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Research methodology is the systematic and scientific approach used to conduct 

research, investigate problems, and gather data for a specific purpose. It involves 

techniques and procedures to identify, collect, analyze, and interpret data, addressing 

research questions or solving research problems 

3.1 Significance of Research  

Research methodology is the systematic approach to solving research problems, it 

involves selecting appropriate methods for data collection, analysis, and interpretation 

to ensure the validity and reliability of results. Key components include defining 

research questions, conducting literature reviews, choosing qualitative, quantitative, 

or mixed methods, and employing tools like surveys, experiments, or case studies. 

The proper methodology enables rigorous and reproducible findings, essential for 

advancing knowledge in their field. Understanding and applying the right 

methodology is crucial for producing high-quality, impactful research that withstands 

academic scrutiny. 

The methodology ensures the research's validity, reliability, and reproducibility. Key 

aspects include selecting tools like surveys, experiments, or case studies, and applying 

statistical or thematic analysis techniques. A well-defined methodology is crucial for 

producing credible, high-quality research that contributes meaningfully to the 

academic field. 

3.2 Research Gaps 

Fog computing has attracted a great number of researchers so, it is a trending topic for 

research. The literature study motivates research in Fog Computing by introducing a 

bright future and its application of it. The researchers stated that Fog Computing will 

show how today's IoT and cloud computing work. The researchers also stated the 

challenges to be faced in the implementation of Fog Computing in real-life 

applications. Currently, researchers are working on the implementation of fog for 

commercial applications. The challenge for further studies and solutions from experts 

is that we need to keep ourselves updated for online publications and updates from the 

Open Fog consortium related to Fog Computing. 

Even though fog computing has emerged as a potential standard paradigm that offers 

services to different IoT and mobile devices at the network edge, there are still many 
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research issues that need to be resolved. Reaching the desired performance level, 

computing resource provisioning in terms of task offloading, and achieving the best 

response time with reduced latency are some examples of research challenges due to 

the heterogeneous nature of fog in terms of node capabilities while residing within the 

IoT domain. 

Fog-Cloud Collaboration is a computing model that uses both fog and cloud 

computing. Fog computing processes data close to the source, reducing latency, while 

cloud computing handles large-scale data storage and processing. Together, they 

provide efficient, flexible data management, enhancing IoT performance, improving 

security, and supporting real-time applications. This collaboration optimizes resource 

usage, offering a scalable, sustainable solution for complex computing needs. 

 

 

Figure 3.1: Data Processing Challenges at Cloud Data Center (Deafallah, 2022) 

Figure 3.1 shows cloud data centers encounter several significant challenges in data 

processing due to the vast scale and complexity of their operations. Managing and 

processing big data from various sources requires robust distributed storage systems 

and parallel processing capabilities. Data security and privacy are crucial concerns, 

necessitating stringent access controls, encryption, and compliance with privacy 

regulations. Latency and network congestion can impact data processing performance, 

motivating the use of content delivery networks and edge computing strategies. 
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Scalability, resource allocation, energy efficiency, data backup, and disaster recovery 

planning are essential for maintaining optimal performance. Moreover, addressing 

data processing bottlenecks, handling heterogeneous data formats, complying with 

data privacy regulations from multiple jurisdictions, and enabling real-time data 

processing pose additional challenges. Cloud data centers continuously innovate and 

leverage advanced technologies to overcome these challenges, ensuring efficient and 

reliable data processing services for their users. 

3.3 Problem Statement  

Our research aims to understand the importance of cloud computing and fog 

computing. Fog computing solves problems like delay in response, insufficient 

bandwidth, no immediate response, security, and reduces the latency issue of cloud 

computing. The central problem focuses on: 

“Smart Fog is a Collaborative Approach to Share Computational Power of Fog 

Devices for Fog Computing in Smart City IoT Network” 

The research work studies the level of computational work, latency issue, and the 

efficiency of fog computational devices over various parameters like processing 

speed, scheduling, and task allocation in the fog layer, using fog computing and 

Machine Learning algorithms to reduce the problem and find trends, issue, challenges, 

suggestion, and future potential of computing problem in Fog Computing 

environment will share computational power to IoT devices with low computational 

power. Overall, the research work finds the use of fog computing networks to solve 

the future journey. 

3.4 Objectives 

The objectives of the research are clearly defined goals that guide the study, focusing 

on specific outcomes to be achieved. They include exploring new areas, describing 

phenomena, explaining relationships, predicting future events, and applying findings 

to solve real-world problems. Research objectives are specific goals that guide the 

focus and outcomes of a study. These objectives can vary widely but generally 

include exploration, description, explanation, prediction, application, evaluation, 

theory development, action, documentation, and innovation. These objectives ensure 

that the research remains focused, relevant, and systematic. They also help in 
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evaluating the success and impact of the study. The purpose of this research work is to 

propose a “SMART FOG” protocol based on a technique to connect FOG 

computational devices which enables devices to share their resources within the Fog 

network and reduces the latency issue of cloud computing.  

1. To study IoT-based architectures and protocols for understanding the 

connectivity between IoT devices.  

 

2. Analyse the current IoT infrastructure and evaluate various layers of 

communication protocols to design the SMART FOG Protocol-based 

technique.  

 

3. Exploring the challenges to be faced in implementing the SMART FOG 

protocol-based technique on computation-enabled devices.  

 

4. To explore the task scheduling and allocation techniques for Fog 

Computing nodes in SMART FOG.  

 

5. Determine the fault tolerance mechanism in SMART FOG protocol-based 

technique by allocating tasks to multiple recipients.  

 

6. Discover the efficiency of fog computational devices over various 

parameters like processing speed, scheduling, and task allocation in fog 

layer. 

Our research work focuses on the above-stated objective which aims to use the 

computational power of computation-enabled devices to collaboratively perform tasks 

and speed up the processing. 

3.5 Hypothesis 

The hypothesis is nothing but a tentative statement to predict the expected outcomes 

of a study. Defining hypothesis helps in designing new experiments and observations. 

The following hypotheses were tested for the system in the proposed research work.  

This hypothesis is subdivided into H01 to H06 to explore the efficiency and various 

measures of the Smart Fog protocol-based system compared to cloud-based systems, 

aiming to comprehensively evaluate their impact and effectiveness. The sub 

hypothesis from Ha1 to Ha6 are as follows: 
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1. H01: There is no significant difference between SMART FOG protocol-based 

system and cloud-based system based on the performance measure execution 

time. 

2 H02: There is no significant difference between SMART FOG protocol-based 

System and cloud-based system based on the performance measure latency. 

 

3 H03: There is no significant difference between SMART FOG protocol-based 

system and cloud-based system based on the performance measure energy 

consumed. 

4 H04: There is no significant difference between SMART FOG protocol-based 

system and cloud-based system based on the performance measure cost of 

execution. 

5 H05: There is no significant difference between SMART FOG protocol-based 

system and cloud-based system based on the performance measure of total 

network usage. 

6 H06: There is no significant difference between SMART FOG protocol-based 

system and cloud-based system based on the performance measure 

computational power consumed. 

Dividing the main hypothesis into these sub-hypotheses enables researchers to 

methodically investigate different facets of the Smart Fog protocol-based system and 

compare its efficiency and performance against a cloud-based counterpart. This 

methodical approach facilitates a thorough assessment of Fog Computing technology 

and its potential benefits in comparison to traditional cloud solutions within IoT 

environments. 
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3.6 Scope of Study 

As studying about advances in new computational paradigm and the use of cloud 

computing and IoT have great futuristic applications. This emerging IoT introduces 

many challenges which cannot be handled by today’s cloud computing. In this 

research work we deal with the IoT Environment features like low latency, high 

distribution, large-scale sensor network, and mobility support and device 

heterogeneity. This proposed SMART FOG system allows us to create a collaborative 

environment for IoT network. In the proposed system, we are going to implement 

SMART FOG protocol-based technique which will allow Fog nodes to share 

computing and storage power to IoT devices that have low computational power 

within IoT network. The proposed system will be able to schedule the tasks assigned 

to fog node for easy processing and efficient resource management. The proposed 

work is focused on creating a resilient environment using SMART FOG which will 

create trust in fog computing. As fog computing is in its infancy, there are still many 

open challenges are present. The SMART FOG will create trust between fog clients 

and fog environment by providing fault-tolerant and secure technique for fog 

computing. This research will identify some of these challenges and try to find a 

solution in the proposed system. 

3.7 Research Methodology 

The research methodology deals with the hypothesis which is the outcome of the 

objectives with the results. The proposed study attempts to implement SMART FOG, 

a collaborative approach using Fog Computing. The research involves quantitative 

and qualitative approaches. The SMART FOG collaboratively used computational 

power and storage of devices connected within Fog layer. The fog layer acts as an 

intermediate between IoT networks and Cloud centers. In this research, we have 

identified different open challenges in fog computing and tried to resolve some of 

them using SMART FOG. The hypothesis is nothing but a tentative statement to 

predict the expected outcomes of a study. Defining hypotheses helps in designing new 

experiments and observations. The following hypothesis is being tested for the system 

in the proposed research work. The hypothesis has arrived at the expected outcome of 

the system. “SMART FOG protocol-based technique to create Fog Computing 

environment will share computational power to IoT devices with low computational 

power”. 
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3.7.1 Sources of Information 

Information is gathered from journals, articles, and publications about fog computing 

are the main sources of information. The OpenFog consortium provided white papers 

which are very useful as the main source of information. The OpenFog community 

provided papers on the taxonomy of Fog Computing, basic architectural design, and 

structure of fog computing and their multiple layers of implementation. For further 

information, various articles from industrial experts who are connected to Fog 

Computing will act as a lighthouse in the dark. 

3.7.2 Data Collection  

The universe for the present study is comprised of smart city applications, all peoples 

within a smart city, and cloud centers. The universe also includes the devices within 

the IoT network, fog devices, etc. The smart city sample application is being 

randomly selected to implement SMART FOG and the overall performance and 

efficiency are being evaluated.  

As per the SMART FOG applications, the IoT network generates some amount of 

data using sensors that are being used in computing and to test the performance of 

SMART FOG. The data generated in this research work is application-oriented. If we 

consider security surveillance applications for smart cities then the data is collected of 

images of events, video streams collected from cameras, and being used for further 

applications. The main input to the proposed system is requests from IoT devices for 

shared computational power. 

Cloud -Fog Simulators for Data Collection 

The primary goal of the research work is to examine and find the technologies 

associated with the SMART FOG project. To find new emerging technologies that 

can impact the cloud system in SMART FOG computing and also improve the 

reliability of Predictive models based on Artificial Intelligence and Machine Learning 

Algorithms is being developed to resolve computing problems. 

iFogSim Simulators 

Many available simulators can simulate the scenarios of cloud-fog computing 

environments such as EdgeCloudSim, MobIoTSim, SimpleIoTSimulator, IBM 

BlueMix, Google IoT Sim, and EmuFog. Most of the available simulators are similar 
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in their functionalities, programming language, or architecture. Therefore, we limited 

our study to only eight main simulators. The simulators are analyzed both from 

theoretical and practical perspectives. In theoretical comparisons, all eight simulators 

(iFogSim, iFogSim2, FogNetSim++, EdgeCloudSim, FogComputingSim, 

PureEdgeSim, YAFS, and LEAF) are compared based on their technical and non-

technical characteristics, whereas for practical comparison use iFogSim, are in terms 

of their execution time, memory usage, and CPU consumption for simulating different 

applications under varying complexities. 

 

Figure 3.2: iFogSim Architecture (Muhammad, 2023) 

The iFogSimToolkit provides a platform for modeling and simulation of resource 

management techniques in edge, Fog computing, and cloud environments. A newer 

version of iFogSim, adds distributed clustering, mobility, and microservices 

management as new features. Furthermore, it includes new example scenarios to 

validate and demonstrate their extension for the iFogSim. the architecture used by 

iFogSim is shown in Figure 3.2. 

Due to the IoT revolution, almost everything is becoming a source for data 

generation. As a result, a tremendous amount of data is generated every second. Huge 

amount of data processed on workstations. typical data sources include mobiles, 

various types of sensors and actuators including thermostats, engines of airplanes, 

factories, mobiles, computers, automobiles such as driverless cars, metros, human 

health data, smart devices such as Google Home, Alexa Echo Dots, smart homes, 

smart shoes, watches, and, in general, all wearables, etc., and the number of items on 

the list increases all of the time. These data need to be pre-processed before 
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something useful can be derived from them because only some of the generated data 

are relevant or useful. This section will look at the various sources from which data is 

generated. 

3.7.3 Through Participation in Conference and Paper Published  

To collect insight into the subject and dive deeper into the details of fog computing, 

Cloud Computing, Artificial Intelligence, and Machine Learning algorithms following 

conferences were attended.   

a) International Virtual Conference “Emerging Era of Applications of 

Computer: The Survey on Fog Computing and its Applications” on 15th -

16th of January 2022 Organized by Pacific University Udaipur. 

 

b) “Use of Clustering Machine Learning Algorithms in Fog Computing for 

Task Scheduling and Resource Allocation” has been published in 

European Chemical Bulletin (ISSN: 2063-5346), Volume 11, Issue 8, 2022 

Date of Publication: - August 2022. 

 

c) National Seminar on “Implementation of Academic Bank of Credit (ABC) 

in Higher Education Institutes” on 21st March 2023 Organized by 

Avinashilingam Institute for Home Science and Higher Education for 

Women University Udaipur. 

 

d) IP Awareness Training Program under “National Intellectual Property 

Awareness Mission” Organized by Intellectual Property Office, India on 

18, January 2023. 

 

e) “A Comparative Study of Various Classification Machine Learning 

Algorithms in Fog Computing: Task Scheduling” has been published in 

Industrial Engineering Journal (ISSN 0970-2555), Volume: 52, Issue 5, 

No. UGC Care Approved, Group I, Peer Reviewed Journal 4, May: 2023. 

I am grateful to all Conference Organizers and my fellow presenters and researchers 

who not only provided me with the platform to showcase my talent but also helped 

me with rich technical experience by actively participating in a conference to collect 

data. These gatherings have provided me the stage for scholarly exchange which 

helped me a lot in coming out with Machine learning solutions for traffic congestion 

problems. 
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3.7.4 Performance Evaluation  

The performance of the developed machine learning predictive model is analyzed 

using various performance measures such as prediction accuracy, incorrectly 

classified instances, kappa score, and various confusion matrix parameters such as 

true positive rate, false positive rate, precision, recall, and F1-score. Compare the 

performance of the model with existing traffic prediction models and assess its 

effectiveness in predicting traffic congestion and optimizing transportation systems. 

3.7.5 Machine Learning Predictive Model Development 

Designed and developed a machine learning predictive model for smart fog systems 

using the gathered data and insights from the literature review. Utilize appropriate 

machine learning algorithms such as regression, Random Forest, Random Tree, Bayes 

net, naïve Bays, SMO, IBK, Logistic Regression, K-Star, and Multiclass classifier in 

addressing cloud issues. 

3.8 Tools and Technique  

A method known as SMART FOG uses nearby fog nodes to complete tasks to utilize 

cloud centers less frequently and with less delay. Therefore, to put this system into 

place, firstly build an IoT network and cloud application that can handle requests from 

the IoT network and store the data on servers. After that, an interface protocol is 

created to essentially connect the cloud and Internet of Things network and process 

requests that he can process rather than sending them to the cloud. Finally, the IoT 

network receives the results.  

In the proposed system, the requesting IoT device can use the publish method to 

submit a request to the closest fog devices, and the nearest fog device that is available 

will accept the request and subscribe to share computing power. A few further 

security precautions are required and are being implemented in SMART FOG to 

safeguard the connection to prevent attacks like Man-In-the-Middle or identity theft. 

Fog computing requires various tools, techniques, and algorithms to optimize data 

processing and management close to the network edge. Key components include 

Network Management Software-defined networking tools that optimize traffic routing 

and resource allocation. Virtualization technology tools like Docker deploy 

applications in isolated environments efficiently Data Analytics Real-time analytics 
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tools, such as Apache Kafka and Apache Storm, process data streams at the fog layer, 

Weka 3.8.6. Machine Learning Algorithms like decision trees, K-Nearest Neighbor, 

Logistic regression, K-Star, IBK, J48, Bagging, MLP clustering, and neural networks 

analyze and predict data trends locally, and Resource Management Algorithms 

include load balancing and task scheduling algorithms to optimize resource utilization 

and performance. These tools and techniques collectively enhance the efficiency, 

scalability, and security of fog computing systems. 

To evaluate the performance and effectiveness of the smart fog systems, various 

metrics and statistical methods were employed. Percentage analysis, measures of 

central tendency, measures of dispersion, cumulative frequency, correlation 

coefficient, and regression analysis were used to analyze the collected mining data. 

Hypothesis testing was performed using the Chi-Square test. The study involved the 

simulation of data and model building, utilizing multiple regression analysis. A 

conceptual model based on regression was developed to examine the significance of 

different technologies. Additionally, the study aimed to assess the usefulness of loT, 

Artificial Intelligence, and Machine Learning-based models in addressing commuting 

problems. The Weka tool and Python were used for simulation and predictive 

analysis. Overall, the study employed a research design that combined qualitative and 

quantitative research approaches. The qualitative nature of the study facilitated the 

exploration of various concepts and ideas, leading to findings and recommendations 

for improving fog computation.  

3.8.1 Weka Tools Techniques  

The Weka Experimenter is a tool within the Weka software package that allows users 

to design, run, and analyze machine learning experiments systematically. It is 

particularly useful for comparing multiple machine learning algorithms and 

configurations on various datasets, helping researchers and practitioners make 

informed decisions about which algorithms work best for their specific tasks. Here’s a 

more detailed explanation of the Weka Experimenter’s key features and 

functionalities. 
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Experiment Design: The Experimenter allows users to design experiments by 

specifying different machine learning algorithms, datasets, and evaluation metrics. 

Users can choose from a wide range of classification, regression, and clustering. 

Algorithms available in Weka. They can also select multiple datasets to test the 

algorithms’ performance across different data domains. 

Parameter Sweeping: Users can explore the effect of different parameter settings on 

the performance of machine learning algorithms. The Experimenter enables parameter 

sweeping, where users can specify a range of values for certain parameters of the 

algorithms. The Experimenter then systematically runs experiments with different 

parameter combinations to find the optimal settings. 

Cross-Validation and Evaluation Metrics: The Experimenter supports various 

techniques for evaluating machine learning models, including cross-validation (k-fold 

cross-validation, leave-one-out cross-validation, etc.). Users can select different 

evaluation metrics such as accuracy, precision, recall, F1-score, and others to assess 

the performance of the algorithms. 

Batch Execution: The Experimenter can run experiments in batch mode, allowing 

users to schedule multiple experiments to run sequentially or concurrently. This 

feature is particularly useful for running large-scale experiments overnight or on 

computing clusters. 

Result Analysis and Comparison: After the experiments are completed, the 

Experimenter provides detailed summary reports and visualizations of the results. 

Users can compare the performance of different algorithms on various datasets using 

statistical tests and visualizations like charts and graphs. This comparative analysis 

helps users identify the best-performing algorithms and configurations for their 

specific problem domains. 

Reproducibility: The Experimenter ensures the reproducibility of experiments by 

allowing users to save the experiment configurations and results. Researchers can 

share these configurations and results with others, making it easier to validate and 

replicate experiments. 
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Integration with Other Weka Tools: The Experimenter seamlessly integrates with 

other Weka tools and interfaces, allowing users to utilize preprocessing techniques, 

attribute selection methods, and various machine learning algorithms available in 

Weka. 

The Weka Experimenter provides a user-friendly environment for designing, and 

running. And analyzing machine learning experiments. Its capabilities make it a 

valuable tool for researchers and practitioners who want to systematically evaluate 

and compare different machine-learning algorithms and configurations on multiple 

datasets. Some key tools and techniques available in Weka Explorer include: 

• Preprocessing Tools 

• Classification Algorithms 

• Clustering Algorithms 

• Attribute Selection 

• Evaluation Techniques  

• Visualization Tools 

 

 

 

Figure 3.3: Weka Tool K-Star 

Figure 3.3 shows the preprocessing tool in Weka applied to This interface includes 

details about the number of instances, number of attributes, relation, selected attribute 

tab, etc. In the present scenario, the details of the Time attribute are shown in the 

selected attributes tab. 
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3.8.2 Experimental Setup 

CCTV applications process data recorded by cameras deployed at STL1. The source 

task, located at the STL, sends 10 Mbps of video data to a processing task that 

requires 30,000 MIPS and is responsible for traffic monitoring, enforcing traffic laws, 

and automatic incident detection. The 200 kbit/s of resulting data are sent to the sink 

task located in the cloud for further analysis and storage. 16 of these applications are 

running in our scenario, one for each STL. 

Although the computational and network load required by the CCTV applications is 

constant during the entire simulation, the reported power consumption varies over 

time. This is because we allocate the static power consumption of fog nodes 

proportionally to applications running on them and fog nodes are utilized inefficiently 

in this experiment. Especially at night when only a few taxis are on the road, the 

relative power demanded by the CCTV applications rises. 

3.8.3 Hypothesis Testing Tool 

To test the famed null hypothesis, three types of statistical methods were used. The 

applied tests were the Pearson Chi-Square test, ANNOVA Test, and T-Test. 

Chi-Square Test: 

The Chi-Square test is a statistical method used to determine if there is a significant 

association between categorical variables. It compares observed frequencies with 

expected frequencies, assessing whether any differences are statistically significant. 

 

 

 

 
1 Seasonal and Trend decomposition using Loess 
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3.9 Applied Methodology 

In this section, the proposed model, and the interaction among its components with 

the essential interfacing requirements are demonstrated. The proposed model consists 

of three layers concerning intelligent task offloading in fog cloud systems. It is 

composed of both fog and cloud servers. The underlying fog-cloud environment is 

comprised of distributed resources that are heterogeneous in terms of network 

hierarchy starting from the very basic physical layer of a network to the centralized 

cloud environment. Heterogeneous means these devices are dispersed at different 

geolocations and not stationary. The host servers, which perform as computing 

resources, intended for providing services to various application tasks, are enriched 

with a diverse set of resources. It is based on two types of applications, i.e., delay-

sensitive applications and computation-intensive applications. 

3.9.1 Fog-Cloud Smart Task Offloading Model 

Mainly the architecture includes three layers with a smart task offloading 

management system which includes predictive and prescriptive constructs as shown in 

the figure below. The three layers included are the IoT or physical layer, Fog node 

layer, and the Cloud layer. 

Offloading Management System is an intelligent framework designed to optimize task 

offloading decisions in distributed computing environments, particularly in fog 

computing and edge computing systems. The starting point in a task offloading 

procedure possess five main features: 

1) Policy Repository regarding Offloading criteria 

2) Recent status of fog snapshot  

3) Receive, analyse, and offload the tasks  

4) Prediction construct 

5) Prescriptive construct 

The entire process is activated by the Smart OMS. Its formation consists of a Policy 

Repository regarding Offloading criteria, monitoring & organizing offloading 

procedures, a recent snapshot of fog competence & readiness, a Prediction construct, 

and a Prescriptive construct. 
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3.9.2 Task Offloading 

The volatile demand from IoT and mobile devices, which may not be predicted or 

anticipated immediately due to the unpredictability of the fog resources, the issue has 

to be handled. The main goal of this study is to provide a predictive and prescriptive 

approach for cost-effective task offloading and resource scheduling that will 

maximize the cost of these devices executing their applications. As a result, 

this research work cover addresses the mentioned issues and offers suggestions for 

how to fix them. Furthermore, some tasks share the same fog resources; as a result, 

there may be resource conflicts in some situations that could result in deadlock, some 

tasks experience delayed responses, and it's possible that new tasks won't be able to 

acquire resources at all, which is where latency comes into play. To ensure the 

equitable use of the underlying resources, it must be decided to improve fog 

performance by offloading some activities to adjacent nodes. 

 

Figure 3.4: Task offloading Criteria (Satyakam, 2021) 

Figure 3.4, shows Task offloading is a crucial process in fog computing and edge 

computing environments, where computational tasks are transferred from resource-

constrained IoT devices to more capable fog nodes or cloud servers. 

The decision-making process for task offloading considers various conditions, such as 

resource constraints, network latency, load balancing, security, privacy, data 

evaluation, storing bulk data, execution time, energy consumption, and other specific 

criteria. By balancing these factors, task offloading aims to optimize resource 
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utilization, reduce latency, improve energy efficiency, and enhance overall system 

performance. Offloading computationally intensive tasks to more powerful nodes, 

considering network conditions, and ensuring data privacy and security play key roles 

in achieving efficient and effective task offloading in distributed computing systems. 

 

 

Figure 3.5: Flow Diagram: SMART FOG Task Offloading (Li, 2019) 

Figure 3.5 shows the various steps used for the task offloading as shown above in the 

figure. In the proposed flowchart, a task is generated on an IoT node, and the node 
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evaluates its capability to execute machine learning algorithms locally. If the IoT 

node lacks resources or the task complexity exceeds its capacity, the task is offloaded 

to the cloud. Alternatively, if the IoT node can handle the task, it executes the 

machine learning algorithms. The task is then sent to a fog node, which assesses its 

resources and executes machine-learning algorithms like classification and clustering. 

If the fog node is unable to handle the task, it may offload it back to the cloud. After 

the completion of tasks, results are delivered to the IoT node or end-user, based on 

application requirements and data privacy considerations. This dynamic process 

ensures optimal resource utilization, reduced latency, and enhanced performance in 

the IoT and fog computing environments. 

3.9.3 Workflow Diagram 

workflow diagram illustrating the progression of research and development in the 

field of SMART FOG. The workflow diagram illustrates the progression of research 

and development in the field of SMART FOG. It starts with understanding cloud, 

IoTs, and fog computing concepts and then delves into analyzing IoT-based 

architectures and protocols. Next, the focus shifts to evaluating various layers of 

communication protocols and devising improved task scheduling and allocation 

techniques for fog computing nodes. 
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Figure 3.6: Workflow Diagram 

Figure 3.6 shows depict the implementation and functioning of the Smart Offloading 

Management System, which optimizes task offloading decisions. It also highlights the 

identification and incorporation of fault tolerance mechanisms in SMART FOG to 

ensure system reliability. Furthermore, the diagram emphasizes the importance of 

measuring the performance of fog computational devices and the SMART FOG 

system. Finally, the challenges faced during the implementation of SMART FOG are 

outlined, underscoring the need to overcome hurdles to achieve successful 

deployment and operation. 
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3.10 Performance Metrics   for    Supervised     and      Unsupervised         

        Algorithms 
Performance metrics for supervised algorithms include accuracy, precision, recall, F1-

score, and area under the ROC curve, which assess the model's prediction quality. For 

unsupervised algorithms, metrics like silhouette score, Davies-Bouldin index, and 

clustering accuracy evaluate the coherence and separation of clusters. These metrics 

help determine how well the algorithms perform their respective tasks in various data 

analysis scenarios. 

According to Figure 3.7, various studies to find the quality and performance of the 

various clustering algorithms various measures are being suggested but finding one is 

a challenging task in unsupervised learning. Some of the major performance 

evaluation clustering methods or clustering validity indexes can be classified as 

external, internal, and relative as shown in the figure below. 

 

Figure 3.7: Cluster validity index (Wang, 2019) 

3.10.1 Internal Validation 

Figure 3.8 shows internal validation criteria are being used when we are not having 

additional information about the datasets. In such cases, the quality of the clustering 

algorithm can be measured by the two basic approaches partitioned and Hierarchical. 
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Figure 3.8: Internal Validation Method (Wang, 2019) 

In situations where external information or ground truth labels are unavailable, 

internal validation criteria play a crucial role in assessing the quality of clustering 

algorithms. These methods evaluate clustering results based solely on the data's 

characteristics and clustering structure.  

3.10.2 External Validation 

External validation methods are considered with the supervised learning or 

classification problems. External validation methods can be also incorporated if 

additional information or class labels are available in the particular clustering 

problems that have the class labels for the training sets. For applying external 

validation various aspects are to be taken into consideration which are as follows   

• Required to find clustering tendency for a particular dataset  

• Find the correct number of clusters. 

• Use internal methods for measuring the quality of clusters first. 

• Now compare the internal method results with the external information. 

• Make a comparison between the two sets of clusters to find the best one. 

Figure 3.9 shows to find the clustering tendency for a given dataset, internal 

clustering validation methods are utilized to measure the quality of clusters without 

relying on external information. These methods, such as the Silhouette Score, Davies-

Bouldin Index, and Dunn Index, help identify the correct number of clusters that yield 

the highest quality results. By comparing the internal validation outcomes with 

external information, obtained through external validation methods like Adjusted 
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Rand Index or Normalized Mutual Information when available, the clustering results 

can be evaluated against known class labels or ground truth data. The best clustering 

solution is determined by considering both internal and external validation results, 

aiming to achieve consistency and high-quality clusters. 

 

Figure 3.9: External Validation Method (Wang, 2019) 

The external criteria are applied as in the clustering algorithm suppose C = {C1, 

C2…...Cm} represent the clustered partition and P = {P1, P2…. Ps} represent the true 

partition obtained from expert knowledge or class labels.  

TP2: The no. of data points found in the same particular cluster, both C and P. 

 
2 True Positive 
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FP3: The no. of data points found in the same particular cluster in C but in a different 

cluster. 

FN4: The no. of data points found in different clusters in C but in the same cluster in 

P. 

TN5: The no. of data points found in different clusters, both in C and in P. 

The no. of data points found in the same cluster in C: 

m1 = TP + FP. 

The no. of data points found in the same cluster in P: 

m2 = TP + FN. 

M = TP + FP + FN + TN. 

These external validation methods help assess the accuracy, consistency, and 

robustness of clustering algorithms by comparing their results with known ground 

truth information or externally provided criteria. By utilizing these validation 

techniques, researchers and practitioners can make informed decisions about the 

suitability and performance of clustering algorithms for their specific applications and 

datasets. 

Matching Sets 

The first category in external criteria includes the measuring parameters like recall, 

precision, TP, TN, FP, FN, error, F- measure, etc. Precision can be calculated by 

number of the true positives 

 

Recall measures the percentage of data points properly included in the same particular 

cluster: 

 

The F-measure is a combination of precision and recall 

 
3 False Positive 
4 False Negative 
5 True Negative 
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The F-measure, also known as the F1 score, is a metric used to evaluate the accuracy 

of a classification model, particularly in binary classification tasks. It combines both 

precision and recall into a single measure, providing a balanced assessment of a 

model's performance. 

Peer-to-peer Correlation 

The second category includes the following methods: Peer-to-peer correlation refers 

to the degree of similarity or correlation between individuals or entities within a peer 

group or network.  

Jaccard coefficient: The Jaccard coefficient is used to find the similarity of the 

identified clusters C to the true values in P 

 

The Rand coefficient is also similar to the Jaccard coefficient although used to 

measure considering the total data set (accuracy).  

 

The Folkes and Mallows coefficient also finds the similarity between the particular 

clusters generated by particular clustering algorithms as independent markers 

 

Hubert statistical coefficient 
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Peer-to-peer Correlation includes Jaccard coefficient, Hubert statistical coefficient, 

Rand coefficient, and Folkes and Mallows coefficient which helps in finding the 

association between the entities. 

Measures Based on Information Theory 

Measures based on information theory assess the amount of information present in a 

system. Key metrics include entropy, reflecting dataset uncertainty, and mutual 

information, quantifying shared information between variables. Entropy can be 

considered as the reciprocal of the purity measure to find the degree of disorder 

among clusters: 

 

Mutual information is used to measure the reduction in uncertainty in clustering: 

 

These measures find utility across disciplines like machine learning and signal 

processing for optimizing systems and analyzing data. Mutual information quantifies 

the reduction in uncertainty about cluster assignments when clustering a dataset. By 

measuring the amount of shared information between data points and cluster labels, 

mutual information assesses how well clustering reduces uncertainty by revealing 

underlying patterns or structures in the data. 

Optimization Metrics  

Optimization metrics in fog computing are essential for measuring the efficiency and 

performance of distributed computing at the network edge. These metrics enable the 

assessment and improvement of resource utilization, latency reduction, and overall 

system optimization in fog-based architectures. 

The goals of resource allocation, task scheduling, and workflow scheduling are to 

maximize the resources of fog nodes by optimizing the job execution process. 

Resource allocation, task scheduling, and workflow scheduling in fog computing aim 

to maximize fog node resources by optimizing job execution. Key objectives include 

efficient task allocation, minimizing delays, and improving overall system 

performance 
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Figure 3.10: Optimization Metrics (Marbukh, 2019)  

Figure 3.10 shows optimization metrics such as makespan, latency, throughput, 

energy consumption, load balancing, and quality of service play a crucial role in 

achieving these goals. By considering these metrics and employing appropriate 

algorithms and techniques, fog computing systems can enhance resource utilization, 

reduce delays, and provide efficient and reliable execution of tasks and workflows. 

Optimization metrics in fog computing are critical for achieving optimal performance, 

resource management, and latency reduction at the network edge. They guide 

decision-making, ensuring that fog architectures deliver on their promise of efficient 

and responsive edge computing solutions. 

Performance Metrics 

Performance metrics in fog computing are vital for evaluating the efficiency and 

effectiveness of edge computing systems. These metrics provide valuable insights into 

processing speed, resource utilization, and data transfer rates, enabling the fine-tuning 

and improvement of fog-based architectures. 
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Performance metrics in task scheduling for fog computing refer to the parameters 

used to evaluate and measure the effectiveness and efficiency of the task scheduling 

process. These metrics provide insights into the performance of the system and help in 

assessing the quality of the scheduling algorithm or approach. Common performance 

metrics include makes pan (total time taken to complete all tasks), latency (response 

time between task submission and completion), throughput (number of tasks 

completed per unit of time), resource utilization (percentage of resources utilized), 

and fairness (equitable distribution of resources and workload among fog nodes). 

These metrics allow for quantitative assessment and comparison of different task 

scheduling techniques, enabling the selection of optimal approaches for improved 

performance in fog computing environments. The parameters of performance metrics 

are as follows: 

Latency 

One of the most crucial variables for evaluating the effectiveness of any task-

scheduling system is latency. Other names for latency include delay and reaction time. 

The sum of the transmission delay and the computing latency is the total latency. 

 

• 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑖: latency,  

• 𝑇𝐿𝑖: transmission latency  

• Computational latency of task ‘i’. 

 

Execution Time 

Execution time is the length of time it takes for a system to complete a task. CPU or 

execution time does not account for the time spent waiting for I/O or other operations 

to complete. 

 

• 𝐸𝑥𝑒𝑇𝑖𝑚𝑒𝑖: overall execution time, 

• 𝐹𝑇𝑖: finish time 

• STi: the start execution time of task ‘i’. 
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Make Span 

Make span is a key goal of task scheduling that shows how long it will take to execute 

a process in its entirety. 

 

• 𝐶𝑇𝑙: time when the last task is completed  

• 𝑆𝑇𝑓: starting time of the first task. 

Throughput 

The number of tasks finished in a system's throughput is measured in units of time. 

 

Throughput, in the context of computing and systems, refers to the rate at which tasks 

or operations are completed or processed within a given time frame. It is a 

performance metric that measures the efficiency and productivity of a system, 

indicating how many tasks or units of work are accomplished in a specific period. The 

measurement of throughput is typically expressed in terms of tasks per second, 

operations per second, or any other appropriate unit of time. Higher throughput 

indicates that the system can handle a greater volume of work and is more capable of 

processing tasks efficiently. 

Deadline 

The deadline is the amount of time between when a task is submitted and when it 

must be finished. The completion of each activity at the designated deadline is crucial 

in real-time applications. Missing a task deadline may be disastrous, especially for 

difficult real-time applications like air traffic control Jamil (2022). Meeting task 

deadlines is critical in real-time applications as it ensures timely processing and 

response. In fog computing, where tasks are distributed across fog nodes, the deadline 

parameter becomes crucial for efficient task scheduling. The deadline specifies the 

maximum acceptable delay for task completion, and scheduling algorithms must 

consider this constraint to ensure tasks are allocated to appropriate nodes that can 

meet the specified deadlines. Failure to meet task deadlines in time-sensitive 

applications can have severe consequences, such as compromising safety, system 

failures, or financial losses. Therefore, in fog computing environments, effective task 

scheduling algorithms are designed to prioritize tasks based on their deadlines, 
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optimizing resource allocation and ensuring timely task completion within the given 

constraints. 

Performance metrics in fog computing are instrumental in optimizing edge computing 

solutions. They facilitate informed decision-making, resource allocation, and system 

enhancements, ensuring that fog architectures deliver the required speed, efficiency, 

and responsiveness in the evolving digital landscape. 

3.10.3 Simulation Setup 

For the predictive construct, both supervised and unsupervised machine learning 

algorithms were used. A simulated environmental setup was constructed to evaluate 

and appraise the research model being proposed which is SMART FOG system which 

included an improvised task offloading approach. The experimental environment used 

is Anaconda Jupiter Python and R. The model is trained through various supervised 

and unsupervised learning algorithms which include KNN6, Decision Tree, MLP7, 

Logistic Regression algorithm, Lazy IBK, Naive Bayes, SVM8 being used. 

This research work aims to address various aspects of smart fog systems It 

encompasses a mixed methods approach, combining quantitative analysis and 

qualitative insights. The research objectives include studying commuting and cloud 

issues, analyzing technologies for enhancing computation, addressing implementation 

issues, and identifying the most appropriate machine learning approach for fog 

computing. The research begins with a comprehensive literature review to identify 

gaps in existing research and frameworks. Its performance is evaluated using various 

performance measures, comparing it with existing models. Recommendations and 

strategies are proposed to overcome these challenges. 

 

 

 

 

 
6K-Nearest Neighbor 
7Multilayer Perceptron 
8Support Vector Machine 


