
Chapter-1
Introduction

1.1 Fog Computing

1.2 Fog Computing Architecture

1.3 Issues Related to Fog Computing

 1.3.1 Privacy

 1.3.2 Network Security

 1.3.3 Network Management

 1.3.4 Placement of Fog Servers

 1.3.5 Delay in Computing

 1.3.6 Energy Consumption

1.4 IoT-Based Architectures and Protocols

 1.4.1 Three and Five-Layer Architectures

 1.4.2 IoT Device Connectivity: Architectures and Protocols

 1.4.3 IoT Protocol Architecture

 1.4.4 Layer IoT Architecture

 1.4.5 Five-Layer IoT Architecture

 1.4.6 Types of IoT Connections

1.5 Cloud And Fog Based Architectures

1.6 Social IoT

1.7 Implication of Fog Computing

1.8 Fog Computing Task Scheduling

 1.8.1 Static Scheduling Strategy

 1.8.2 Dynamic task scheduling methods

 1.8.3 Hybrid task scheduling methods

1.9 Fog Computing Challenges

 1.9.1 Drones

 1.9.2 Machine learning

 1.9.3 Security and Privacy

 1.9.4 Autonomic Fog Management and Connectivity

2

1.10 Machine Learning Algorithms

 1.10.1 Naive Bayes

 1.10.2 Logistic Regression

 1.10.3 Sequential minimal optimization

 1.10.4 Instance-Based Learner

 1.10.5 K-Star

 1.10.6 Multi-Class Classifier

 1.10.7 Random Forest

 1.10.8 Random Tree

 1.10.9 MLP Multi-layer Perceptron

 1.10.10 k-Nearest Neighbor

 1.10.11 Supervised

 1.10.12 Unsupervised

 1.10.13 Semi-Supervised

1.11 Fog Computing Real-Time Applications

 1.11.1 Mobile Big Data Analytics

 1.11.2 Dams Safety

 1.11.3 Smart Utility Service

 1.11.4 Health Data

 1.11.5 Smart Cities

 1.11.6 Tele-surveillance

3

To improve services and quality of life for citizens and visitors, several cities have

recently made progress toward becoming smart cities. These cities now have

improved resource utilization, increased environmental protection, enhanced

infrastructure operations and maintenance, and robust safety and security measures.

To improve services and performance in their various sectors, smart cities rely on

implementing new and existing technologies and various optimization techniques.

The IoT1, FOG computing and cloud computing are a few of the technologies

assisting smart city applications. These three can be combined into one system, an

integrated IoT-Fog-Cloud system, to create a sophisticated platform for creating and

managing various kinds of smart city applications. With the help of this platform,

applications will be able to deliver the best functionality and performance possible by

utilizing the best features of IoT gadgets, FOG nodes, and cloud services. Numerous

opportunities for improving and optimizing applications in the fields of energy,

transportation, healthcare, and other industries will be presented by the use of this

strong platform. The improvised SMART FOG system design would be the main

focus of this research project.

1.1 Fog Computing

Fog computing is referred to as a distributed computing paradigm that essentially

extends the cloud's services to the network's edge. According to Cisco, Fog

computing is a continuation of the cloud computing paradigm from the network's core

to its edges. It makes networking, computing, and storage between end devices and

conventional cloud servers easier. Fog computing uses both the cloud and the edge

devices that are situated between end devices and cloud servers to run applications

rather than only using the cloud for this purpose. Edge and cloud computing are both

benefits of fog computing. While making use of edge devices' proximity to the

endpoints, it also uses the cloud's on-demand scalability.

By effectively exploiting the resources present at the edge nodes to do partial

computing and by performing filtering operations in the nodes, it essentially lessens

the strain on the cloud server. Fog computing is typically confused with two ideas in

particular. Mobile Edge Computing and Mobile Cloud Computing are these ideas.

1Internet of Things

4

MCC2 essentially contends that data processing and storage are carried out on a cloud,

away from mobile devices. As a result, it transfers data and processing power from

individual mobile devices to the cloud. MEC3 is a network architecture concept that

extends cloud computing capabilities to the edge of the network. It brings

computation, storage, and networking resources closer to the end-user or device,

reducing latency and improving overall system performance. MEC enables the

execution of applications and services at the edge of the network, closer to where the

data is generated and consumed. A cloudlet, on the other hand, is a concept related to

edge computing and MEC. It refers to a small-scale data center or server cluster

deployed at the edge of the network, typically near mobile devices or end-users.

Cloudlets provide computational resources and services to nearby devices, offering

low-latency access to data and applications.

In comparison, MEC is a broader term that encompasses the concept of cloudlets.

MEC involves deploying computing capabilities at various points in the network, such

as base stations, access points, or edge routers, whereas a cloudlet specifically refers

to a small-scale server cluster. Cloudlets are one implementation of MEC, but MEC

can also involve distributed edge computing without using dedicated cloudlet

infrastructure. It may be viewed as a more focused version of the cloud computing

concept. It resembles a cloud server that is situated at the edge of a mobile network.

Fog computing combines these two ideas with some of its characteristics to increase

its dependability and utility.

1.2 Fog Computing Architecture

The bandwidth, particularly on cellular networks, is a significant issue with cloud

computing. As the IoT grows and more physical devices are wirelessly connected, the

issue will only become worse. This issue is resolved by Fog computing, which stores

data locally on computers and other gadgets known as fog nodes. Any device having

computation, storage, and network connection, such as handheld devices, tablets, PCs,

routers, etc., can be used as a fog node.

2Mobile Cloud Computing
3Mobile Edge Computing

5

Figure 1.1: Fog Computing Architecture (Lai, 2021)

Figure 1.1 shows Fog-based architecture, fog nodes, also known as edge devices or

fog devices, are distributed throughout the network, closer to the data sources and

end-users. These fog nodes can be various devices such as routers, switches, access

points, edge servers, IoT devices, or other computing resources. The architecture

extends the capabilities of cloud computing by providing localized data processing,

storage, and analytics at the edge of the network. These fog nodes are controlled by

the Fog Data Service, which performs a variety of functions like data reduction, data

virtualization, data control and security, and edge analytics. Additionally, data might

be uploaded to the cloud for long-term analyses.

Kopras (2023) discussed that the widely adopted cloud computing paradigm is

evolving with the integration of fog computing, placing computing nodes in closer

proximity to end-users to meet stringent latency requirements. However, effective

task offloading, considering transmission and computation energy consumption, poses

challenges. Task allocation becomes intricate due to the multitude of arriving tasks

with diverse computational, communication, and delay requirements, alongside a

variety of computing nodes with differing capabilities. The research work introduces

an optimal task allocation procedure aimed at minimizing energy consumption for

6

wirelessly connected users in a network comprising Fog Nodes located at Access

Points and Cloud Nodes. The assignment of Access Points and computing nodes to

offloaded tasks, along with Fog Node operating frequencies, is optimized using a

Mixed-Integer Nonlinear Programming approach. Realistic energy consumption and

delay models, along with their pertinent parameters reflecting device characteristics,

are employed. Results indicate the profitability of distributing task processing among

multiple Fog Nodes and the cloud, often selecting distinct nodes for transmission and

computation. The proposed algorithm demonstrates superior performance, achieving

the lowest energy consumption and task rejection rate compared to alternative

allocation strategies. Additionally, a heuristic algorithm is presented, decoupling

wireless transmission optimization from implemented computations and wired

transmission, providing optimal or near-optimal solutions across various scenarios.

1.3 Issues Related to Fog Computing

Cloud computing is expanded by Fog computing, which also affects IoT. These

gadgets, also known as fog nodes, can be set up anywhere there is a network

connection. Fog computing provides extra storage capabilities at the periphery to

handle the demands. As a result, the Fog server must modify its services, which

increases administration and maintenance expenses. The operator must also deal with

the following problems.

1.3.1 Privacy

Because wireless dominates fog computing, network privacy is a major challenge.

The network operator manually creates settings, deploys fog nodes at the edge of the

internet, and incurs significant maintenance costs. The exposure of personal

information when utilizing networks is receiving more attention. The Fog nodes have

easier access to the end consumers. Because of this, Fog nodes gather more sensitive

data than faraway clouds. To address these problems, encryption techniques like

HAN4 might be applied.

4Home-Area Network

7

1.3.2 Network Security

Fog networks may be vulnerable to various network-level attacks, such as Denial of

Service, Man-in-the-Middle, or network sniffing attacks. It is crucial to implement

robust network security measures, including firewalls, intrusion detection systems,

and secure communication protocols, to detect and prevent these attacks and protect

the integrity and availability of the network. Fog nodes and IoT devices connected to

the fog network can be targets for exploitation and compromise. Weak device

security, such as default or easily guessable passwords, outdated firmware, or

unresolved vulnerabilities, can lead to unauthorized access and control. Implementing

secure device configurations, regular security updates, and strong security policies can

mitigate these risks.

1.3.3 Network Management

Network management in Fog computing refers to the processes, tools, and strategies

used to efficiently control, monitor, and maintain the network infrastructure and

devices in a fog computing environment. Fog computing introduces additional

complexity to network management due to the distributed nature of the architecture

and the heterogeneity of devices involved. Efficient network management in fog

computing is crucial to ensure the reliable and secure operation of the fog network. It

involves continuous monitoring, optimization of network performance, resource

allocation, configuration management, fault handling, and security measures to

maintain a robust and scalable fog computing environment. Fog computing

environments require continuous monitoring of network performance to ensure

efficient and reliable service delivery.

Network administrators need to monitor network traffic, latency, bandwidth

utilization, and other performance metrics to identify bottlenecks, congestion, or

potential issues that could impact the quality of service. Real-time monitoring tools

and analytics are employed to proactively manage and optimize network performance.

If SDN5 and NFV6 approaches SD are not used, controlling the network, the fog

nodes, and the connections between each node would be difficult when linked to

heterogeneous devices.

5 Software-Defined Networking
6 Network Function Virtualization

8

1.3.4 Placement of Fog Servers

The placement of fog servers requires careful consideration to ensure optimal

performance and cost-effectiveness for the area. One approach to reducing

maintenance costs is to thoroughly assess the capabilities and workload of each server

node before deployment. Before deploying fog servers, a comprehensive analysis

should be conducted to understand the specific needs and requirements of the area.

This analysis can involve evaluating factors such as network traffic patterns, latency

requirements, data processing demands, and the distribution of edge devices. By

examining the workload completed by each server node, it becomes possible to

identify the areas where fog servers would be most beneficial. This assessment helps

in determining the optimal placement of Fog servers, ensuring that they are

strategically located to reduce latency and efficiently process data closer to the source.

Additionally, considering the proximity of Fog servers to edge devices can help

minimize data transmission delays and enhance real-time processing capabilities.

Placing Fog servers near areas with high concentrations of edge devices can improve

response times and reduce network congestion. Furthermore, it is essential to assess

the scalability and flexibility of Fog server deployments. As the needs of the area

evolve, Fog servers should be easily adjustable and expandable to accommodate

changing demands.

Effective placement of fog servers involves analyzing the workload of server nodes,

considering network traffic patterns, optimizing proximity to edge devices, and

ensuring scalability. By carefully considering these factors, it is possible to deploy fog

servers in a manner that meets the needs of the area while minimizing maintenance

costs.

1.3.5 Delay in Computing

Delays in computing can have significant impacts on the efficiency and performance

of various services and applications that rely on data processing. One of the primary

reasons for delays is the aggregation of data. When data from multiple sources is

collected and combined for processing, it may take time to complete the aggregation

process, leading to delays in computing. Additionally, resource overuse can

exacerbate the delay issue. Fog servers, which are responsible for processing data

locally, may become overloaded with tasks, leading to slower processing times. This

9

resource constraint can hinder the effectiveness of Fog computing services, making

them less responsive and efficient. To address these challenges and reduce delays in

computing, it is essential to implement efficient data aggregation techniques. Data

should be aggregated in a manner that minimizes processing time while ensuring the

accuracy and integrity of the information. This involves optimizing algorithms and

strategies for data aggregation to achieve faster processing.

Furthermore, Fog nodes, which are distributed computing resources, should be

carefully managed to avoid resource overuse. Scheduling algorithms that prioritize

critical tasks and consider the mobility of Fog nodes can help distribute the processing

load more effectively. By using a priority and mobility paradigm in scheduling, fog

nodes can be dynamically allocated based on their availability and proximity to data

sources, reducing delays and improving overall performance. Moreover, optimizing

the communication and networking infrastructure between fog nodes and data sources

is crucial. Efficient data transmission protocols and network configurations can

minimize latency and ensure timely data delivery to Fog servers for processing.

Overall, addressing the delay in computing in fog environments requires a

comprehensive approach that involves optimizing data aggregation, managing

resources effectively, and improving communication infrastructure. By doing so, Fog

computing services can offer faster and more responsive data processing, enhancing

the overall user experience and system performance.

1.3.6 Energy Consumption

In Fog computing settings where multiple fog nodes are used, the distribution of

computing tasks can result in increased energy consumption. To address this issue,

reducing energy usage becomes crucial. This can be achieved through various

strategies, such as employing energy-efficient hardware components, implementing

dynamic resource allocation techniques, utilizing sleep mode and power management

features, adopting energy-aware task scheduling algorithms, implementing data

compression and aggregation methods, monitoring energy consumption, and

exploring the integration of renewable energy sources. By implementing these

measures, fog computing environments can minimize energy consumption, improve

sustainability, and reduce long-term energy costs.

10

Fog computing, while offering numerous benefits, faces challenges in terms of

network security, privacy, interoperability, resource management, and scalability.

Network security and privacy concerns arise due to the distributed nature of fog

computing, necessitating robust security mechanisms and encryption techniques to

protect sensitive data. The heterogeneity of Fog nodes and edge devices poses

interoperability challenges, requiring standardization efforts and protocols for

seamless communication and device management. Resource management and load

balancing become complex with increasing numbers of devices and applications,

necessitating dynamic resource provisioning and monitoring. Additionally, scalability

becomes crucial to handle the growing demands of Fog computing, requiring scalable

architectures and mechanisms for efficient resource allocation. Addressing these

issues through effective security measures, interoperability standards, resource

management techniques, and scalable architectures is essential for the successful

implementation and operation of Fog computing systems.

Fog computing offers substantial benefits but also faces several issues. Security is a

paramount concern as distributing computing resources closer to the edge increases

the attack surface. Interoperability challenges persist among diverse IoT devices and

fog nodes, hindering seamless data exchange. Resource allocation and load balancing

are complex due to dynamic workloads. Privacy issues arise from the vast data

generated and processed at the edge. Standardization efforts, security protocols, and

robust management systems are crucial to address these challenges and unlock the full

potential of fog computing, ensuring it can efficiently support IoT applications while

safeguarding data and systems.

1.4 IoT-Based Architectures and Protocols

IoT-based architectures and protocols are essential components that enable the

seamless integration and communication of various devices and systems in the IoT

ecosystem. These architectures and protocols play a crucial role in ensuring efficient

data exchange, interoperability, and security in IoT applications.

1.4.1 Three and Five-Layer Architectures

The IoT is a transformative concept that envisions a network of interconnected

devices, sensors, and systems communicating and exchanging data to provide

innovative services and valuable insights. In the realm of IoT architecture, two

11

common frameworks are the Three-Layer Architecture and the Five-Layer

Architecture. Accordingly, Figure 1.2 shows Three-Layer Architecture comprises the

Perception Layer, where data is collected from IoT devices and sensors; the Network

Layer, responsible for facilitating communication between devices and data

processing systems; and the Application Layer, where data is processed and

transformed into meaningful insights. On the other hand, the Five-Layer Architecture

presents a more comprehensive model with the addition of the Middleware Layer,

which acts as an intermediary for data normalization and transformation, and the

Business Layer, where business logic and decision-making occur based on insights

generated from the Application Layer. Both architectures play a crucial role in

organizing the flow of data and services within the IoT ecosystem, catering to diverse

use cases and providing a structured framework for the successful implementation of

IoT solutions. The choice between these architectures depends on the specific

requirements and complexity of the IoT application at hand. Three-layer design was

first used in the early stages of this field of study. The perception, network, and

application layers are its three layers.

The physical layer, which has sensors for sensing and gathering environmental data, is

the perception layer. It detects certain physical parameters or locates other intelligent

objects in the surrounding area. The network layer is in charge of establishing

connections with other intelligent objects, network components, and servers.

Additionally, it uses its characteristics to communicate and interpret sensor data.

The Application layer, delivering application-specific services to the user is the

responsibility of the application layer. It describes a variety of uses for the IoT,

including smart homes, smart cities, and smart health. The three-layer design

encapsulates the core concept of the IoT, however research on IoT frequently focuses

on its more intricate details, therefore it is insufficient. Because of this, the literature

has suggested a lot more layered structures. The first is the five-layer architecture,

which also has layers for processing and business. Perception, transport, processing,

application, and business layers make up the five layers as shown in Figure 1.2, The

perception and application layers play the same role as in a three-layer design.

12

Figure 1.2: Three(A) and Five-Layer(B) Architectures (Lai, 2021)

The Transport layer, through networks including WiFi7, 3G8, LAN9, Bluetooth,

RFID10, and NFC11, the transport layer moves sensor data from the perception layer to

the processing layer and back again. The processing layer, also known as the

middleware layer, plays a crucial role in a fog computing architecture. This layer

receives a substantial volume of data from the transport layer and performs various

tasks such as processing, storing, and analyzing it. It possesses the capability to

handle and provide a diverse range of services to the lower tiers. The processing layer

leverages different technologies, including modules for big data processing, cloud

computing infrastructure, and databases. By utilizing these technologies, the

processing layer enhances the overall functionality and performance of the fog

computing system. The business layer oversees the whole IoT system, including all

applications, revenue streams, and user privacy.

IoT-based architectures and protocols are pivotal in enabling the seamless operation

of interconnected devices and systems. These frameworks, including restful APIs,

7Wireless Fidelity
83rd Generation
9Local Area Network
10Radio Frequency Identification
11Near Field Communication

Application Layer

Business Layer

Network Layer

Perception Layer

Application Layer

Processing Layer

Transport Layer

Perception Layer

A B

13

MQTT, and CoAP, facilitate efficient communication and data exchange. They play a

crucial role in building scalable, interoperable, and secure IoT ecosystems. Selecting

the appropriate architecture and protocol depends on specific use cases, emphasizing

the need for careful consideration in implementing IoT solutions that align with

performance, scalability, and security requirements.

1.4.2 IoT Device Connectivity: Architectures and Protocols

The IoT is only able to function properly and transfer data when all of the connected

devices are online and securely linked to a communications network. Standards and

protocols for the IoT start to become relevant here. Both IP and non-IP networks can

be used to link devices that are part of the IoT. IP network connections are highly

complicated and need an increase in memory as well as power from the IoT devices;

nevertheless, range is not an issue. On the other hand, non-IP networks have a range

constraint and need a far lower amount of power and memory than IP networks do.

1.4.3 IoT Protocol Architecture

The architecture of the IoT is dependent on the functioning and execution of its

components in various industries. The IoT is constructed on top of a fundamental

process flow, which has two main architectures: a 3-layer architecture and a 5-layer

architecture.

1.4.4 Layer IoT Architecture

The most fundamental architecture consists of three distinct layers. It is composed of

three layers: the perception layer, the network layer, and the application layer

respectively. The physical layer is known as the perception layer, and it is comprised

of all of the intelligent sensor-based devices that collect data from their surrounding

environment.

The network layer is in charge of establishing connections between the many devices

and applications that make up the IoT ecosystem. It is comprised of all of the wireless

and wired communication technologies that are currently available. After that, the

data is sent to the application layer for processing.

14

It is the responsibility of the application layer to provide the user with services that

are unique to the program. It describes a variety of applications that may be used to

implement IoT, including smart homes, smart cities, and health care.

1.4.5 Five-Layer IoT Architecture

The three-layer design has been expanded into a five-layer architecture figure 1.3

shows this by adding two more layers, the processing layer, and the business layer

respectively. In the 5-layer design, the perception and application layers function in a

manner that is analogous to the 3-layer architecture. Networking technologies such as

WiFi, Bluetooth, 3G, RFID, and NFC are utilized by the transport layer to convey the

sensor data from the perception layer to the processing layer and vice versa. The

processing layer, also known as the middleware layer, is responsible for storing,

analyzing, and processing large amounts of data delivered by the transport layer. This

layer uses a wide variety of technologies, including databases, cloud computing, and

Big Data processing modules. The whole IoT system, including apps, companies, and

the privacy of individual users, is managed by the business layer.

Figure 1.3: IoT Architecture (Lai, 2021)

The Transport layer, through networks including WiFi, 3G, LAN , Bluetooth, RFID,

and NFC, the transport layer moves sensor data from the perception layer to the

processing layer and back again. IoT architecture can be centralized or decentralized,

15

depending on the application requirements and scale. The design of the architecture

needs to consider scalability, interoperability, data integrity, and energy efficiency to

create a robust and reliable IoT ecosystem that can support a wide range of

applications and services.

1.4.6 Types of IoT Connections

When it comes to data communication, an IoT system utilizes one of four distinct

types of transmission channels. Device-to-device communication, often known as

D2D12 communication enables devices that are physically adjacent to one another to

talk to one another via wireless protocols such as Bluetooth, ZigBee, or Z-Wave. By

the use of a D2D connection, it is possible to create a link even in the absence of a

network in Figure 1.4.

Figure 1.4: Types of IoT Connections (Adel, 2020)

The deployment of an intermediate platform enables communication to occur between

devices and gateways at each stage of the network. The majority of the time, gateways

are employed for two distinct functions: first, to collect data from sensors and transmit

it to the appropriate data system; and second, to evaluate data and transmit it back to

the device if any problems are discovered while the data is being analyzed. Both of

these functions are essential to the operation of a gateway.

12Device-to-Device

16

When someone refers to “gateway-to-data systems communication,” they are

referring to the process in which data is sent from a gateway to the appropriate data

system. Communication between the many different data systems might take place

either within a data center or within the cloud itself. For this sort of connection, the

protocols need to be easy to put into action and uncomplicated to include programs

that are already in existence. They are required to have high availability, appropriate

capacity, and trustworthy disaster recovery capabilities.

Figure 1.5: Publish / Subscribe Architecture (Ansari, 2018)

Figure 1.5 shows MQTT13 Publish / Subscribe Architecture there are two types of IoT

protocols: Protocols for the network layer: and IoT network protocols that link

devices requiring medium to high amounts of electricity to the network. With this

protocol, it is possible to communicate data from one end of the network to the other

within the network. A few of the most common network protocols for the IoT are

HTTP14, LoRaWAN15, Bluetooth, and Zigbee.

Data protocols for the IoT: Data protocols for the IoT link low-power IoT devices.

These protocols are capable of providing end-to-end communication with the

hardware even in the absence of any Internet connection. Connection in the data

protocols of the IoT can be accomplished by either a wired or cellular network.

MQTT, CoAP16, AMQP17, XMPP18, DDS19 are some common IoT data protocols.

13 Message Queuing Telemetry Transport
14 Hypertext Transfer Protocol
15 Long Range Wide Area Network
16 Constrained Application Protocol
17 Advanced Message Queuing Protocol
18 Extensible Messaging and Presence Protocol
19 Data Distribution Service

17

IoT protocols and network standards: There is a wide variety of IoT protocols

available to cater to a variety of applications and needs. Yet, each has its own set of

benefits and drawbacks for a variety of IoT use cases. This research work will go

through some of the IoT protocols that are the most popular overall.

1.5 Cloud and Fog-Based Architectures

Recently, there has been a shift toward fog computing, a system architecture in which

network gateways and sensors perform some of the data processing and analytics.

Cloud and fog-based architectures are fundamental paradigms in modern computing.

Cloud computing involves centralized data processing in remote data centers, while

fog computing disperses computing resources to the edge of the network. Both play

key roles in supporting a wide range of applications, balancing data processing, and

enabling scalability in an increasingly interconnected world.

Cloud and Fog computing architectures are advanced paradigms for distributed

computing. Cloud computing typically involves centralized data centers for resource-

intensive tasks, while Fog computing extends this concept to the edge of the network,

closer to end-users and devices. Both offer unique advantages.

Cloud computing provides scalability, cost-efficiency, and vast resources for data

processing and storage. Fog computing complements this by enabling low-latency,

real-time processing and reducing network congestion, making it ideal for

applications like IoT and autonomous vehicles. These architectures also foster data

security and privacy concerns, which require careful management. Recent research

delves into optimizing the integration of Cloud and Fog, ensuring seamless

coordination between central and edge resources. This involves developing efficient

data transfer, task offloading, and orchestration techniques. Additionally, AI and

machine learning are integrated to enhance decision-making processes in these

architectures, paving the way for more intelligent, context-aware applications in

diverse domains like healthcare, smart cities, and Industry 4.0.

18

Figure 1.6: Cloud and Fog-Based Architectures (Gupta, 2016)

Figure 1.6 shows illustrate Fog architecture’s tiered approach, inserting security,

monitoring, and pre-processing layers between the physical and transport levels.

Power, resources, and services are all tracked by the monitoring layer. Filtering,

processing, and analytics of sensor data are carried out by the pre-processing layer.

Data replication, dissemination, and storage are just a few of the storage capabilities

offered by the temporary storage layer. The security layer also assures data integrity

and privacy and performs encryption and decryption. On the network’s edge,

monitoring and pre-processing are carried out before data is sent to the cloud. The

temporary storage layer in fog computing provides various storage capabilities,

including data replication, dissemination, and storage. It serves as a crucial

component for managing data within the fog environment. Additionally, the security

layer plays a vital role in ensuring data integrity and privacy. It performs encryption

and decryption operations to safeguard sensitive information.

Cloud and Fog-based architectures offer versatile solutions for diverse computing

needs. Cloud provides centralized, scalable, and reliable data processing, while fog

extends computing to the network edge, reducing latency.

19

1.6 Social IoT

SIoT20 evaluate social interactions between objects in the same manner that social

relationships between people are considered. SIoT represents the integration of IoT

technology with social networks and human interactions. It enables smart devices to

collect and share data, enhancing user experiences, enabling collaborative decision-

making, and fostering a deeper connection between the physical and digital worlds

through social engagement and data sharing. The three basic components of a SIoT

system are as follows:

• One can navigate the SIoT. We can begin with a single device and browse all

of the devices that are linked to it. New devices are simple to find,

and services utilize an IoT social network like this.

• There is a requirement for reliability between gadgets

• To analyse the social networks of IoT devices, we can use models similar to

those used for researching human social networks.

SIoT refers to the integration of social networking principles and techniques into the

IoT paradigm. It combines the power of social interactions and networked devices to

enhance communication, collaboration, and information sharing among IoT devices

and users.

20Social Internet of Things.

20

 Figure 1.7: IOT & FOG Computing (Gupta, 2016)

In SIoT, devices are considered social entities, and relationships between devices are

established based on trust, reputation, and user preferences. This social aspect enables

devices to interact and collaborate in a more intelligent and context-aware manner.

SIoT offers several benefits. It enables efficient device discovery, where devices can

be easily found and connected based on their social relationships. It promotes

information sharing and collaborative decision-making among devices, leading to

improved efficiency and productivity. Additionally, it enhances user experience by

providing personalized and socially influenced services. However, SIoT also presents

challenges such as security and privacy concerns, managing complex social networks

of devices, and developing appropriate social networking models for IoT

environments. Overall, the integration of social aspects into the IoT ecosystem

through SIoT has the potential to revolutionize the way devices interact, collaborate,

and share information, paving the way for more intelligent and socially aware IoT

applications in Figure 1.7.

21

Social IoT bridges the gap between the physical and digital realms by connecting IoT

devices with social interactions. It transforms data sharing, fosters collaborative

decision-making, and enriches user experiences. By integrating technology with

human connections, Social IoT has the potential to drive innovation, improve

communication, and create more personalized and interconnected digital ecosystems.

1.7 Implication of Fog Computing

Fog Computing is a promising paradigm that complements cloud computing by

extending computing and storage capabilities to the network edge. This methodology

focuses on leveraging fog computing to enhance the infrastructure of a smart city.

Smart cities are urban environments that integrate information and communication

technologies to optimize the efficiency of various systems, such as transportation,

energy, waste management, and public services. By utilizing advanced technologies

and data analytics, smart cities aim to improve the quality of life for citizens, enhance

sustainability, and enable better resource management.

The smart city concept opens up a new area to explore and It also brings new

challenges to implement and design it as a sustainable solution. The smart city has

great potential for economic growth and lifting the quality of life in cities. As

increasing numbers of citizens migrate to cities, the demand for services and

resources continues to increase. The World Bank predicts that over the next two

decades, India’s urban population will more than double to 33 % of the total

population. The emerging IoT introduces many challenges that cannot be handled by

today’s cloud computing. In this research work, we deal with the IoT Environment

features like low latency, high distribution, large-scale sensor network, mobility

support, and device heterogeneity. This proposed SMART FOG system allows us to

create a collaborative environment for IoT networks. In the proposed system, we are

going to implement a SMART FOG protocol-based technique which will allow Fog

nodes to share computing and storage power to IoT devices that have low

computational power within IoT network. The proposed system will be able to

schedule the tasks assigned to fog node for easy processing and efficient resource

management. The proposed work is focused on creating a resilient environment using

SMART FOG which will create trust in fog computing. As fog computing is in its

infancy, there are still many open challenges present. The SMART FOG will create

22

trust between fog clients and fog environment by providing fault-tolerant and secure

techniques for fog computing. This research will identify some of these challenges

and try to find the solution in proposed system.

Fog computing has attracted by huge number of researchers, so it is a trending topic

for research. The literature study motivates research in Fog Computing by introducing

a bright future and application of it. The researchers stated that Fog Computing will

the how today’s IoT and cloud computing are working. The researchers also stated the

challenges to be faced in the implementation of Fog Computing in real-life

applications. Currently, researchers are working on the implementation of fog for

commercial applications. The challenge for further studies and solutions from experts

is that we need to keep ourselves updated for online publications and updates from

OpenFog consortium related to Fog Computing.

According to author Sheikh (2023), Fog Computing's dynamic nature demands

innovative solutions for effective task scheduling. Integrating K-Means clustering

with fuzzy logic, addresses Fog's resource constraints, offering adaptability in task

allocation. Leveraging machine learning, our methodology optimizes execution time,

response time, and network usage by intelligently assigning tasks to Fog nodes.

1.8 Fog Computing Task Scheduling

Fog computing task scheduling refers to the process of efficiently allocating

computational tasks to fog nodes in a fog computing environment. It plays a crucial

role in optimizing resource utilization, reducing latency, and improving overall

system performance. Task scheduling in fog computing involves determining which

tasks should be executed, where they should be executed, and when they should be

executed. This decision-making process takes into account various factors such as the

computational requirements of tasks, the availability and capabilities of fog nodes,

network conditions, and user requirements. Efficient fog task scheduling involves

several considerations. These include load balancing, where tasks are evenly

distributed among fog nodes to avoid overloading or underutilization of resources.

Proximity-aware scheduling considers the geographic proximity of fog nodes to edge

devices to minimize communication delays and improve real-time processing

capabilities. Furthermore, energy-aware task scheduling focuses on optimizing energy

23

consumption by intelligently allocating tasks to energy-efficient fog nodes or

selectively activating certain nodes based on workload requirements.

Deadline-aware scheduling ensures that tasks with time constraints are scheduled

promptly, meeting their deadlines. Various scheduling algorithms and techniques are

employed in fog computing, such as heuristic-based algorithms, optimization

algorithms, and machine learning-based approaches. These algorithms aim to balance

the trade-offs between task performance, resource utilization, energy efficiency, and

other system objectives.

The study by Aimal (2022) addresses the challenges posed by traditional task

scheduling methods in Fog computing for latency-critical applications. By introducing

the "Critical Task First Scheduler", which prioritizes tasks based on their nature,

particularly focusing on critical tasks with larger MIPs21 sizes, the proposed

methodology aims to reduce latency, energy consumption, and network utilization.

Implemented in a healthcare scenario using the Fog simulator, the Critical task First

Scheduler, scheduler demonstrates superior performance compared to First Come

First Served, Shortest Job First, and cloud-only approaches. Simulation results

highlight the efficacy of the Critical task First Scheduler approach in enhancing

latency, energy efficiency, and network utilization for critical tasks

21 Million Instructions Per Seconds

24

Figure 1.8: Fog Computing Task Scheduling (Alizadeh, 2020)

Figure 1.8 shows the following categories can be used to categorize task scheduling

techniques in a fog computing environment are as follows:

• Static task scheduling methods

• Dynamic task scheduling methods

• Hybrid task scheduling methods

25

Overall, fog computing task scheduling plays a critical role in achieving efficient and

effective utilization of fog resources. By carefully managing task allocation and

considering various factors, fog computing systems can provide low-latency, energy-

efficient, and responsive services to edge devices, enabling a wide range of

applications in areas such as IoT, real-time analytics, and edge computing.

1.8.1 Static Scheduling Strategy

The task requirements must be available to the task scheduler before the initial cutting

scheduling strategy for static task scheduling approaches to work. Before beginning

any scheduling procedure, the task scheduler calculates the needs for each job. In this

case, the tasks are sent to the system without regard to the availability of computing

resources or the statuses of those resources. The First Come First Serve scheduling

approach and the round-robin method are the two most popular task-scheduling

techniques in this category. There is different static scheduling strategies as follows:

First Come First Served Method

The First Come First Serve CPU scheduling algorithm processes jobs in the order that

they arrive in the ready queue. Newly arrived processes are added to the tail of the

FIFO queue. The first process in the queue is scheduled first and removed from the

queue.

Max Min Method

Performs a linear transformation on the original data. This technique gets all the

scaled data in the range (0,1). The formula to achieve this is that Min-max

normalization preserves the relationships among the original data values.

Minimum Completion Time Method

This algorithm locates the task with minimum execution time and allocates the task to

the resource on a first come first served basis. Severe load imbalance is the major

issue in this algorithm. It does not consider the resource availability and its load.

Opportunistic Load Balancing Method

26

Is a static load balancing algorithm. OLB keeps all nodes busy, so don't think about

previous loads. However, OLB22 does not consider the execution time of the task on

this node.

Round Robin Method

 reduce a multi-class problem to multiple two-class problems by learning one

classifier for each pair of classes, using only training examples for these two classes,

and ignoring all others

Figure 1.9 shows static task scheduling approaches, the task requirements must be

known to the task scheduler before initiating any scheduling strategy. The scheduler

calculates the resource needs for each job before the scheduling process begins.

Consequently, tasks are sent to the system without considering the availability or

status of computing resources. Within this category, several task-scheduling

techniques are commonly employed.

Figure 1.9: Static Scheduling Strategy (Alizadeh, 2020)

One such method is the First Come First Served approach, where tasks are executed

in the order they arrive, with no consideration for their resource requirements or

priorities. Another technique is the round-robin method, which assigns each task a

fixed time slice for execution in a cyclic manner, regardless of their resource needs.

Additionally, there are other methods like the Max-Min Method, which allocates

resources to tasks based on maximum possible resource utilization, and the Min-Min

Method, which focuses on minimizing the completion time of the smallest tasks.

Furthermore, the Minimum Completion Time Method prioritizes tasks with the

22 Opportunistic load balancing

27

shortest expected completion times, and the Opportunistic Load Balancing Method

dynamically allocates resources based on real-time availability and task demands.

Each method has its advantages and limitations, and the choice of a specific task

scheduling technique depends on the nature of the tasks, the system's resource

capabilities, and the desired performance objectives.

1.8.2 Dynamic Task Scheduling Methods

Based on the task's arrival at a specific time and the status of the system machine,

dynamic scheduling methods are created. These techniques might take into account a

single task at a time or several tasks at once.

Cross Entropy

Cross-entropy, also known as logarithmic loss or log loss, is a popular loss function

used in machine learning to measure the performance of a classification model.

Namely, it measures the difference between the discovered probability distribution of

a classification model and the predicted values. As per-word cross-entropy is the

average number of bits required per word, which has the advantage that you can

interpret it without knowing. randomly. Perplexity is closely related to per-word

cross-entropy; it just undoes the log. One advantage is that you can interpret it without

knowing the base of the log.

Genetic Algorithm

The genetic algorithm is a method for solving both constrained and unconstrained

optimization problems that are based on natural selection, the process that drives

biological evolution. The genetic algorithm repeatedly modifies a population of

individual solutions. In computer science and operations research, a genetic algorithm

GA is a metaheuristic inspired by the process of natural selection that belongs to the

larger class of evolutionary algorithms EA. Genetic algorithms are commonly used to

generate high-quality solutions to optimization and search problems by relying on

biologically inspired operators such as mutation, crossover, and selection. Some

examples of GA applications include optimizing decision trees for better

performance, solving sudoku puzzles, hyperparameter optimization, causal inference,

etc.

Immune Algorithm

28

The immune algorithm is a new optimization algorithm imitating the immune system

to solve the multimodal function optimization problem. This paper offers a newly

modified immune algorithm based on several former immune algorithms and shows

its ability to solve the multimodal function optimization problem. A digital immune

system is a software development practice for safeguarding applications and services

from software bugs and security flaws.

Particle Swarm Optimization

An iterative optimization technique that was inspired by the behavior of social

animals such as birds or fish. It involves a group of particles, or agents, that move

through a search space and try to find the optimal solution to a given problem. In

computational science, particle swarm optimization (PSO) is a computational method

that optimizes a problem by iteratively trying to improve a candidate solution

concerning a given measure of quality.

Ant Colony Optimization

In computer science and operations research, the ant colony optimization algorithm is

a probabilistic technique for solving computational problems that can be reduced to

finding good paths through graphs. Artificial ants stand for multi-agent methods

inspired by the behavior of real ants. The pheromone-based communication of

biological ants is often the predominant paradigm used. Combinations of artificial

ants and local search algorithms have become a method of choice for numerous

optimization tasks involving some sort of graph.

Figure 1.10: Dynamic Task Scheduling (Alizadeh, 2020)

29

According to Figure 1.10, the dynamic scheduling approach reduces computing costs

and long-term service latency. It utilized both a double deep Q learning-based task

scheduling method and the reinforcement learning technique. The allocation of user

tasks to virtual machines has previously been studied through studies that took into

account the propagation, waiting, transmission, and execution delays of various

activities. The experimental findings supported the methodology as superior to the

existing algorithms.

Figure 1.11: Hybrid Task Scheduling Methods (Wang, 2019)

The combination of both Static Scheduling Strategy and Dynamic task scheduling is

shown in Figure 1.11. Static scheduling is a strategy where tasks are assigned to

resources before program execution and remain fixed during runtime, while dynamic

task scheduling involves assigning tasks based on real-time conditions and workload

variations. Static scheduling strategies, such as round-robin or block scheduling,

provide predictable execution patterns but may not adapt well to dynamic changes.

On the other hand, dynamic task scheduling strategies, like work-stealing or task

prioritization, dynamically adjust task assignments to optimize performance,

considering factors like load balancing and task dependencies. Dynamic scheduling

offers flexibility but introduces overhead due to runtime decisions and coordination.

30

1.8.3 Hybrid Task Scheduling Methods

Hybrid task scheduling methods in fog computing combine multiple approaches or

techniques to optimize task allocation and resource utilization. These methods

leverage the strengths of different scheduling strategies to address the unique

challenges and requirements of fog computing environments.

One common approach is to combine centralized and decentralized scheduling

techniques. In centralized scheduling, a central controller or orchestrator is

responsible for making task allocation decisions based on a global view of the system.

Decentralized scheduling, on the other hand, distributes the task allocation decision-

making process among fog nodes themselves. Hybrid methods may use a combination

of both approaches, with the central controller handling high-level task allocation

decisions and individual fog nodes making local decisions based on their local

knowledge and resources.

Another hybrid approach is to combine static and dynamic scheduling. Static

scheduling involves pre-determining task assignments based on static parameters such

as task characteristics and node capabilities. Dynamic scheduling, on the other hand,

adjusts task assignments in real-time based on changing system conditions and

workload demands. Hybrid methods can utilize static scheduling for long-term task

allocation planning while incorporating dynamic scheduling to adapt to dynamic

changes in the system.

Furthermore, hybrid methods may integrate heuristic algorithms with optimization

techniques. Heuristic algorithms provide fast and approximate solutions by utilizing

predefined rules or guidelines. Optimization techniques, such as genetic algorithms or

particle swarm optimization, aim to find optimal solutions by exploring the search

space. Hybrid methods leverage the speed and simplicity of heuristics for initial task

allocation and use optimization techniques to refine and improve the initial solutions.

Hybrid task scheduling methods in fog computing are designed to strike a balance

between efficiency, scalability, adaptability, and system performance. By combining

different scheduling approaches, these methods can effectively handle the complexity

and variability of fog computing environments, leading to optimized task allocation,

reduced latency, improved resource utilization, and enhanced overall system

performance.

31

1.9 Fog Computing Challenges

Fog computing faces several challenges that need to be addressed for its successful

implementation and operation. Overcoming the challenges requires collaborative

efforts from researchers, industry stakeholders, and standardization bodies to innovate

and develop solutions that maximize resource utilization, enhance security, promote

interoperability, scale the system, reduce energy consumption, and optimize task

allocation. By addressing these challenges, fog computing can realize its potential in

enabling efficient and reliable edge computing solutions for various applications.

These challenges include:

1.9.1 Drones

Drones can be used in ITS23 applications not just as dumb sensors but also as smart

fog nodes, with external devices like the Raspberry Pi, Intel Edison, and ROCK64

placed on the top of the drone to aid in traffic monitoring by seeing and locating

errant cars. Similar to this, a drone can serve as a flying policeman in tele-surveillance

applications, able to identify and apprehend criminals. Therefore, further research

must be done to determine how drones can be used in a fog computing architecture.

1.9.2 Machine learning

Applications like ITS, healthcare, and tele-surveillance require real-time data

processing and speedy replies, which might be given by implementing machine

learning in fog nodes. To make judgments based on the information gathered from the

sensors, the fog nodes must be intelligent enough. We are proposing a more robust

approach that integrates drones with machine learning and extends it to capture the

misbehaving cars and the driver's face identification. An earlier study recommended

utilizing machine learning in fog nodes to anticipate busy locations.

1.9.3 Security and Privacy

The sensors' limited resources prevent a large computation cryptography approach

from being used. The current priority is to secure the system and duty of the fog nodes

to prevent the spread of clouds with harmful packets. Using the Diffie-Hellman

problem for cryptography regarding the use of hash collision cryptography for traffic

security ITS applications that use a light system and fog devices signal light.

23Intelligent Transportation System

32

Additionally, fog nodes must confirm the queries made by IoT devices when the

devices themselves must confirm the security of the fog node.

1.9.4 Autonomic Fog Management and Connectivity

To meet the real-time processing needs of ITS, tele-surveillance, and healthcare

applications, fog devices must be able to control themselves independently.

Additionally, it poses a problem to maintain a smooth connection between all

deployed devices in the fog computing architecture because of the expectation that

they would be diverse.

Fog computing faces several challenges that require collaborative efforts to address

and overcome. These challenges include the integration of drones as smart fog nodes

for applications such as traffic monitoring and tele-surveillance, the implementation

of machine learning in fog nodes for real-time data processing, ensuring security and

privacy despite limited sensor resources, and achieving autonomic fog management

and connectivity for efficient and smooth operations. Overcoming these challenges is

crucial for realizing the potential of fog computing in enabling efficient edge

computing solutions for various domains. Further research, innovation, and

standardization efforts are necessary to tackle these challenges and unlock the full

capabilities of fog computing.

1.10 Machine Learning Algorithms

To avoid imprecise or erroneous predictions, the data collected / generated must go

through pre-processing, merging, modifying, and learning. the computational intensity

and speed of a specific technique are two significant characteristics to consider while

employing ML. techniques. The best algorithm is chosen based on the user

application and should be fast enough to track changes in the input data and provide

the desired output in a reasonable amount of time. ML algorithms create a

mathematical model using sample data, known as "training data," on which to make

predictions or choices. The training phase of supervised ML classifier development

involves training a specific classifier from a set of labeled data. As the size of the

training data increases, so do the classifiers. Some of the most popular ML algorithms

are detailed further below.

1.10.1 Naive Bayes

33

Based on Bayes' theorem, a naive Bayes classifier is a probabilistic classifier that

works by assuming that no pair of features are dependent. Naive Bayes is a simple but

powerful machine learning algorithm based on Bayes' theorem and the assumption of

independence between features. Despite its simplicity, Naive Bayes is often effective

and computationally efficient, so it is often used in a variety of classification tasks. It

is particularly suitable for text classification and spam filtering.

1.10.2 Logistic Regression

Logistic regression is a machine learning algorithm commonly used for binary

classification tasks, where the goal is to predict whether an instance belongs to one of

two classes. Despite its name, logistic regression is more of a classification algorithm

than a regression algorithm. Logistic regression is a fundamental machine learning

algorithm that is widely used in various applications such as medical diagnostics,

spam detection, and credit scoring due to its simplicity, interpretability, and

effectiveness. Although it is designed for binary classification, it can be extended to

handle multiple classes through techniques such as one-vs-rest regression and softmax

regression.

1.10.3 Sequential Minimal Optimization

SMO is a machine learning algorithm designed to train SVMs in supervised learning.

SVM is used for classification and regression tasks, and SMO is a specific algorithm

used to efficiently solve the optimization problems associated with training these

models. Although SMO is an important algorithm for SVM training, there are

alternative approaches and optimizations to solve SVM problems, such as the widely

used libsvm library that implements more general optimization techniques. Still,

understanding SMO provides insight into the support vector machine training process.

1.10.4 Instance-Based Learner

IBk is a machine learning algorithm used for classification and regression tasks. It is

part of the family of k-NN¹ algorithms, where the prediction of a new instance is

based on the majority class for classification or mean for regression of the k-nearest

neighbors in a function space. The main feature of the IBk algorithm is Instance-based

learning. This means that no explicit model is created during training. Instead, save

the training instance and use it to make predictions for new instances. In K-NN

Predictions for new instances are determined by examining the class labels for

34

classification or values for regression of the k-nearest neighbors in the training data

set. Small values of k give the model that is more flexible and sensitive to noise, and

large values of k gives the model that is smoother and less sensitive. Regression uses

the average of the k nearest neighbor target values as the prediction. IBk can be

computationally expensive, especially for large datasets, as it must calculate the

distance for each prediction. It is often more efficient when the dataset is small. IBk

performance can be sensitive to feature scaling. Therefore, it is often recommended to

normalize or standardize features to obtain a similar scale. IBk is a simple but

effective algorithm, especially in situations where the decision boundary is complex

and not easily captured by parametric models. It is widely used in various fields such

as pattern recognition, classification, and regression.

1.10.5 K-Star

K Star was developed in 2009. K Star was originally implemented as part of DiPro

toolset for generating counterexamples in probabilistic model checking. K. Star A

directed search algorithm also called K. It Finds the k shortest paths between the

given pair of vertices in the given directed weighted graph. K Star works on the fly.

This means that the graph does not have to be made explicitly available and stored in

main memory. K Star can be also be controlled using a heuristic function.

1.10.6 Multi Class Classifier

A multiclass classifier is a type of machine-learning algorithm that can assign

instances to one of three or more classes. Unlike binary classifiers, which distinguish

between two classes such as positive or negative, multiclass classifiers handle

scenarios where there are multiple possible classes. Some of the common Multi Class

algorithms are Support vector machine, Random Forest, K Nearest Neighbours,

Neural Networks and Decision Trees. The choice of algorithm often depends on

factors such as the size and type of the dataset, computational efficiency, and the

desired interpretability of the model.

1.10.7 Random Forest

A decision tree-based supervised machine learning approach called RF depends on

values from a random vector that is sampled separately and with the same distribution

35

across all of the trees in a forest. By averaging the results, this ensemble method

lowers over-fitting and bias-related error, leading to superior outcomes. Random

Forest is a powerful and versatile machine learning algorithm that belongs to the

ensemble learning category.

Ensemble learning combines the predictions of multiple models to create a more

robust and accurate model. Random forests are particularly effective for both

classification and regression tasks. The main features and characteristics of the

Random Forest algorithm are: Ensemble of Decision Trees: Random Forest is an

ensemble of Decision Trees. A decision tree is a discrete model that makes

predictions based on a series of hierarchical decisions. Random forests create multiple

decision trees and combine their predictions during the training phase. During the

training process. Random Forest randomly selects a subset of the training data (with

permutations) to train each decision tree. This process is called bootstrapping.

Additionally, at each decision point in the tree, a random subset of features is also

considered. Random Forest uses a technique called bagging, where each decision tree

is trained independently on a different subset of the data. The final prediction is

determined by aggregating the predictions of all trees. By training multiple decision

trees on different subsets of data and features, random forests become more robust

and less prone to overfitting compared to a single decision tree. Overfitting occurs

when a model learns the training data well enough but is unable to generalize to new,

unseen data. Random Forest provides a measure of feature importance.

Analysing the contribution of each feature across multiple trees can help determine

which features have the greatest impact on predictions. The training of individual

decision trees in a random forest can be performed in parallel, resulting in a scalable

algorithm that can efficiently process large amounts of data. Random forests tend to

be less sensitive to outliers in a dataset. Because each tree is trained on a subset of the

data, the impact of outliers is reduced. Random Forest has been implemented in

various machine learning libraries such as Scikit-Learn in Python, making it highly

accessible and widely used.

1.10.8 Random Tree

Random Tree is a term often associated with two different machine learning

algorithms, Random Forest and Highly Randomized Trees Extra Trees. Both

36

algorithms fall into the category of ensemble learning and are used for classification

and regression tasks. Both Random Forest and Extra Trees are powerful algorithms

that leverage the concept of ensemble learning to improve predictive performance.

They are widely used in various applications such as classification, regression, and

feature importance analysis. The choice between random forests and extra trees may

depend on the specific properties of your data and the desired trade-offs between

computational efficiency and model accuracy.

1.10.9 Multi-Layer Perceptron

It is fully connected dense layers, which transform any input dimension to the desired

dimension. A multi-layer perception is a neural network that has multiple layers. To

create a neural network, we combine neurons so that the outputs of some neurons are

inputs of other neurons. A multi-layer perceptron has one input layer and for each

input, there is one neuron (or node), it has one output layer with a single node for each

output and it can have any number of hidden layers and each hidden layer can have

any number of nodes.

1.10.10 k-Nearest Neighbors

The k-nearest neighbor algorithm is a non-parametric, supervised learning classifier,

which uses proximity to make classifications or predictions about the grouping of an

individual data point. It is one of the popular and simplest classification and

regression classifiers used in machine learning today. While the KNN algorithm can

be used for either regression or classification problems, it is typically used as a

classification algorithm, working off the assumption that similar points can be found

near one another.

1.10.11 Supervised

Giving training data that has previously been "known" or "labeled" with the proper

response and consists of N input-output pairs (X,Y) is how supervised learning

functions. The ANN then generates an output 2 for each unknown X, which is then

compared against Y using an error cost or distance function. Finally, an iterative

process is used to minimize this mistake. Image Classification: Training with

image/label datasets are examples of supervised learning methods. A new image is

then presented later with the hope that the computer will pick up on the new object.

37

Regression: Giving the system marked historical data so it can forecast the future

result of an identical circumstance.

1.10.12 Unsupervised

Using unsupervised learning methods, it self-organizes and finds hidden patterns in

unlabeled input data to create neural networks. It can analyse data without sending an

error signal so that the potential fix can be assessed. Unsupervised learning can

occasionally be useful since it allows the algorithm to search the past for patterns that

weren't previously taken into account. Unsupervised learning is necessary because

manually inspecting huge datasets like those for speech recognition is highly

expensive. Clustering is a very basic but well-known example of unsupervised

learning.

1.10.13 Semi-Supervised

This category is a hybrid of the previous two. The algorithm is trained on a dataset

that contains both labeled and unlabeled data. It works by taking enormous amounts

of input data and labeling only a subset of it as training data. Reinforcement learning,

a related strategy, provides feedback to guide the computer program in interacting

with a dynamic environment. In this approach, a model is deployed using a small set

of labeled samples and a larger set of unlabeled samples. The goal is to use labeled

data to make predictions about unlabeled data and use the additional information to

improve model performance.

1.11 Fog Computing Real-Time Applications

Fog computing offers significant advantages in real-time applications. It is often

utilized in IoT applications that need real-time data. It functions as a more advanced

kind of cloud computing. It serves as a conduit between end users and the cloud. It

may be utilized in both scenarios—between humans and machines or between

machines and machines.

1.11.1 Mobile Big Data Analytics

Data acquired by IoT devices is gathered in large quantities, making cloud storage

ineffective. Fog computing, which uses nodes that are considerably closer to end

systems than cloud computing, is advantageous in such circumstances. It also gets rid

of additional issues like delays, traffic, processing speed, delivery time, response time,

38

data processing, data storage, and data transportation. IoT applications of the future

may use fog computing.

1.11.2 Dams Safety

Dam sensors transmit data to the cloud, where it is examined and if there are any

anomalies then officials are notified the issue here is the potentially deadly

information delay. Fog is utilized to address this, and because it is located close to the

end systems, it is simpler to send data, evaluate it, and provide immediate response. In

dam monitoring scenarios, sensors play a vital role in collecting data related to dam

conditions, such as water level, pressure, temperature, and structural integrity.

Traditionally, this data was transmitted directly to the cloud for analysis and decision-

making. To address this challenge, fog-based architecture, also known as edge

computing, is employed. Fog nodes, placed near the dam sensors, act as local

processing hubs. These fog nodes receive the data from the sensors and perform real-

time analysis and anomaly detection locally. By doing so, they significantly reduce

the data transmission time to the cloud and enable swift evaluation of dam conditions.

1.11.3 Smart Utility Service

Here, saving time, money, and energy is the major goal. Data analysis must be

conducted every minute on current data. Since end users are primarily involved, cloud

computing may not be useful. These programmers daily notify users of which

appliances utilize the least amount of energy. Fog is an excellent option since IoT

generates a lot of network traffic that makes it difficult to transfer other data.

1.11.4 Health Data

When information needs to be shared between hospitals, strict security, and data

integrity are requirements. Fog may be used to achieve this because the data is

conveyed locally. The laboratories may utilize these fog nodes to update the patient's

lab information, which the adjacent hospitals can simply access. Since any clinician

may access this unified information, patients do not need to carry hard copies of their

medical histories or health concerns.

1.11.5 Smart Cities

The idea of a "smart city" has generated a great deal of attention in recent years

because it promises to improve the quality of life. An urban setting known as a "Smart

39

City" is one in which several sectors work together to produce sustainable outcomes

by analyzing real-time data. Building smart cities presents the problem of assuring

accuracy and speed in reaction times when assessing the condition of infrastructure

components like gas and oil pipelines, subways, and roadways. Additionally, the

enormous amount of data the sensors produce creates problems with big data

processing.

1.11.6 Tele-Surveillance

The concept of placing fog nodes next to CCTV24 cameras at shopping malls and

railway stations to get data from them to identify hazards like trespassing in security

zones and gunshots. A video content management system is employed in the fog

nodes to process and store the footage for the threat detection process.

Fog computing offers numerous benefits for real-time applications, particularly in the

context of the IoT. It serves as an advanced form of cloud computing, acting as a

bridge between end users and the cloud. Fog computing finds relevance in various

scenarios, including human-machine and machine-machine interactions. Some

notable real-time applications of fog computing include mobile big data analytics,

ensuring dam safety through immediate data analysis and response, smart utility

services for efficient energy consumption, secure health data exchange between

hospitals, the development of smart cities for sustainable outcomes, and tele-

surveillance systems for threat detection. Fog computing provides advantages such as

reduced delays, improved processing speed, enhanced data storage and transportation,

and localized data communication, making it a valuable solution in these real-time

scenarios.

24Closed-Circuit Television

