1115474.4 100000

Fog/Cloud-4:4 44812.4 645395 600582.6

Fog/Cloud-4:5 88728.2 806418.2 717690

Fog/Cloud-4:10 1031034.2 1131034.2 100000

Fog/Cloud-5:5 118114 1007699 889585

Fog/Cloud-5:10 1046594 1046594 0

Fog/Cloud-6:6 1024814.6 1024814.6 0

Fog/Cloud-6:10 1062153.8 1062153.8 0

Fog/Cloud-7:10 1077713.6 1077713.6 0

Fog/Cloud-8:10 1093273.4 1193273.4 100000

Fog/Cloud-9:9 994831 1094831 100000

Fog/Cloud-10:5 233479 1046603 813124
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network usage of 1046603. The experimental outcomes are further represented or 

categorized into very high to very low as shown below in the crosstabulation table.  

Table 4.26 shows the network usage ranges for both FOG SYSTEM and CLOUD 

SYSTEM effectively categorize their activity levels. In FOG SYSTEM, "No 

Change" denotes 0 usage, typical during idle periods. "Low" (38000.0001 to 

150000.0000) indicates moderate usage for regular data exchanges. "Very Low" 

(150000.0001 to 900000.0000) suggests increased activity, possibly due to extensive 

data processing. "High" (900000.0001 to 1000000.0000) represents intensified data 

transfer or operational demands. "Very High" (above 1000000.0000) indicates 

extensive network activity or intensive data processing.  

 

Similarly, in CLOUD SYSTEM, "No Change" signifies 0 usage, "High" 

(38000.0001 to 150000.0000) denotes typical activity levels, "Very High" 

(150000.0001 to 900000.0000) indicates significant traffic, "Low" (900000.0001 to 

1000000.0000) suggests reduced activity, and "Very Low" (above 1000000.0000) 

signifies minimal network use or efficient management. 
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Table 4.26: Classification of Fog and Cloud for Total Network Usage 

Obs 
Fog 

System 

Total 

Network 

Usage 

Rank 
Cloud 

System 

Total 

Network 

Usage 

Rank 

1 Fog-1:1 2309.90 Low Cloud-1:1 40452.60 High 

2 Fog-1:2 5537.80 Low Cloud-1:2 80808.40 High 

3 Fog-1:3 8357.70 Low Cloud-1:3 121164.20 High 

4 Fog-1:4 11383.60 Very Low Cloud-1:4 161520.00 Very High 

5 Fog-1:5 13887.40 Very Low Cloud-1:5 201875.80 Very High 

6 Fog-2:2 10055.60 Very Low Cloud-2:2 161521.80 Very High 

7 Fog-2:3 16103.40 Very Low Cloud-2:3 242233.40 Very High 

8 Fog-2:4 22457.20 Very Low Cloud-2:4 322945.00 Very High 

9 Fog-2:5 27266.80 Very Low Cloud-2:5 403656.60 Very High 

10 Fog-2:6 484368.20 No Change Cloud-2:6 484368.20 No Change 

11 Fog-2:7 464879.80 Low Cloud-2:7 564879.80 High 

12 Fog-2:8 545391.40 Very Low Cloud-2:8 745391.40 Very High 

13 Fog-2:9 725903.00 No Change Cloud-2:9 725903.00 No Change 

14 Fog-2:10 806414.60 No Change Cloud-2:10 806414.60 No Change 

15 Fog-3:5 44826.20 Very Low Cloud-3:5 605137.40 Very High 

16 Fog-3:6 725904.80 No Change Cloud-3:6 725904.80 No Change 

17 Fog-3:10 1015474.40 Low Cloud-3:10 1115474.40 High 

18 Fog-4:4 44812.40 Very Low Cloud-4:4 645395.00 Very High 

19 Fog-4:5 88728.20 Very Low Cloud-4:5 806418.20 Very High 

20 Fog-4:10 1031034.20 Low Cloud-4:10 1131034.20 High 

21 Fog-5:5 118114.00 Very Low Cloud-5:5 1007699.00 Very High 

22 Fog-5:10 1046594.00 No Change Cloud-5:10 1046594.00 No Change 

23 Fog-6:6 1024814.60 No Change Cloud-6:6 1024814.60 No Change 

24 Fog-6:10 1062153.80 No Change Cloud-6:10 1062153.80 No Change 

25 Fog-7:10 1077713.60 No Change Cloud-7:10 1077713.60 No Change 

26 Fog-8:10 1093273.40 Low Cloud-8:10 1193273.40 High 

27 Fog-9:9 994831.00 Low Cloud-9:9 1094831.00 High 

28 Fog-10:5 233479.00 Very Low Cloud-10:5 1046603.00 Very High 

 

Table 4.27 These classifications help ranges guide cost-effective strategies and 

resource allocation cost of execution based on Total Network Usage. specific ranges 

are chosen to provide a comprehensive understanding of each system's performance 

across various Energy Consumption conditions. By distinguishing between Very 

Low, Low, High, Very High values, it becomes easier to optimize the systems' 

behaviors, ensuring they operate efficiently under different scenarios. 
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Table 4.27: Type of System (Fog or Cloud) and Total Network Usage 

Crosstabulation: Type of System (Fog or Cloud) and Total Network Usage 

Count 

Type 

Total Network Usage 

Total Very 

Low 
Low 

No 

Change 
High 

Very 

High 

System (Fog or 

Cloud) 

Cloud 0 0 8 8 12 28 

Fog 12 8 8 0 0 28 

Total 12 8 16 8 12 56 

 

Table 4.28 shows the approach for calculating the expected value from the row total 

of total network usage and column total of type of system (Fog or Cloud) also the 

total number of observations is 56. 

 Table 4.28: Expected Frequency 

Calculation of Expected Frequency 

Total Network 

Usage 

Total Type 

(Fog or Cloud) 

Expected 

Frequency 

Expected 

Frequency 

12 28 (12 * 28) / 56 6 

8 28 (8 *28) / 56 4 

16 28 (16 * 28) / 56 8 

8 28 (8 * 28) / 56 4 

12 28 (12 * 28) / 56 6 

12 28 (12 * 28) / 56 6 

8 28 (8 * 28) / 56 4 

16 28 (16 * 28) / 56 8 

8 28 (8 * 28) / 56 4 

12 28 (12 * 28) / 56 6 

 

Table 4.29: 2 Calculation 

Observed and Expected Frequency for the calculation of 2 
Observed 

Frequency (OF) 
Expected 

Frequency (EF) 
(OF - EF)2 

(OF - EF)2 / 

EF 

0 6 36 6.00 

0 4 16 4.00 

8 8 0 0.00 

8 4 16 4.00 

12 6 36 6.00 

12 6 36 6.00 

8 4 16 4.00 

8 8 0 0.00 

0 4 16 4.00 

0 6 36 6.00 

    Total () 30.00 
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Degree of Freedom = (r-1) * (c-1) 

           = (2-1) * (5-1) 

                                 = 4 

Table value @ 5% level of significance = 9.49 

Therefore, 

The calculated value of Chi-Square is found to be 30.00. 

The tabulated value of Chi-Square is found to be 9.49 

Accordingly, table 4.29 represents the calculation of the Chi-Square test value using 

the observed and expected frequencies. The results confirm that the calculated value 

of Chi-Square 30 is much greater than the tabulated value of 9.49 at a 5% level of 

significance. So, it is clear that the null hypothesis is rejected. 

It concludes that there is a significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure of total 

network usage. A notable contrast in performance, measured by total network usage, 

emerged between the SMART FOG protocol-based and cloud-based systems. The 

findings reveal that the SMART FOG system exhibited superior performance with 

notably lower total network usage as compared to its cloud-based counterpart. 

H06: There is a significant difference between SMART FOG protocol-based system 

and cloud-based system based on the performance measure computational power 

consumed. 

An alternative hypothesis is as follows  

Ha6: There is no significant difference between SMART FOG protocol-based 

system and cloud-based system based on the performance measure computational 

power consumed. 

The comparative analysis between Fog based system and Cloud based system based 

on a reduction in computational power consumed as shown below confirms that 

there is large reduction in computational power consumed with use of Smart Fog 

based system as compared to cloud-based systems.  
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Figure 4.7: Fog Vs Cloud System Based on Computational Power (W) 

 

Figure 4.7, shows there is a large reduction in computational power consumed in all 

cases for Fog system as compared to cloud-based system so based on the results it 

can be concluded that there is a significant difference between SMART FOG 

protocol-based system and cloud-based system based on the performance measure 

computational power consumed by Fog devices in comparison to Cloud devices. 
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Table 4.30: Computational Power Reduced due to Fog Computing Environment 

 

Figure 4.30 shows that The Smart Fog system 10:5 which means 10 areas and 5 

cameras reduces computational power of 198917.0991 as compared to the cloud 

system 10:5 with a high computational power of 251982.8428. The experimental 

outcomes are further represented or categorized into very high to very low as shown 

below in the crosstabulation table.  

 

 

 

System Devices

Computational Power 

Consumed (Cloud)

Computational Power 

Consumed (Fog)

Reduction in 

Computational Power by 

Fog  

Fog/Cloud-1:1 214499.73 166866.599 47633.131

Fog/Cloud-1:2 216031.3185 170536.7029 45494.61562

Fog/Cloud-1:3 219790.5181 166867.599 52922.91914

Fog/Cloud-1:4 219259.6757 173085.1916 46174.48403

Fog/Cloud-1:5 221974.9967 166868.599 55106.39769

Fog/Cloud-2:2 219252.6504 173079.6459 46173.00457

Fog/Cloud-2:3 222656.5748 166869.599 55786.97577

Fog/Cloud-2:4 225935.6307 178355.2394 47580.39134

Fog/Cloud-2:5 228943.2009 166870.599 62072.60192

Fog/Cloud-2:6 232106.7187 183226.7413 48879.97732

Fog/Cloud-2:7 235418.1945 166871.599 68546.59552

Fog/Cloud-2:8 238526.6933 188294.7163 50231.97703

Fog/Cloud-2:9 241777.7372 166872.599 74905.13815

Fog/Cloud-2:10 244930.6263 193350.0278 51580.59848

Fog/Cloud-3:5 237408.0629 166873.599 70534.46388

Fog/Cloud-3:6 241759.4349 190846.6661 50912.76876

Fog/Cloud-3:10 251926.7064 166874.599 85052.10742

Fog/Cloud-4:4 238593.8823 188347.7557 50246.12653

Fog/Cloud-4:5 245033.1438 166875.599 78157.5448

Fog/Cloud-4:10 251950.3557 198891.4536 53058.90215

Fog/Cloud-5:5 251952.6603 166876.599 85076.06133

Fog/Cloud-5:10 251951.7206 198892.531 53059.18959

Fog/Cloud-6:6 251965.4359 166877.599 85087.83688

Fog/Cloud-6:10 251954.0923 198894.4033 53059.68905

Fog/Cloud-7:10 251976.3319 166878.599 85097.73295

Fog/Cloud-8:10 251941.272 198884.2828 53056.98919

Fog/Cloud-9:9 251945.4782 166879.599 85065.87919

Fog/Cloud-10:5 251982.8428 198917.0991 53065.74369
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Table 4.31 shows that the computational power consumed ranges for both FOG 

SYSTEM and CLOUD SYSTEM effectively categorize their operational intensity. In 

FOG SYSTEM, "Low" (45000.0000 to 48000.0000) signifies modest computational 

demands, likely involving basic processing tasks. "Very Low" (48000.0001 to 

86000.0000) indicates slightly higher power consumption, potentially due to more 

complex computations or increased workload. Moving to "High" (86000.0001 to 

100000.0000), it denotes significant computational power usage, indicative of 

intensive processing requirements or larger-scale operations. "Very High" (above 

100000.0000) suggests extensive power consumption, possibly involving complex 

simulations or heavy data analytics.  

Similarly, in CLOUD SYSTEM, "High" (45000.0000 to 48000.0000) and "Very 

High" (48000.0001 to 86000.0000) reflect varying degrees of computational intensity. 

"Low" (86000.0001 to 100000.0000) suggests reduced demands, while "Very Low" 

(above 100000.0000) indicates minimal power usage or highly efficient 

computational management.  
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Table 4.31: Classification of Fog and Cloud for Computational Power 

Obs. 
Fog 

System 

Compu-

tational 

Power 

Rank 
Cloud 

System 

Compu-

tational 

Power 

Rank 

1 Fog-1:1 166866.60 Low  Cloud-1:1 214499.73 High 

2 Fog-1:2 170536.70 Low  Cloud-1:2 216031.32 High 

3 Fog-1:3 166867.60 Very Low Cloud-1:3 219790.52 Very High 

4 Fog-1:4 173085.19 Low  Cloud-1:4 219259.68 High 

5 Fog-1:5 166868.60 Very Low Cloud-1:5 221975.00 Very High 

6 Fog-2:2 173079.65 Low  Cloud-2:2 219252.65 High 

7 Fog-2:3 166869.60 Very Low Cloud-2:3 222656.57 Very High 

8 Fog-2:4 178355.24 Low  Cloud-2:4 225935.63 High 

9 Fog-2:5 166870.60 Very Low Cloud-2:5 228943.20 Very High 

10 Fog-2:6 183226.74 Very Low Cloud-2:6 232106.72 Very High 

11 Fog-2:7 166871.60 Very Low Cloud-2:7 235418.19 Very High 

12 Fog-2:8 188294.72 Very Low Cloud-2:8 238526.69 Very High 

13 Fog-2:9 166872.60 Very Low Cloud-2:9 241777.74 Very High 

14 Fog-2:10 193350.03 Very Low Cloud-2:10 244930.63 Very High 

15 Fog-3:5 166873.60 Very Low Cloud-3:5 237408.06 Very High 

16 Fog-3:6 190846.67 Very Low Cloud-3:6 241759.43 Very High 

17 Fog-3:10 166874.60 Very Low Cloud-3:10 251926.71 Very High 

18 Fog-4:4 188347.76 Very Low Cloud-4:4 238593.88 Very High 

19 Fog-4:5 166875.60 Very Low Cloud-4:5 245033.14 Very High 

20 Fog-4:10 198891.45 Very Low Cloud-4:10 251950.36 Very High 

21 Fog-5:5 166876.60 Very Low Cloud-5:5 251952.66 Very High 

22 Fog-5:10 198892.53 Very Low Cloud-5:10 251951.72 Very High 

23 Fog-6:6 166877.60 Very Low Cloud-6:6 251965.44 Very High 

24 Fog-6:10 198894.40 Very Low Cloud-6:10 251954.09 Very High 

25 Fog-7:10 166878.60 Very Low Cloud-7:10 251976.33 Very High 

26 Fog-8:10 198884.28 Very Low Cloud-8:10 251941.27 Very High 

27 Fog-9:9 166879.60 Very Low Cloud-9:9 251945.48 Very High 

28 Fog-10:5 198917.10 Very Low Cloud-10:5 251982.84 Very High 

 

Table 4.32 These classifications help ranges guide cost-effective strategies and 

resource allocation cost of execution based on Computational Power. specific ranges 

are chosen to provide a comprehensive understanding of each system's performance 

across various Energy Consumption conditions. By distinguishing between Very 

Low, Low, High, Very High values, it becomes easier to optimize the systems' 

behaviors, ensuring they operate efficiently under different scenarios. 
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Table 4.32: Type of System (Fog or Cloud) and Computational Power 

Type of System (Fog or Cloud) and Computational Power 

Crosstabulation 

Count 

Type 

Computational Power 

Total Very 

Low 
Low High 

Very 

High 

System (Fog 

or Cloud) 

Cloud 0 0 5 23 28 

Fog 23 5 0 0 28 

Total 23 5 5 23 56 

 

Table 4.33 shows the approach for calculating the expected value from the row total 

of computational power and column total of type of system (Fog or Cloud) also the 

total number of observations is 56. 

 Table 4.33: Expected Frequency 

Calculation of Expected Frequency 

Total of Total 

Computational 

Power 

Total Type 

(Fog or 

Cloud) 

Expected 

Frequency 

Expected 

Frequency 

23 28 (23 * 28) / 56 11.50 

5 28 (5 * 28) / 56 02.50 

5 28 (5 * 28) / 56 02.50 

23 28 (23 * 28) / 56 11.50 

23 28 (23 * 28) / 56 11.50 

5 28 (5 * 28) / 56 02.50 

5 28 (5 * 28) / 56 02.50 

23 28 (23 * 28) / 56 11.50 

 

Table 4.34: 2 Calculation 

Observed and Expected Frequency for the calculation of 2 
Observed 

Frequency (OF) 
Expected 

Frequency (EF) 
(OF - EF)2 

(OF - EF)2 

/ EF 

0 11.5 132.25 11.50 

0 2.5 6.25  02.50 

5 2.5 6.25  02.50 

23 11.5 132.25 11.50 

23 11.5 132.25 11.50 

5 2.5 6.25  02.50 

0 2.5 6.25  02.50 

0 11.5 132.25 11.50 

    Total () 56.00 
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Degree of Freedom =(r-1) * (c-1) 

          = (2-1) * (4-1) 

                                = 3 

Table value @ 5% level of significance = 7.81 

Therefore, 

The calculated value of Chi-Square is found to be 56.00 

The tabulated value of Chi-Square is found to be 7.81 

Accordingly, table 4.34 represents the calculation of Chi-Square test value using the 

observed and expected frequencies. The results confirm that the calculated value of 

Chi-Square 56 is greater than the tabulated value of 7.81 at a 5% level of significance. 

So, it is clear that the null hypothesis is accepted. 

This concludes that there is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure 

computational power. A notable contrast in performance, measured by computational 

power, emerged between the SMART FOG protocol-based and cloud-based systems. 

The findings reveal that the SMART FOG system exhibited superior performance 

with notably lower computational power as compared to its cloud-based counterpart. 

4.5 Multiple Regression Model 

To find the association between energy consumed and several devices, execution 

time, average loop delay, CPU27 delay, latency, cost execution, and total network 

usage multiple regression analysis is being conducted the results of the analysis are 

shown below in the tables. 

The descriptive analysis is shown below in the table 

Table 4.35 shows that the dataset constructed from experimental values encompasses 

comprehensive metrics across fog and cloud computing environments. It includes data 

points for latency, execution time, energy consumption, power consumption, cost of 

execution, and total network usage. Each metric is recorded under varying 

experimental conditions, such as different numbers of tasks and nodes. The dataset is 

 
27 Central Processing Unit 
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designed to facilitate thorough analysis and evaluation of system performance and 

resource utilization in both fog and cloud computing scenarios. Utilizing 10-fold 

cross-validation ensures rigorous testing and validation of models trained on this 

dataset, enhancing reliability and robustness in assessing the effectiveness of 

computational frameworks in real-world applications. Descriptive and multiple 

regression analyses conducted using Excel provide valuable insights into relationships 

between variables in the dataset.  

Table 4.35: Descriptive Summary of Various Measures 

Descriptive Statistics 

 Mean Std. Deviation N 

Energy Consumed 2906053.09 220658.21 28 

No. of Areas 3.57 00002.54 28 

Number of Cameras Per Area 6.21 00002.89 28 

Execution Time 2686.17 5335.31 28 

Average Loop Delay:  

Motion Object Detector 

 

197.06 

 

0255.13 

 

28 

Average Loop Delay:  

Object Tracker, PTZ28 Control 

 

065.26 

 

0050.46 

 

28 

CPU Delay: Motion Video Stream 001.61 0001.65 28 

CPU Delay: Detected Object 000.15 0000.09 28 

CPU Delay: Object Location 011.93 0059.39 28 

CPU Delay: Camera 002.10 0 28 

Latency 276.03 0283.45 28 

Cost of execution 325306.73 315146.58 28 

Total network usage 466288.21 455181.89 28 

 

The mean value of energy consumed is found to be 2906053.0944 and the standard 

deviation is found to be 220658.21578. 

Table 4.36 shows the energy consumed is considered a dependent variable and No. of 

Area, Number of Cameras Per Area, Execution Time, Average Loop Delay: Motion 

Detector, Object Detector, Object Tracker, Average Loop Delay: Object Tracker, PTZ 

Control, CPU Delay: Motion Video Stream, CPU Delay: Detected Object, CPU 

Delay: Object Location, CPU Delay: Camera, Latency, Cost of execution and Total 

network usage are the independent variables. 

 
28Pan-Tilt-Zoom 
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Table 4.36: Variables Considered & Removed 

Variables Entered/ Removed a 

Model Variables Entered 
Variables 

Removed 
Method 

1 Total network usage, Execution Time, 

CPU Delay: Detected Object, No. of 

Areas, Average Loop Delay: Object 

Tracker, PTZ Control, CPU Delay: 

Motion Video Stream, Number of 

Cameras Per Area, Latency, Cost of 

execution, CPU Delay: Object Location b 

. 

 

Time 

 

 

Enter 

a. Dependent Variable: Energy Consumed 

b. Tolerance = .00 limit reached. 
 

Table 4.37, shows the developed model is shown below in the table which confirms 

there is a strong correlation between the dependent and independent variables as the 

calculated R-Square value is 0.99. 

Table 4.37: Regression Model Summary 

Model Summary b 

M
o
d

el
 

R 
R 

Square 

Adjusted 

R 

Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R 

Square 

Change 

F Change df1 df2 
Sig. F 

Change 

1 .99a .99 .99 9579.24 .99 1430.95 10 17 .00 

a. Predictors: (Constant), Total network usage, Execution Time, CPU Delay: Detected 

Object, No. of Areas, Average Loop Delay: Object Tracker, PTZ Control, CPU Delay: 

Motion Video Stream, Number of Cameras Per Area, Latency, Cost of execution, CPU 

Delay: Object Location 

b. Dependent Variable: Energy Consumed 
 

The statistical analysis of the model shows high goodness-of-fit measures, indicating 

a strong relationship between the dependent variable and the independent variables. 

The coefficient of determination R Square is 0.99, indicating that approximately 

99.9% of the variability in the dependent variable can be explained by the 

independent variables in the model. The adjusted R Square, which accounts for the 

number of predictors in the model, is 0.99, suggesting that the model is a good fit and 

not overfitting the data. The standard error of the estimate is 9579.24, indicating the 

average difference between the observed values and the predicted values by the 

model. 
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Table 4.38: ANOVA Statistics 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1e Regression 1313071347215.98 10 131307134721.59 1430.95 .00b 

Residual 0001559953982.11 17 000091761998.94 1430.91 .00b 

Total 1314631301198.09 27 0131398896720.55 1430.95 .00b 

a. Dependent Variable: Energy Consumed 

b. Predictors: (Constant), Total network usage, Execution Time, CPU Delay: 

Detected Object, No. of Areas, Average Loop Delay: Object Tracker, PTZ 

Control, CPU Delay: Motion Video Stream, Number of Cameras Per Area, 

Latency, Cost of execution, CPU Delay: Object Location 
 

 

Table 4.38 shows the ANOVA Statistics table presents the results of the analysis of 

variance for the model. The mean square for the model is 131,307,134,721.598, which 

represents the variance explained by the independent variables in the model. The F-

statistic is 1430.953, indicating that the variance explained by the model is 

significantly greater than what would be expected by chance alone. The p-value (Sig. 

= .000) is less than the typical significance level of 0.05, indicating that the model's 

overall effect is statistically significant. 

Model 1 

The model finds the association between energy consumed and number of areas, 

number of cameras per area, execution time, average loop delay, CPU delay, latency, 

cost of execution, and total network usage as shown below in the coefficient table and 

model summary table. 

Energy Consumed                            No. of Areas 

Energy Consumed                            No. of Cameras per Area 

Energy Consumed                            Execution Time 

Energy Consumed                            Average Loop Delay 

Energy Consumed                            CPU Delay 

Energy Consumed                            Latency 

Energy Consumed                            Cost of Execution 

Energy Consumed                            Total Network Usage 

 



48 
 

Table 4.39 shows that the coefficient Values represent the impact of each independent 

variable on the dependent variable (Energy Consumed). Among the predictors, 

"Average Loop Delay: Object Tracker, PTZ Control" and "Total network usage" 

exhibit the most substantial influence, with positive coefficients indicating a positive 

relationship with energy consumption. Conversely, "Execution Time" and "Latency" 

demonstrate significant but negative coefficients, suggesting that higher values of 

these variables are associated with lower energy consumption. Other predictors show 

relatively weaker associations with energy consumption. 

Table 4.39: Coefficient Values 

Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standar

dized 

Coefficie

nts 

t Sig. 

B 
Std. 

Error 
Beta   

1 

(Constant) 2647256.69 9801.57 0.007 270.08 0.00 

No. of Areas (X1) 1161.67 2503.32 0.013 .46 0.64 

Number of Cameras 

Per Area (X2) 
-164.37 1693.19 -0.002 -.09 0.92 

Execution Time (X3 4.02 1.58 0.09 2.53 0.02 

Average Loop Delay 

Object Tracker, PTZ 

Control (X4) 

 

731.35 

 

86.66 

 

0.16 

 

8.43 

 

0.00 

CPU Delay: Motion 

Video Stream (X5) 
3779.44 2591.37 0.02 1.45 0.16 

CPU Delay: 

Detected Object (X6) 
7324.10 26165.35 0.01 0.28 0.78 

CPU Delay: Object 

Location (X7) 
-288.19 142.47 -0.07 -2.02 0.06 

Latency (X8) -87.49 26.41 -0.11 -3.31 0.01 

Cost of execution 

(X9) 
0.01 0.02 0.02 0.72 0.48 

Total network usage 

(X10) 
0.45 0.02 0.94 18.54 0.00 

a. Dependent Variable: Energy Consumed (Y) 

 

The variables Execution Time, Average Loop Delay: Object Tracker, PTZ Control, 

Latency, and total network usage are found to be significant as the calculated p-value 

is greater than the standard alpha value of 0.05. 
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Table 4.40: Excluded Measures 

Excluded Variables a 

Model Beta In t Sig. 
Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 Average Loop Delay: Motion 

Detector, Object Detector, Object 

Tracker 

 

b 

 

- 

 

- 

 

- 

 

.00 

a. Dependent Variable: Energy Consumed 

b. Predictors in the Model: (Constant), Total network usage, Execution Time, CPU Delay: 

Detected Object, No. of Areas, Average Loop Delay: Object Tracker, PTZ Control, CPU 

Delay: Motion Video Stream, Number of Cameras Per Area, Latency, Cost of execution, 

CPU Delay: Object Location 
 

Table 4.40 shows that collinearity statistics section shows a tolerance value of 0.00 

for the "Average Loop Delay" variable. A tolerance value of 0 indicates that there is 

perfect collinearity between this independent variable and other variables in the 

model. This suggests a high degree of correlation between "Average Loop Delay" and 

other predictors, which may lead to multicollinearity issues. 

Table 4.41: Residual Statistics of Model 

Residuals Statistics a 

 Minimum Maximum Mean 
Std. 

Deviation 
N 

Predicted 

Value 
2659408.50 3199812.25 2906053.09 220527.25 28 

Residual -22652.21 11547.76 .00 7601.05 28 

Std. Predicted 

Value 
-1.11 1.33 .00 1.00 28 

Std. Residual -2.36 1.21 .00 0.79 28 

a. Dependent Variable: Energy Consumed 
 

Table 4.41 shows that Overall residual statistics provide an understanding of the 

accuracy and variability of the predictions for the "Energy Consumed" dependent 

variable in the model. The model seems to have a reasonably accurate prediction with 

minor variations between observed and predicted values. 

 

 



50 
 

The mathematical representation of the model: 

Y (Energy Consumption) = 1161.675X1 (No. of Areas) -164.373 X2 (Number of 

Cameras Per Area) + 4.023 X3 (Execution Time) + 731.359 X4 (Average Loop 

Delay: Object Tracker, PTZ Control) + 3779.441 X4 (CPU Delay: Motion Video 

Stream) +7324.104X5 (CPU Delay: Detected Object) - 288.190 X6 (CPU Delay: 

Object Location)-87.494 X7 (Latency) + 0.015 X8 (Cost of execution) +0.456 X9 

(Total network usage) 

4.6 Use of Machine Learning Approaches in Task Scheduling 

Machine learning approaches are playing an increasingly vital role in task scheduling, 

revolutionizing the efficiency and performance of task allocation and resource 

management in cloud computing, edge computing, and IoT environments. These 

techniques offer the ability to predict and forecast task demands, enabling proactive 

resource allocation and reducing bottlenecks. Dynamic task scheduling becomes 

possible with real-time data analysis, ensuring agile adaptations to changing 

conditions. Load balancing benefits from machine learning's insights to distribute 

tasks optimally across resources. Task prioritization becomes smarter, and energy 

efficiency is enhanced by choosing energy-conscious resources. Multi-objective 

optimization enables simultaneous consideration of conflicting objectives, and 

learning from user behaviour facilitates personalized task scheduling. In essence, the 

integration of machine learning in task scheduling empowers intelligent, adaptive, and 

efficient resource allocation, leading to superior system performance, minimized 

response times, and optimal resource utilization across diverse computing 

environments. Mainly in supervised learning classification-based algorithms were 

being used for task scheduling. The algorithms being considered for task scheduling 

were Logistic Regression, IBK, K-Star, and AdaBoostM1. 

Experiment 1: Number of Tasks: 40 and Nodes: 4 

In Experiment 1, the number of tasks was set to 40, and the number of nodes was set 

to 4. The evaluation of the model was performed using 10-fold cross-validation, a 

common technique to assess the performance of machine learning algorithms. In this 

approach, the dataset is divided into 10 subsets, and the model is trained and tested 10 

times, each time using a different subset as the test set and the remaining subsets as 

the training set.  
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4.6.1 Logistic Regression 

Table 4.42, shows that the evaluation of logistic regression through 10-fold cross-

validation, performance measures provide valuable insights into the model's 

classification accuracy and predictive capabilities. Accuracy, precision, recall 

(sensitivity), and F1 score offer comprehensive assessments of the model's correctness 

in classifying instances and its ability to avoid false positives and negatives. 

Table 4.42: Performance Measures for Logistic Regression (LR29) at 10-fold 

Cross-Validation 
 

Measures Values 

Correctly Classified Instances 176 (88%) 

Incorrectly Classified Instances 24 (12%) 

Kappa statistic 0.83 

Mean absolute error 0.0599 

Root mean squared error 0.2353 

Relative absolute error 16.64% 

Root relative squared error 55.47% 

Total Number of Instances 200 

Time taken to build a model: 0.01 seconds 

Table 4.43 Detailed Accuracy by Class: Accuracy class-wise for the LR classifier 

refers to the accuracy of the model in classifying instances within each individual 

class. It provides insights into how well the model performs for each specific class in 

the classification task. 

Table 4.43: Accuracy Class Wise (LR Classifier) 

Sr. 

No. 

TP 

Rate 

FP 

Rate 
Precision Recall 

F-

Measure 
MCC30 

ROC31 

Area 

PRC32 

Area 
Class 

1 0.95 0.04 0.93 0.95 0.94 0.91 0.99 0.99 Node1 

2 0.50 0.02 0.83 0.50 0.63 0.59 0.96 0.78 Node2 

3 1 0.09 0.72 1 0.84 0.81 0.99 0.99 Node3 

4 1 0 1 1 1 1 1 1 Node4 

Wt. 

Avg. 
0.88 0.04 0.89 0.88 0.88 0.84 0.98 0.95  

Table 4.44 shows Confusion Matrix: The confusion matrix provides a detailed and 

clear evaluation of the model's accuracy and misclassification patterns for each class, 

offering valuable insights into the model's classification capabilities for the given 

dataset. 

 
29Logistic Regression 
30Matthews Correlation Coefficient 
31Receiver Operating Characteristic 
32Precision-Recall Curve  
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Table 4.44: Confusion Matrix (LR) 

        a b c d     classified as 

 76 4 0 0 | a = Node1 

5 20 15 0 | b = Node2 

  0 0 40 0 | c = Node3 

  0 0 0 40 | d = Node4 

 

It was found that in case of logistic regression, the correctly classified instances were 

about 88% which was quite higher than the considered classification techniques such 

as IBK and AdaBoostM1. Similarly, the precision, recall, and F-measure values of 

0.89, 0.88, and 0.88 respectively and the FP rate value 0.04. 

4.6.2 IBK (Stratified Cross-Validation: 10-fold) 

The performance of IBK classification algorithm at configuration setting: stratified 

10-fold cross-validation. Accordingly, the performance measures included are 

correctly classified instances, incorrectly classified instances, kappa statistic, mean 

absolute error, root mean squared error, relative absolute error, root relative squared 

error, total number of instances, and time taken to build a model. 

 Table 4.45: Performance Measures for IBK at 10-fold Cross-Validation 

Measures Values 

Correctly Classified Instances 117 (58.5%) 

Incorrectly Classified Instances 83 (41.5%) 

Kappa statistic 0.39 

Mean absolute error 0.21 

Root mean squared error 0.45 

Relative absolute error 58.65% 

Root relative squared error 106.44% 

Total Number of Instances 200 

Time taken to build model:  0.001 seconds 
 

Table 4.45 IBK model was built using 10-fold cross-validation on a dataset containing 

a total of 200 instances. The time taken to build the model was 0.001 seconds, 

indicating the model's efficiency in training. 
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Detailed Accuracy by Class 

Based on table 4.46 which shows accuracy class-wise shown below it can be 

concluded that Node 3 and Node 4 have shown higher precision as compared to other 

two nodes. Similarly, the recall value is found to be higher in case of Node 4 and 

Node 1 with values 1, and 0.95 respectively. 

Table 4.46: Accuracy Class Wise (IBK) 

Sr. No. 
TP 

Rate 

FP 

Rate 
Precision Recall 

F-

Measure 
MCC 

ROC 

Area 

PRC 

Area 
Class 

1 0.95 0.35 0.64 0.95 0.77 0.59 0.66 0.63 Node1 

2 0 0.26 0 0 0 -0.25 0.09 0.16 Node2 

3 0.03 0 1 0.02 0.05 0.14 0.58 0.24 Node3 

4 1 0 1 1 1 1 1 1 Node4 

Wt.Avg. 0.59 0.19 0.65 0.59 0.52 0.41 0.60 0.53  

 

Table 4.47 shows Confusion Matrix: The confusion matrix for the IBK (Instance-

Based k-nearest Neighbor) model shows its performance in classifying instances into 

different classes (Node1, Node2, Node3, and Node4). It reveals that Node1 has 76 

true positives and 4 false positives, while Node2 has all 40 instances misclassified as 

Node1 (false negatives). Node3 has 1 true positive, 2 false positives, and 37 false 

negatives, and Node4 has all 40 instances correctly classified as true positives. The 

matrix provides a comprehensive evaluation of the model's accuracy and 

misclassification patterns for each class, offering valuable insights into its 

classification capabilities using the IBK algorithm. 

                                     Table 4.47: Confusion Matrix (IBK) 

        a b c d     classified as 

 76 4 0 0 | a = Node1 

40 0 0 0 | b = Node2 

  2 37 1 0 | c = Node3 

  0 0 0 40 | d = Node4 
 

Accordingly, it was found that in case of IBK, the correctly classified instances were 

about 58.5% which is quite less showing low level of accuracy as compared with 

other classification techniques such as Logistic Regression, K-Star, and AdaBoostM1. 

Similarly, the precision, recall, and F-measure values of 0.65, 0.58, and 0.51 
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respectively were lower in comparison to other classifiers being considered also the 

mean absolute error value was found to be 0.21, and FP rate value 0.19. 

4.6.3 K-Star (Stratified Cross-Validation: 10-fold) 

The performance measures for the K-Star model at 10-fold cross-validation provide 

valuable insights into its classification accuracy and predictive capabilities. Common 

metrics such as accuracy, precision, recall (sensitivity), and F1 score offer a 

comprehensive assessment of the model's correctness in predicting class labels and its 

ability to avoid false positives and negatives. 

Table 4.48: Performance Measures for K-Star at 10-fold Cross-Validation 
 

Measures Values 

Correctly Classified Instances 182(91%) 

Incorrectly Classified Instances 18 (9%) 

Overall Accuracy 91% 

Kappa statistic 0.87 

Mean absolute error 0.04 

Root mean squared error 0.19 

Relative absolute error 13.54% 

Root relative squared error 44.24% 

Total Number of Instances 200 

Time taken to build model: 0.001 seconds 

 

Table 4.48 shows K-Star model was built using 10-fold cross-validation on a dataset 

containing a total of 200 instances. The time taken to build the model was 0.001 

seconds, indicating the model's efficiency in training. 

Detailed Accuracy by Class 

Based on the table 4.49 accuracy class-wise shown below it can be concluded that 

Node 2, Node 3, and Node 4 have shown higher precision as compared to Node 1. 

Similarly, the recall value is found to be higher in case of Node 1 and Node 2 with 

values 1 and, 1 respectively. 
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Table 4.49: Accuracy Class Wise (K-Star) 

S. 

No. 

TP 

Rate 

FP 

Rate 
Precision Recall 

F-

Measure 
MCC 

ROC 

Area 

PRC 

Area 
Class 

1 1 0.15 0.81 1 0.90 0.83 1 1 Node1 

2 0.575 0 1 0.57 0.73 0.72 1 1 Node2 

3 0.975 0 1 0.97 0.98 0.98 1 1 Node3 

4 1 0 1 1 1 1 1 1 Node4 

Wt. 

Avg. 

0.91 0.06 0.92 0.91 0.90 0.87 1 1  

 

 

Table 4.50 shows Confusion Matrix: The K-Star model's confusion matrix shows 

excellent performance in correctly classifying instances into their respective classes, 

particularly for Node4, with all 40 instances correctly classified. It has minimal 

misclassifications for Node1 and Node3. However, there are 17 misclassifications for 

Node2, where 17 instances were classified as Node1 instead. 

Table 4.50: Confusion Matrix (K-Star) 

a b c d     classified as 

80 0 0 0 | a = Node1 

17 23 0 0 | b = Node2 

1 0 39 0 | c = Node3 

0 0 0 40   | d = Node4 
 

It was found that in case of K-Star classifier being used for task scheduling correctly 

classified instances were about 91% which was quite higher than the considered 

classification techniques such as IBK, Logistic Regression, and AdaBoostM1. 

Similarly, the precision, recall, and F-measure values of 0.927, 0.91, and 0.903 

respectively were higher in comparison to IBK, Logistic Regression, and 

AdaBoostM1 also the mean absolute error value was found to be 0.05 and FP rate 

value 0.04. 

4.6.4 AdaBoostM1 (Stratified Cross-Validation: 10-fold) 

AdaBoostM1 is an ensemble learning method based on table 4.51, AdaBoost 

algorithm, and stratified 10-fold cross-validation is a popular technique used to 

evaluate its performance. In this evaluation, the dataset is divided into ten subsets, 

ensuring that each subset has a similar distribution of classes as the original dataset. 

The AdaBoostM1 model is trained and tested ten times, each time using a different 

subset as the test set and the remaining nine subsets as the training set. 
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Table 4.51: Performance Measures forAdaBoostM1 at 10-fold Cross-Validation 
 

Measures Values 

Correctly Classified Instances 120(60%) 

Incorrectly Classified Instances 80 (40%) 

Kappa statistic 0.41 

Mean absolute error 0.32 

Root mean squared error 0.38 

Relative absolute error 88.46% 

Root relative squared error 88.54% 

Total Number of Instances 200 

Time taken to build a model: 0.03 seconds 

 

The AdaBoostM1 model was built using 10-fold cross-validation on a dataset 

containing a total of 200 instances. The time taken to build the model was 0.03 

seconds which is higher than IBK and K-Star. 

Detailed Accuracy by Class 

Based on table 4.52 shows accuracy class-wise below it can be concluded that Node 

1, Node 2, Node 3, and Node 4 have shown higher precision with value 1. Similarly, 

the recall value is found to be higher in case of Node 1 and Node 2 with values 1 and, 

1 respectively. 

Table 4.52: Accuracy Class Wise (AdaBoostM1) 

S. No. 
TP 

Rate 

FP 

Rate 
Precision Recall 

F-

Measure 
MCC 

ROC 

Area 

PRC 

Area 
Class 

1 1 0.33 0.66 1 0.8 0.66 1 1 Node1 

2 1 0.25 0.5 1 0.66 0.61 1 1 Node2 

3 0 0 - 0 - - 1 1 Node3 

4 0 0 - 0 - - 1 1 Node4 

Weighted 

Avg. 
0.60 0.18 - 0.6 - - 1 1  

 

Table 4.53 shows Confusion Matrix: The confusion matrix for the AdaBoostM1 

model shows perfect performance in correctly classifying instances into their 

respective classes, with 80 instances correctly classified as Node1, 40 instances as 

Node2, 40 instances as Node3, and 40 instances as Node4. There are no 

misclassifications observed in the model's predictions for any of the classes. 
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Table 4.53: Confusion Matrix (AdaBoostM1) 

        ab c d     classified as 

80 0 0 0 | a = Node1 

0 40 0 0 | b = Node2 

 40 0 0 0 | c = Node3 

 0 40 0 0 | d = Node4 

 

Accordingly, it was found that in case of AdaBoostM1 the correctly classified 

instances were about 60% which is quite less showing low level of accuracy as 

compared with other classification techniques such as Logistic Regression and K-Star. 

Similarly, the precision, recall, and F-measure were lower in comparison to other 

classifiers such as Logistic Regression and K-Star and FP rate value 0.18. 

4.6.5 Comparative Analysis of Classification Algorithms 

In the performance-wise analysis of classification algorithms using 10-fold cross-

validation with 40 tasks and 4 nodes, various performance metrics were evaluated to 

assess the effectiveness of the algorithms in classifying instances.  

Experiment 1: Number of Tasks: 40 and Nodes: 4: 

In Experiment 1, the number of tasks was set to 40, and the number of nodes was set 

to 4. The evaluation of the model was performed using 10-fold cross-validation, a 

common technique to assess the performance of machine learning algorithms. In this 

approach, the dataset is divided into 10 subsets, and the model is trained and tested 10 

times, each time using a different subset as the test set and the remaining subsets as 

the training set.  
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Table 4.54: Performance-Wise Analysis of Classification Algorithms  

(10 folds, Number of Tasks: 40 and Nodes: 4) 

Performance 

Measure 

Logistic 

Regression 

K-

Star 
IBK AdaBoostM1 

Accuracy 0.88 0.91 0.58 0.60 

Precision 0.88 0.92 0.65 - 

Recall 0.88 0.91 0.58 0.60 

F-Measure 0.87 0.90 0.51 - 

ROC Area 0.98 1.00 0.60 1.00 

Mean 

absolute error 
0.05 0.04 0.21 0.32 

Execution 

Time Model  
15ms 10ms 10ms 30ms 

 

Based on table 4.54, which provided performance measures, K-Star appears to be the 

best-performing algorithm, achieving the highest accuracy and precision among the 

four. Logistic Regression also shows respectable performance with high accuracy and 

precision. On the other hand, IBK and AdaBoostM1 have lower accuracy scores, 

making them less suitable choices for the given classification tasks. 
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Figure 4.8:  Evaluation of Classifier at 10-fold Cross-Validation based on 

Various Performance Measures 

From the above Figure 4.8, it is clear that Logistic Regression and K-star are the most 

appropriate algorithms for task scheduling while considering the configuration 

setting; cross-validation 10 folds. 

0.88

0.887

0.88

0.871

0.988

0.0599

0.91

0.927

0.91

0.903

1

0.0488

0.58

0.658

0.585

0.517

0.602

0.2114

0.6

0.5

0.6

0.667

1

0.3188

0 0.2 0.4 0.6 0.8 1 1.2

Accuracy

Precision

Recall

F-Measure

ROC Area

Mean absolute error

AdaBoostM1 IBK K-Star Logistic Regression



60 
 

Cross-validation – 25-fold: In the performance-wise analysis of classification 

algorithms for task allocation and resource management in an IoT environment with 

40 tasks and 4 nodes, using 25-fold cross-validation, the evaluation provides a 

comprehensive understanding of the effectiveness of different algorithms in this 

specific scenario. 

Table 4.55: Performance-Wise Analysis of Classification Algorithms (25 folds, 

Number of Tasks: 40 and Nodes: 4) 
 

Performance 

Measure 

Logistic 

Regression 
K-Star IBK AdaBoostM1 

Accuracy 0.89 0.92 0.64 0.52 

Precision 0.91 0.94 0.68 0.46 

Recall 0.89 0.93 0.64 0.53 

F-Measure 0.89 0.92 0.56 0.46 

ROC Area 0.99 1.00 0.48 0.95 

Mean 

absolute error 
0.05 0.04 0.18 0.32 

Execution 

Time Model 

Building 

15ms 10ms 10ms 35ms 

 

Table 4.55 shows the 25-fold cross-validation involves dividing the dataset of 40 

tasks into 25 equal subsets (folds). Each classification algorithm is trained on 24 folds 

and then tested on the remaining fold. This process is repeated 25 times, with each 

fold serving as the testing set once.  
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Figure 4.9:  Evaluation of Classifier at 25-fold Cross-Validation based on various 

Performance Measures  

 

From the above Figure 4.9, it is clear that Logistic Regression and K-star are the most 

appropriate algorithms for task scheduling with a mean absolute error of 0.044 while 

considering the configuration setting; cross-validation 25 folds. 
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Figure 4.10:  Average Execution Time (ms): 25 folds 

From Figure 4.10, the average execution time of the most appropriate algorithms is 

found to be IBK, K-Star, and Logistic Regression while considering 40 tasks and 4 

nodes and cross-validation 25 folds. These three algorithms as the most appropriate 

ones are based on their ability to achieve satisfactory classification performance while 

offering faster average execution times. The 25-fold cross-validation ensures a robust 

evaluation of the algorithms' performance, considering different subsets of the data for 

training and testing.  

By considering execution time as an important criterion, the analysis aims to select 

algorithms that can handle task allocation and resource management efficiently in 

real-time IoT environments with 40 tasks and 4 nodes. 
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Experiment 2: Number of Tasks: 160 and Nodes: 4 

Cross-validation – 10 folds: The performance-wise analysis of classification 

algorithms for task allocation and resource management in an IoT environment with 

10-fold cross-validation, 160 tasks, and 4 nodes provides valuable insights into the 

effectiveness of different algorithms in this specific scenario. Using the 10-fold cross-

validation, the dataset of 160 tasks is divided into ten equal subsets (folds).  

Table 4.56: Performance-Wise Analysis of Classification Algorithms  

(10 folds,160number of tasks and Nodes: 4) 

Performance 

Measure 

Logistic 

Regression 
K-Star IBK AdaBoostM1 

Accuracy 0.81 0.90 0.25 0.50 

Precision 0.83 0.91 0.26 - 

Recall 0.81 0.90 0.26 0.50 

F-Measure 0.82 0.90 0.26 - 

ROC Area 0.95 0.96 0.50 0.83 

Mean absolute error 0.09 0.07 0.37 0.25 

Execution Time 

Model Building 
1660ms 20ms 20ms 25ms 

 

Each algorithm is trained on 10 folds and tested on the remaining fold. This process is 

repeated ten times, with each fold serving as the testing set once and the results are 

shown above in table 4.56. 
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Figure 4.11:  Evaluation of Classifier at 10-fold Cross-Validation Based on 

Various Performance Measures (Number of Tasks: 160 and Nodes: 4) 
 

Figure 4.11, it is clear that Logistic Regression and K-star are the most appropriate 

algorithms for task scheduling while considering the configuration setting; cross-

validation 10 folds and 160 tasks and 4 nodes. 
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Figure 4.12:  Average Execution Time (ms): 10 folds  

(Number of Tasks: 160 and Nodes: 4) 
 

 

From the Figure 4.12, for average execution time, the most appropriate algorithms are 

found to be IBK and K-Star while considering 160 number of tasks and 4 nodes and 

cross validation 10 folds. In a Fog Computing environment with 160 tasks across 4 

nodes and using 10-fold cross-validation, IBK, and K-Star algorithms are identified as 

optimal based on average execution time known for efficiency in classification tasks, 

both algorithms demonstrate effective task processing and classification with 

relatively low execution times, making them suitable choices for distributed Fog 

Computing scenarios.  
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Cross-validation - 25 folds: In Table 4.34, the performance-wise analysis of 

classification algorithms is presented using 25-fold cross-validation with 160 tasks 

and 4 nodes.  

Table 4.57: Performance-Wise Analysis of Classification Algorithms 

(25 folds, 160 number of tasks and Nodes: 4) 

Performance 

Measure 

Logistic 

Regression 
K-Star IBK AdaBoostM1 

Accuracy 0.89 0.90 0.25 0.47 

Precision 0.90 0.91 0.25 0.47 

Recall 0.89 0.91 0.25 0.47 

F-Measure 0.89 0.91 0.25 0.45 

ROC Area 0.98 0.96 0.50 0.80 

Mean absolute 

error 
0.05 0.07 0.38 0.29 

Execution 

Time Model 

Building 

1860ms 20ms 20ms 25ms 

 

Table 4.57 shows updated performance measures, K-Star remains the best-performing 

algorithm, achieving the highest accuracy and precision among the four. Logistic 

Regression also shows respectable performance with high accuracy and precision 

scores. However, both IBK and AdaBoostM1 have significantly lower accuracy and 

precision values, making them less suitable choices for the given classification tasks. 
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Figure 4.13:  Evaluation of classifier at 25-fold Cross-Validation based on 

Various Performance Measures (Number of Tasks: 160 and Nodes: 4) 
 

Figure 4.13, it is clear that Logistic Regression and K-star are the most appropriate 

algorithms for task scheduling while considering the configuration setting; cross-

validation 25 folds and 160 tasks and 4 nodes. 
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Figure 4.14:  Average Execution Time (ms): 25 folds  

(Number of Tasks: 160 and Nodes: 4) 
 

Based on the above Figure 4.14, average execution time the most appropriate 

algorithms are found to be K-Star and IBK while considering 160 number of tasks and 

4 nodes and cross-validation 25 folds. The consistent performance in minimizing 

average execution time underscores their suitability for real-time task execution and 

classification in resource-constrained environments. This reinforces their selection as 

optimal choices for achieving efficient task processing in Fog Computing systems. 
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4.7 Clustering Algorithms Used for Task Scheduling 

Cloud computing offers several benefits, including immense processing power, ample 

storage, a massive network connecting processing nodes and data sources, and a pay-

per-use approach. Cloud computing is a strong technology that provides these 

paradigms as well as many other benefits such as flexibility, cheaper costs, scalability, 

and ease of software installation. However, despite these benefits, Cloud computing 

has certain disadvantages. Some of the disadvantages include: the client and Cloud 

layer may be geographically separated, which can cause transmission delays; there 

may be a scarcity of resources for task execution; many resources may be idle even if 

tasks must be performed instantly and so on.  

Virtualized Fog computing technology is used to solve these issues. Fog is a layer that 

sits between end users and cloud data centers. Fog computing can be useful for 

executing applications that require low latency and real-time responses, depending on 

the location of the data producer. This layer can include a large number of virtual 

servers to handle incoming requests. "Resource allocation is the systematic approach 

of allocating available resources to the needed Cloud clients over the Internet," 

according to Agarwal, Yadav, and Yadav. The timing and order in which resources 

are allotted are critical for maximizing the benefits of employing a virtual server, 

since the system's throughput may be increased while customers are not overcharged. 

The availability of resources should ensure that high-priority jobs do not wind up at 

the bottom of the task queue. This might result in inefficient utilization of virtual 

servers and possibly company loss. As a result, allocating resources in a prioritized 

manner to maximize profit is a critical and promising study topic. Furthermore, ML, 

an important field, has made significant advances in a variety of academic areas, 

including robotics, neuromorphic computing, computer graphics, NLP33, decision-

making, and speech recognition. Several researches have been presented to look at 

ways to use machine learning to solve fog computing issues. In recent years, there has 

been an increase in the use of ML to improve fog computing applications and deliver 

fog services, such as efficient resource management, security, latency and energy 

reduction, and traffic modeling.  

 
33 Natural Language Processing 
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There are many different types of fog computing devices, sensors, and objects, and 

each one generates a large amount of data that must be processed. Real-time 

processing has the potential to improve efficiency. In some cases, it may be necessary. 

Sensors, devices, and by sending requests, objects will completely utilize resources. 

As a result, fog computing requires resource management and should be implemented 

with caution. In this section, we looked at studies that used ml algorithms to manage 

fog computing resources. This paper proposes a Scheduling Algorithm which is used 

to schedule tasks at fog level. A task is scheduled to the VM that plays a role in the 

execution of request / response model in fog computing. We use a K-means clustering 

algorithm for scheduling fog devices. The default resource scheduler in the simulator 

equally divides fog device’s resources among all active application modules. 

Clustering makes it easy to find a set of tasks for VM with minimum cost. Therefore, 

the integration of ML method i.e. Clustering in scheduling tasks in fog computing will 

give a better quality of services (QoS) with low execution cost and low network 

usage. The study includes: 

1. Presentation of Clustering Scheduling in Fog Computing.  

2. Implementation of proposed algorithm in iFogsim.  

3. Reduction of Execution Cost.  

Clustering algorithms group data points based on their similarity or proximity. 

Common types include K-means, which partitions data into K clusters; DBSCAN, 

which identifies clusters based on density; and Hierarchical clustering, which builds a 

tree-like structure of nested clusters.  

4.7.1 Canopy Clustering 

Table 4.58 shows that Canopy Clustering is a pre-processing technique used in data 

clustering to reduce the computational complexity of subsequent clustering 

algorithms. It acts as a data summarization step by creating overlapping regions 

(canopies) that cover subsets of data points based on a similarity threshold. Data 

points falling within each canopy are then passed to another clustering algorithm for 

further refinement. 
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Table 4.58: Accuracy Canopy Clustering 

Measures Values 

Correctly Classified Instances 149 (74.5%) 

Incorrectly Classified Instances 51 (25.5%) 

Overall Accuracy 74.5% 

Total Number of Instances 200 

Time taken to build a model 0.001 seconds 
 

Figure 4.15, shows that the accuracy results for Canopy Clustering show that the 

model correctly classified 149 instances, representing 74.5% of the total instances in 

the dataset. There were 51 instances misclassified, amounting to 25.5% error. The 

overall accuracy of 74.5% indicates its effectiveness in classifying data points, and the 

model was built efficiently in just 0.001 seconds for a total of 200 instances. 

 

Figure 4.15:  Overall Accuracy Canopy Clustering 
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accuracy as compared with other clustering techniques such as Hierarchical 

Clustering and Density-Based Clustering. Similarly, the precision, recall, and F-

measure values of 0.75, 0.70, and 0.70 respectively were higher in comparison to 

other clustering techniques such as Hierarchical Clustering and Make Density Based 

Clustering.  

Table 4.59: Performance Measure Class Wise (Canopy Clustering) 

S. 

No. 

n 

(truth) 

n 

(classified) 
Accuracy Precision Recall 

F1 

Score 
Class 

1 86 80 0.77 0.75 0.70 0.72 Node1 

2 30 40 0.76 0.28 0.37 0.31 Node2 

3 44 40 0.96 0.95 0.86 0.90 Node3 

4 40 40 1.00 1.00 1.00 1.00 Node4 

 

Based on the above table 4.59, it can be concluded that Node 4 has shown higher 

precision with value 1. Similarly, the recall value is found to be higher in case of 

Node 1. 

 

Figure 4.16: Class-wise performance measures 
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As shown in Figure 4.16, Class-wise performance measures the accuracy of the Node 

4 is found to be highest with the value of 1 whereas the accuracy of Node 2 is found 

to be lowest with the value of 0.28. 

                                Table 4.60: Confusion Matrix (Canopy Clustering) 

0 1 2 3   assigned to cluster 

 60 18 2 0 | Cluster 0: Node1 

 25 11 4 0 | Cluster 1: Node2 

  1 1 38 0 | Cluster 2: Node3 

0 0 0 40 | Cluster 3: Node4 
 

From Table 4.60 the confusion matrix for Canopy Clustering shows the distribution of 

data points across clusters. It reveals correct and incorrect cluster assignments, 

helping assess the algorithm's performance. Cluster 0 (Node1) has 60 correct, 18, and 

2 incorrect assignments; Cluster 1 (Node2) has 25 correct, 11 and 4 incorrect; Cluster 

2 (Node3) has 1 correct, 1 and 38 incorrect; and Cluster 3 (Node4) has 40 correct 

assignments. 

4.7.2 Hierarchical Clustering 

Table 4.61: Overall Accuracy Hierarchical Clustering 

Measures Values 

Correctly Classified Instances 118 (59%) 

Incorrectly Classified Instances 82 (41%) 

Overall Accuracy 38.14% 

Total Number of Instances 200 

Time taken to build a model 0.03 seconds 
 

Table 4.61 the overall accuracy of Hierarchical Clustering is 38.14%, indicating that 

only 38.14% of the instances were correctly classified, while the remaining instances 

were misclassified. This relatively low accuracy suggests that the clustering algorithm 

may not be performing well on the given dataset.  

Table 4.62: Class or Node-wiseHierarchical Clustering Performance Measures 

S. 

No. 

n 

(truth) 

n 

(classified) 
Accuracy Precision Recall 

F1 

Score 
Class 

1 150 74 58 0.97 0.48 0.64 Node1 

2 4 40 78 0.03 0.25 0.05 Node2 

3 39 40 59 0.00 0.00 0.00 Node3 

4 1 40 79 0.03 1.00 0.05 Node4 
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Table 4.62 shows performance metrics for different classes in a classification task. 

Node1 achieved high accuracy 58% and precision 0.97 but lower recall 0.48 and F1 

Score 0.64. Node2 had good accuracy 78% but low precision of 0.03 and recall 0.25.  

 

Figure 4.17:  Class or Node-wiseHierarchical Clustering Performance Measures 

As shown in Figure 4.17, Node3 showed moderate accuracy 59% but had no 

precision, recall, or F1 Score due to zero true positives. Node4 had high accuracy 

79% and recall 1 but low precision 0.03 and F1 Score 0.05. The evaluation highlights 

the varying strengths and weaknesses of each class's classification performance. 

Confusion Matrix: It was found that in case of Hierarchical Clustering the correctly 

classified instances were about 59% which is quite less and shows a low level of 

accuracy as compared with other clustering techniques such as Canopy Clustering. 
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                        Table 4.63: Confusion Matrix (Hierarchical Clustering) 

0 1 2 3   assigned to cluster 

  7220 0 | Cluster 0: Node1 

39 1 0 0 | Cluster 1: Node2 

39 1 0 0 | Cluster 2: Node3 

0 0 391| Cluster 3: Node4 
 

Similarly, From Table 4.63 the precision and F-measure values of 0.02 and 0.04 

respectively were lower in comparison to other clustering techniques.  

4.8.3 Make Density-Based Clustering 

The overall accuracy of Density-Based Clustering is 19.5%, indicating that only 

19.5% of the instances were correctly classified. 

Table 4.64: Overall Accuracy Make Density-Based Clustering 

Measures Values 

Correctly Classified Instances 97 (48.5%) 

Incorrectly Classified Instances 103 (51.5%) 

Overall Accuracy 19.5% 

Total Number of Instances 200 

Time taken to build model 0.01 seconds 

 

From Table 4.64 the classification model achieved an accuracy of 19.5%, with 97 

instances correctly classified and 103 instances incorrectly classified out of a total of 

200 instances. This indicates that the model's performance is relatively poor, as it 

correctly classified less than half of the instances. This low accuracy suggests that the 

clustering algorithm may not be performing well on the given dataset. 
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Figure 4.18:  Overall Accuracy Make Density-Based Clustering 

As shown in Figure 4.18, The Density-Based Clustering model has a relatively high 

error rate, with 103 instances and 51.5% being incorrectly classified. However, it is 

important to note that the model was built quickly, taking only 0.01 seconds to 

complete. 

Table 4.65: Class or Node wise Make Density-Based Clustering Performance 
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S. 

No. 

n 

(truth) 
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(classified) 
Accuracy Precision Recall 

F1 

Score 
Class 

1 50 80 61 0.33 0.52 0.40 Node1 

2 40 40 60 0.00 0.00 0.00 Node2 

3 55 40 65 0.33 0.24 0.27 Node3 

4 55 40 52 0.00 0 0.00 Node4 
 

Table 4.65 Node1 achieved moderate accuracy 61% with relatively low precision 0.33 

and recall 0.52, resulting in an F1 Score of 0.40. Node2 had a similar accuracy 60%, 

but it had no precision, recall, or F1 Score due to zero true positives.  
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Figure 4.19:  Class or Node wise Make Density-Based Clustering Performance 

Measures 
 

As shown in Figure 4.19, it observes that Node3 performed slightly better with higher 

accuracy 65% and precision 0.33, but its recall 0.24, and F1 Score 0.27 remained 

relatively low. Node4 had the lowest accuracy 52%, and its precision, recall, and F1 

Score were all zero.  

Confusion Matrix 

The confusion matrix for the Density-Based Clustering shows the distribution of data 

points across clusters. Cluster 0 (Node1) contains 2,602,628 data points correctly 

assigned to it. Cluster 1 (Node2) contains 1, 101, and 613 data points correctly 

assigned to it. Cluster 2 (Node3) has 130 data points correctly assigned, but 1, 314 

data points were mistakenly placed in other clusters. Cluster 3 (Node4) contains 40 

data points correctly assigned to it. The matrix provides valuable insights into the 

clustering performance, with most data points correctly clustered in Cluster 0 and 

Cluster 1, but some misclassifications in Cluster 2. 
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                     Table 4.66: Confusion Matrix (Make Density-Based Clustering) 

0 1 2 3   assigned to cluster 

2602628 | Cluster 0:  Node1 

1101613 | Cluster 1:  Node2 

130 1314| Cluster 2: Node3 

0 40 0 0| Cluster 3:  Node4 
 

Accordingly, Table 4.66 found that in case of Make Density Clustering the correctly 

classified instances were about 48.5% which is quite low and shows a low level of 

accuracy as compared with other clustering techniques such as Hierarchical 

Clustering and Canopy Clustering. Similarly, the precision, recall, and F-measure 

values were lower in comparison to other clustering techniques such as Hierarchical 

Clustering and Canopy Clustering.  

 

 

 


