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To improve services and quality of life for citizens and visitors, several cities have 

recently made progress toward becoming smart cities. These cities now have 

improved resource utilization, increased environmental protection, enhanced 

infrastructure operations and maintenance, and robust safety and security measures. 

To improve services and performance in their various sectors, smart cities rely on 

implementing new and existing technologies and various optimization techniques. 

The IoT1, FOG computing and cloud computing are a few of the technologies 

assisting smart city applications. These three can be combined into one system, an 

integrated IoT-Fog-Cloud system, to create a sophisticated platform for creating and 

managing various kinds of smart city applications. With the help of this platform, 

applications will be able to deliver the best functionality and performance possible by 

utilizing the best features of IoT gadgets, FOG nodes, and cloud services. Numerous 

opportunities for improving and optimizing applications in the fields of energy, 

transportation, healthcare, and other industries will be presented by the use of this 

strong platform. The improvised SMART FOG system design would be the main 

focus of this research project. 

1.1 Fog Computing 

Fog computing is referred to as a distributed computing paradigm that essentially 

extends the cloud's services to the network's edge. According to Cisco, Fog 

computing is a continuation of the cloud computing paradigm from the network's core 

to its edges. It makes networking, computing, and storage between end devices and 

conventional cloud servers easier. Fog computing uses both the cloud and the edge 

devices that are situated between end devices and cloud servers to run applications 

rather than only using the cloud for this purpose. Edge and cloud computing are both 

benefits of fog computing. While making use of edge devices' proximity to the 

endpoints, it also uses the cloud's on-demand scalability. 

By effectively exploiting the resources present at the edge nodes to do partial 

computing and by performing filtering operations in the nodes, it essentially lessens 

the strain on the cloud server. Fog computing is typically confused with two ideas in 

particular. Mobile Edge Computing and Mobile Cloud Computing are these ideas. 

 
1Internet of Things 
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MCC2 essentially contends that data processing and storage are carried out on a cloud, 

away from mobile devices. As a result, it transfers data and processing power from 

individual mobile devices to the cloud. MEC3 is a network architecture concept that 

extends cloud computing capabilities to the edge of the network. It brings 

computation, storage, and networking resources closer to the end-user or device, 

reducing latency and improving overall system performance. MEC enables the 

execution of applications and services at the edge of the network, closer to where the 

data is generated and consumed. A cloudlet, on the other hand, is a concept related to 

edge computing and MEC. It refers to a small-scale data center or server cluster 

deployed at the edge of the network, typically near mobile devices or end-users. 

Cloudlets provide computational resources and services to nearby devices, offering 

low-latency access to data and applications. 

In comparison, MEC is a broader term that encompasses the concept of cloudlets. 

MEC involves deploying computing capabilities at various points in the network, such 

as base stations, access points, or edge routers, whereas a cloudlet specifically refers 

to a small-scale server cluster. Cloudlets are one implementation of MEC, but MEC 

can also involve distributed edge computing without using dedicated cloudlet 

infrastructure. It may be viewed as a more focused version of the cloud computing 

concept. It resembles a cloud server that is situated at the edge of a mobile network. 

Fog computing combines these two ideas with some of its characteristics to increase 

its dependability and utility. 

1.2 Fog Computing Architecture 

The bandwidth, particularly on cellular networks, is a significant issue with cloud 

computing. As the IoT grows and more physical devices are wirelessly connected, the 

issue will only become worse. This issue is resolved by Fog computing, which stores 

data locally on computers and other gadgets known as fog nodes. Any device having 

computation, storage, and network connection, such as handheld devices, tablets, PCs, 

routers, etc., can be used as a fog node.  

 
2Mobile Cloud Computing 
3Mobile Edge Computing 
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Figure 1.1:  Fog Computing Architecture (Lai, 2021) 

Figure 1.1 shows Fog-based architecture, fog nodes, also known as edge devices or 

fog devices, are distributed throughout the network, closer to the data sources and 

end-users. These fog nodes can be various devices such as routers, switches, access 

points, edge servers, IoT devices, or other computing resources. The architecture 

extends the capabilities of cloud computing by providing localized data processing, 

storage, and analytics at the edge of the network. These fog nodes are controlled by 

the Fog Data Service, which performs a variety of functions like data reduction, data 

virtualization, data control and security, and edge analytics. Additionally, data might 

be uploaded to the cloud for long-term analyses. 

Kopras (2023) discussed that the widely adopted cloud computing paradigm is 

evolving with the integration of fog computing, placing computing nodes in closer 

proximity to end-users to meet stringent latency requirements. However, effective 

task offloading, considering transmission and computation energy consumption, poses 

challenges. Task allocation becomes intricate due to the multitude of arriving tasks 

with diverse computational, communication, and delay requirements, alongside a 

variety of computing nodes with differing capabilities. The research work introduces 

an optimal task allocation procedure aimed at minimizing energy consumption for 
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wirelessly connected users in a network comprising Fog Nodes located at Access 

Points and Cloud Nodes. The assignment of Access Points and computing nodes to 

offloaded tasks, along with Fog Node operating frequencies, is optimized using a 

Mixed-Integer Nonlinear Programming approach. Realistic energy consumption and 

delay models, along with their pertinent parameters reflecting device characteristics, 

are employed. Results indicate the profitability of distributing task processing among 

multiple Fog Nodes and the cloud, often selecting distinct nodes for transmission and 

computation. The proposed algorithm demonstrates superior performance, achieving 

the lowest energy consumption and task rejection rate compared to alternative 

allocation strategies. Additionally, a heuristic algorithm is presented, decoupling 

wireless transmission optimization from implemented computations and wired 

transmission, providing optimal or near-optimal solutions across various scenarios. 

1.3 Issues Related to Fog Computing 

Cloud computing is expanded by Fog computing, which also affects IoT. These 

gadgets, also known as fog nodes, can be set up anywhere there is a network 

connection. Fog computing provides extra storage capabilities at the periphery to 

handle the demands. As a result, the Fog server must modify its services, which 

increases administration and maintenance expenses. The operator must also deal with 

the following problems. 

1.3.1 Privacy  

Because wireless dominates fog computing, network privacy is a major challenge. 

The network operator manually creates settings, deploys fog nodes at the edge of the 

internet, and incurs significant maintenance costs. The exposure of personal 

information when utilizing networks is receiving more attention. The Fog nodes have 

easier access to the end consumers. Because of this, Fog nodes gather more sensitive 

data than faraway clouds. To address these problems, encryption techniques like 

HAN4  might be applied. 

 

 

 

 
4Home-Area Network 
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1.3.2 Network Security 

Fog networks may be vulnerable to various network-level attacks, such as Denial of 

Service, Man-in-the-Middle, or network sniffing attacks. It is crucial to implement 

robust network security measures, including firewalls, intrusion detection systems, 

and secure communication protocols, to detect and prevent these attacks and protect 

the integrity and availability of the network. Fog nodes and IoT devices connected to 

the fog network can be targets for exploitation and compromise. Weak device 

security, such as default or easily guessable passwords, outdated firmware, or 

unresolved vulnerabilities, can lead to unauthorized access and control. Implementing 

secure device configurations, regular security updates, and strong security policies can 

mitigate these risks. 

1.3.3 Network Management  

Network management in Fog computing refers to the processes, tools, and strategies 

used to efficiently control, monitor, and maintain the network infrastructure and 

devices in a fog computing environment. Fog computing introduces additional 

complexity to network management due to the distributed nature of the architecture 

and the heterogeneity of devices involved. Efficient network management in fog 

computing is crucial to ensure the reliable and secure operation of the fog network. It 

involves continuous monitoring, optimization of network performance, resource 

allocation, configuration management, fault handling, and security measures to 

maintain a robust and scalable fog computing environment. Fog computing 

environments require continuous monitoring of network performance to ensure 

efficient and reliable service delivery.  

Network administrators need to monitor network traffic, latency, bandwidth 

utilization, and other performance metrics to identify bottlenecks, congestion, or 

potential issues that could impact the quality of service. Real-time monitoring tools 

and analytics are employed to proactively manage and optimize network performance. 

If SDN5 and NFV6 approaches SD are not used, controlling the network, the fog 

nodes, and the connections between each node would be difficult when linked to 

heterogeneous devices. 

 
5 Software-Defined Networking 
6 Network Function Virtualization 
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1.3.4 Placement of Fog Servers 

The placement of fog servers requires careful consideration to ensure optimal 

performance and cost-effectiveness for the area. One approach to reducing 

maintenance costs is to thoroughly assess the capabilities and workload of each server 

node before deployment. Before deploying fog servers, a comprehensive analysis 

should be conducted to understand the specific needs and requirements of the area. 

This analysis can involve evaluating factors such as network traffic patterns, latency 

requirements, data processing demands, and the distribution of edge devices. By 

examining the workload completed by each server node, it becomes possible to 

identify the areas where fog servers would be most beneficial. This assessment helps 

in determining the optimal placement of Fog servers, ensuring that they are 

strategically located to reduce latency and efficiently process data closer to the source. 

Additionally, considering the proximity of Fog servers to edge devices can help 

minimize data transmission delays and enhance real-time processing capabilities. 

Placing Fog servers near areas with high concentrations of edge devices can improve 

response times and reduce network congestion. Furthermore, it is essential to assess 

the scalability and flexibility of Fog server deployments. As the needs of the area 

evolve, Fog servers should be easily adjustable and expandable to accommodate 

changing demands. 

Effective placement of fog servers involves analyzing the workload of server nodes, 

considering network traffic patterns, optimizing proximity to edge devices, and 

ensuring scalability. By carefully considering these factors, it is possible to deploy fog 

servers in a manner that meets the needs of the area while minimizing maintenance 

costs. 

1.3.5 Delay in Computing 

Delays in computing can have significant impacts on the efficiency and performance 

of various services and applications that rely on data processing. One of the primary 

reasons for delays is the aggregation of data. When data from multiple sources is 

collected and combined for processing, it may take time to complete the aggregation 

process, leading to delays in computing. Additionally, resource overuse can 

exacerbate the delay issue. Fog servers, which are responsible for processing data 

locally, may become overloaded with tasks, leading to slower processing times. This 
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resource constraint can hinder the effectiveness of Fog computing services, making 

them less responsive and efficient. To address these challenges and reduce delays in 

computing, it is essential to implement efficient data aggregation techniques. Data 

should be aggregated in a manner that minimizes processing time while ensuring the 

accuracy and integrity of the information. This involves optimizing algorithms and 

strategies for data aggregation to achieve faster processing. 

Furthermore, Fog nodes, which are distributed computing resources, should be 

carefully managed to avoid resource overuse. Scheduling algorithms that prioritize 

critical tasks and consider the mobility of Fog nodes can help distribute the processing 

load more effectively. By using a priority and mobility paradigm in scheduling, fog 

nodes can be dynamically allocated based on their availability and proximity to data 

sources, reducing delays and improving overall performance. Moreover, optimizing 

the communication and networking infrastructure between fog nodes and data sources 

is crucial. Efficient data transmission protocols and network configurations can 

minimize latency and ensure timely data delivery to Fog servers for processing. 

Overall, addressing the delay in computing in fog environments requires a 

comprehensive approach that involves optimizing data aggregation, managing 

resources effectively, and improving communication infrastructure. By doing so, Fog 

computing services can offer faster and more responsive data processing, enhancing 

the overall user experience and system performance. 

1.3.6 Energy Consumption 

In Fog computing settings where multiple fog nodes are used, the distribution of 

computing tasks can result in increased energy consumption. To address this issue, 

reducing energy usage becomes crucial. This can be achieved through various 

strategies, such as employing energy-efficient hardware components, implementing 

dynamic resource allocation techniques, utilizing sleep mode and power management 

features, adopting energy-aware task scheduling algorithms, implementing data 

compression and aggregation methods, monitoring energy consumption, and 

exploring the integration of renewable energy sources. By implementing these 

measures, fog computing environments can minimize energy consumption, improve 

sustainability, and reduce long-term energy costs. 
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Fog computing, while offering numerous benefits, faces challenges in terms of 

network security, privacy, interoperability, resource management, and scalability. 

Network security and privacy concerns arise due to the distributed nature of fog 

computing, necessitating robust security mechanisms and encryption techniques to 

protect sensitive data. The heterogeneity of Fog nodes and edge devices poses 

interoperability challenges, requiring standardization efforts and protocols for 

seamless communication and device management. Resource management and load 

balancing become complex with increasing numbers of devices and applications, 

necessitating dynamic resource provisioning and monitoring. Additionally, scalability 

becomes crucial to handle the growing demands of Fog computing, requiring scalable 

architectures and mechanisms for efficient resource allocation. Addressing these 

issues through effective security measures, interoperability standards, resource 

management techniques, and scalable architectures is essential for the successful 

implementation and operation of Fog computing systems. 

Fog computing offers substantial benefits but also faces several issues. Security is a 

paramount concern as distributing computing resources closer to the edge increases 

the attack surface. Interoperability challenges persist among diverse IoT devices and 

fog nodes, hindering seamless data exchange. Resource allocation and load balancing 

are complex due to dynamic workloads. Privacy issues arise from the vast data 

generated and processed at the edge. Standardization efforts, security protocols, and 

robust management systems are crucial to address these challenges and unlock the full 

potential of fog computing, ensuring it can efficiently support IoT applications while 

safeguarding data and systems. 

1.4 IoT-Based Architectures and Protocols 

IoT-based architectures and protocols are essential components that enable the 

seamless integration and communication of various devices and systems in the IoT 

ecosystem. These architectures and protocols play a crucial role in ensuring efficient 

data exchange, interoperability, and security in IoT applications. 

1.4.1 Three and Five-Layer Architectures 

The IoT is a transformative concept that envisions a network of interconnected 

devices, sensors, and systems communicating and exchanging data to provide 

innovative services and valuable insights. In the realm of IoT architecture, two 
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common frameworks are the Three-Layer Architecture and the Five-Layer 

Architecture. Accordingly, Figure 1.2 shows Three-Layer Architecture comprises the 

Perception Layer, where data is collected from IoT devices and sensors; the Network 

Layer, responsible for facilitating communication between devices and data 

processing systems; and the Application Layer, where data is processed and 

transformed into meaningful insights. On the other hand, the Five-Layer Architecture 

presents a more comprehensive model with the addition of the Middleware Layer, 

which acts as an intermediary for data normalization and transformation, and the 

Business Layer, where business logic and decision-making occur based on insights 

generated from the Application Layer. Both architectures play a crucial role in 

organizing the flow of data and services within the IoT ecosystem, catering to diverse 

use cases and providing a structured framework for the successful implementation of 

IoT solutions. The choice between these architectures depends on the specific 

requirements and complexity of the IoT application at hand. Three-layer design was 

first used in the early stages of this field of study. The perception, network, and 

application layers are its three layers. 

The physical layer, which has sensors for sensing and gathering environmental data, is 

the perception layer. It detects certain physical parameters or locates other intelligent 

objects in the surrounding area. The network layer is in charge of establishing 

connections with other intelligent objects, network components, and servers. 

Additionally, it uses its characteristics to communicate and interpret sensor data. 

The Application layer, delivering application-specific services to the user is the 

responsibility of the application layer. It describes a variety of uses for the IoT, 

including smart homes, smart cities, and smart health. The three-layer design 

encapsulates the core concept of the IoT, however research on IoT frequently focuses 

on its more intricate details, therefore it is insufficient. Because of this, the literature 

has suggested a lot more layered structures. The first is the five-layer architecture, 

which also has layers for processing and business. Perception, transport, processing, 

application, and business layers make up the five layers as shown in Figure 1.2, The 

perception and application layers play the same role as in a three-layer design.  
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Figure 1.2:  Three(A) and Five-Layer(B) Architectures (Lai, 2021) 

The Transport layer, through networks including WiFi7, 3G8, LAN9, Bluetooth, 

RFID10, and NFC11, the transport layer moves sensor data from the perception layer to 

the processing layer and back again. The processing layer, also known as the 

middleware layer, plays a crucial role in a fog computing architecture. This layer 

receives a substantial volume of data from the transport layer and performs various 

tasks such as processing, storing, and analyzing it. It possesses the capability to 

handle and provide a diverse range of services to the lower tiers. The processing layer 

leverages different technologies, including modules for big data processing, cloud 

computing infrastructure, and databases. By utilizing these technologies, the 

processing layer enhances the overall functionality and performance of the fog 

computing system. The business layer oversees the whole IoT system, including all 

applications, revenue streams, and user privacy. 

IoT-based architectures and protocols are pivotal in enabling the seamless operation 

of interconnected devices and systems. These frameworks, including restful APIs, 

 
7Wireless Fidelity 
83rd Generation 
9Local Area Network 
10Radio Frequency Identification 
11Near Field Communication 
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MQTT, and CoAP, facilitate efficient communication and data exchange. They play a 

crucial role in building scalable, interoperable, and secure IoT ecosystems. Selecting 

the appropriate architecture and protocol depends on specific use cases, emphasizing 

the need for careful consideration in implementing IoT solutions that align with 

performance, scalability, and security requirements. 

1.4.2 IoT Device Connectivity: Architectures and Protocols 

The IoT is only able to function properly and transfer data when all of the connected 

devices are online and securely linked to a communications network. Standards and 

protocols for the IoT start to become relevant here. Both IP and non-IP networks can 

be used to link devices that are part of the IoT. IP network connections are highly 

complicated and need an increase in memory as well as power from the IoT devices; 

nevertheless, range is not an issue. On the other hand, non-IP networks have a range 

constraint and need a far lower amount of power and memory than IP networks do. 

1.4.3 IoT Protocol Architecture 

The architecture of the IoT is dependent on the functioning and execution of its 

components in various industries. The IoT is constructed on top of a fundamental 

process flow, which has two main architectures: a 3-layer architecture and a 5-layer 

architecture. 

1.4.4 Layer IoT Architecture 

The most fundamental architecture consists of three distinct layers. It is composed of 

three layers: the perception layer, the network layer, and the application layer 

respectively. The physical layer is known as the perception layer, and it is comprised 

of all of the intelligent sensor-based devices that collect data from their surrounding 

environment. 

The network layer is in charge of establishing connections between the many devices 

and applications that make up the IoT ecosystem. It is comprised of all of the wireless 

and wired communication technologies that are currently available. After that, the 

data is sent to the application layer for processing. 
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It is the responsibility of the application layer to provide the user with services that 

are unique to the program. It describes a variety of applications that may be used to 

implement IoT, including smart homes, smart cities, and health care. 

1.4.5 Five-Layer IoT Architecture 

The three-layer design has been expanded into a five-layer architecture figure 1.3 

shows this by adding two more layers, the processing layer, and the business layer 

respectively. In the 5-layer design, the perception and application layers function in a 

manner that is analogous to the 3-layer architecture. Networking technologies such as 

WiFi, Bluetooth, 3G, RFID, and NFC are utilized by the transport layer to convey the 

sensor data from the perception layer to the processing layer and vice versa. The 

processing layer, also known as the middleware layer, is responsible for storing, 

analyzing, and processing large amounts of data delivered by the transport layer. This 

layer uses a wide variety of technologies, including databases, cloud computing, and 

Big Data processing modules. The whole IoT system, including apps, companies, and 

the privacy of individual users, is managed by the business layer. 

 

Figure 1.3: IoT Architecture (Lai, 2021) 

 

The Transport layer, through networks including WiFi, 3G, LAN , Bluetooth, RFID, 

and NFC, the transport layer moves sensor data from the perception layer to the 

processing layer and back again. IoT architecture can be centralized or decentralized, 
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depending on the application requirements and scale. The design of the architecture 

needs to consider scalability, interoperability, data integrity, and energy efficiency to 

create a robust and reliable IoT ecosystem that can support a wide range of 

applications and services. 

1.4.6 Types of IoT Connections 

When it comes to data communication, an IoT system utilizes one of four distinct 

types of transmission channels. Device-to-device communication, often known as 

D2D12 communication enables devices that are physically adjacent to one another to 

talk to one another via wireless protocols such as Bluetooth, ZigBee, or Z-Wave. By 

the use of a D2D connection, it is possible to create a link even in the absence of a 

network in Figure 1.4. 
 

 

 

Figure 1.4: Types of IoT Connections (Adel, 2020) 

The deployment of an intermediate platform enables communication to occur between 

devices and gateways at each stage of the network. The majority of the time, gateways 

are employed for two distinct functions: first, to collect data from sensors and transmit 

it to the appropriate data system; and second, to evaluate data and transmit it back to 

the device if any problems are discovered while the data is being analyzed. Both of 

these functions are essential to the operation of a gateway. 

 
12Device-to-Device 
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When someone refers to “gateway-to-data systems communication,” they are 

referring to the process in which data is sent from a gateway to the appropriate data 

system. Communication between the many different data systems might take place 

either within a data center or within the cloud itself. For this sort of connection, the 

protocols need to be easy to put into action and uncomplicated to include programs 

that are already in existence. They are required to have high availability, appropriate 

capacity, and trustworthy disaster recovery capabilities. 

 

Figure 1.5: Publish / Subscribe Architecture (Ansari, 2018) 

Figure 1.5 shows MQTT13 Publish / Subscribe Architecture there are two types of IoT 

protocols: Protocols for the network layer: and IoT network protocols that link 

devices requiring medium to high amounts of electricity to the network. With this 

protocol, it is possible to communicate data from one end of the network to the other 

within the network. A few of the most common network protocols for the IoT are 

HTTP14, LoRaWAN15, Bluetooth, and Zigbee. 

 

Data protocols for the IoT: Data protocols for the IoT link low-power IoT devices. 

These protocols are capable of providing end-to-end communication with the 

hardware even in the absence of any Internet connection. Connection in the data 

protocols of the IoT can be accomplished by either a wired or cellular network. 

MQTT, CoAP16, AMQP17, XMPP18, DDS19 are some common IoT data protocols. 

 
13 Message Queuing Telemetry Transport 
14 Hypertext Transfer Protocol 
15 Long Range Wide Area Network 
16 Constrained Application Protocol 
17 Advanced Message Queuing Protocol 
18 Extensible Messaging and Presence Protocol 
19 Data Distribution Service 
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IoT protocols and network standards: There is a wide variety of IoT protocols 

available to cater to a variety of applications and needs. Yet, each has its own set of 

benefits and drawbacks for a variety of IoT use cases. This research work will go 

through some of the IoT protocols that are the most popular overall. 

1.5 Cloud and Fog-Based Architectures 

Recently, there has been a shift toward fog computing, a system architecture in which 

network gateways and sensors perform some of the data processing and analytics. 

Cloud and fog-based architectures are fundamental paradigms in modern computing. 

Cloud computing involves centralized data processing in remote data centers, while 

fog computing disperses computing resources to the edge of the network. Both play 

key roles in supporting a wide range of applications, balancing data processing, and 

enabling scalability in an increasingly interconnected world. 

Cloud and Fog computing architectures are advanced paradigms for distributed 

computing. Cloud computing typically involves centralized data centers for resource-

intensive tasks, while Fog computing extends this concept to the edge of the network, 

closer to end-users and devices. Both offer unique advantages.  

Cloud computing provides scalability, cost-efficiency, and vast resources for data 

processing and storage. Fog computing complements this by enabling low-latency, 

real-time processing and reducing network congestion, making it ideal for 

applications like IoT and autonomous vehicles. These architectures also foster data 

security and privacy concerns, which require careful management. Recent research 

delves into optimizing the integration of Cloud and Fog, ensuring seamless 

coordination between central and edge resources. This involves developing efficient 

data transfer, task offloading, and orchestration techniques. Additionally, AI and 

machine learning are integrated to enhance decision-making processes in these 

architectures, paving the way for more intelligent, context-aware applications in 

diverse domains like healthcare, smart cities, and Industry 4.0. 
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Figure 1.6:  Cloud and Fog-Based Architectures (Gupta, 2016) 

Figure 1.6 shows illustrate Fog architecture’s tiered approach, inserting security, 

monitoring, and pre-processing layers between the physical and transport levels. 

Power, resources, and services are all tracked by the monitoring layer. Filtering, 

processing, and analytics of sensor data are carried out by the pre-processing layer. 

Data replication, dissemination, and storage are just a few of the storage capabilities 

offered by the temporary storage layer. The security layer also assures data integrity 

and privacy and performs encryption and decryption. On the network’s edge, 

monitoring and pre-processing are carried out before data is sent to the cloud. The 

temporary storage layer in fog computing provides various storage capabilities, 

including data replication, dissemination, and storage. It serves as a crucial 

component for managing data within the fog environment. Additionally, the security 

layer plays a vital role in ensuring data integrity and privacy. It performs encryption 

and decryption operations to safeguard sensitive information.  

Cloud and Fog-based architectures offer versatile solutions for diverse computing 

needs. Cloud provides centralized, scalable, and reliable data processing, while fog 

extends computing to the network edge, reducing latency.  
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1.6 Social IoT 

SIoT20 evaluate social interactions between objects in the same manner that social 

relationships between people are considered. SIoT represents the integration of IoT 

technology with social networks and human interactions. It enables smart devices to 

collect and share data, enhancing user experiences, enabling collaborative decision-

making, and fostering a deeper connection between the physical and digital worlds 

through social engagement and data sharing. The three basic components of a SIoT 

system are as follows: 

• One can navigate the SIoT. We can begin with a single device and browse all 

of the devices that are linked to it. New devices are simple to find, 

and services utilize an IoT social network like this. 

• There is a requirement for reliability between gadgets  

• To analyse the social networks of IoT devices, we can use models similar to 

those used for researching human social networks. 
 

SIoT refers to the integration of social networking principles and techniques into the 

IoT paradigm. It combines the power of social interactions and networked devices to 

enhance communication, collaboration, and information sharing among IoT devices 

and users. 

 
20Social Internet of Things. 
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      Figure 1.7:  IOT & FOG Computing (Gupta, 2016) 

In SIoT, devices are considered social entities, and relationships between devices are 

established based on trust, reputation, and user preferences. This social aspect enables 

devices to interact and collaborate in a more intelligent and context-aware manner. 

SIoT offers several benefits. It enables efficient device discovery, where devices can 

be easily found and connected based on their social relationships. It promotes 

information sharing and collaborative decision-making among devices, leading to 

improved efficiency and productivity. Additionally, it enhances user experience by 

providing personalized and socially influenced services. However, SIoT also presents 

challenges such as security and privacy concerns, managing complex social networks 

of devices, and developing appropriate social networking models for IoT 

environments. Overall, the integration of social aspects into the IoT ecosystem 

through SIoT has the potential to revolutionize the way devices interact, collaborate, 

and share information, paving the way for more intelligent and socially aware IoT 

applications in Figure 1.7. 
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Social IoT bridges the gap between the physical and digital realms by connecting IoT 

devices with social interactions. It transforms data sharing, fosters collaborative 

decision-making, and enriches user experiences. By integrating technology with 

human connections, Social IoT has the potential to drive innovation, improve 

communication, and create more personalized and interconnected digital ecosystems. 

1.7 Implication of Fog Computing 

Fog Computing is a promising paradigm that complements cloud computing by 

extending computing and storage capabilities to the network edge. This methodology 

focuses on leveraging fog computing to enhance the infrastructure of a smart city. 

Smart cities are urban environments that integrate information and communication 

technologies to optimize the efficiency of various systems, such as transportation, 

energy, waste management, and public services. By utilizing advanced technologies 

and data analytics, smart cities aim to improve the quality of life for citizens, enhance 

sustainability, and enable better resource management. 

The smart city concept opens up a new area to explore and It also brings new 

challenges to implement and design it as a sustainable solution. The smart city has 

great potential for economic growth and lifting the quality of life in cities. As 

increasing numbers of citizens migrate to cities, the demand for services and 

resources continues to increase. The World Bank predicts that over the next two 

decades, India’s urban population will more than double to 33 % of the total 

population. The emerging IoT introduces many challenges that cannot be handled by 

today’s cloud computing. In this research work, we deal with the IoT Environment 

features like low latency, high distribution, large-scale sensor network, mobility 

support, and device heterogeneity. This proposed SMART FOG system allows us to 

create a collaborative environment for IoT networks. In the proposed system, we are 

going to implement a SMART FOG protocol-based technique which will allow Fog 

nodes to share computing and storage power to IoT devices that have low 

computational power within IoT network. The proposed system will be able to 

schedule the tasks assigned to fog node for easy processing and efficient resource 

management. The proposed work is focused on creating a resilient environment using 

SMART FOG which will create trust in fog computing. As fog computing is in its 

infancy, there are still many open challenges present. The SMART FOG will create 
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trust between fog clients and fog environment by providing fault-tolerant and secure 

techniques for fog computing. This research will identify some of these challenges 

and try to find the solution in proposed system. 

Fog computing has attracted by huge number of researchers, so it is a trending topic 

for research. The literature study motivates research in Fog Computing by introducing 

a bright future and application of it. The researchers stated that Fog Computing will 

the how today’s IoT and cloud computing are working. The researchers also stated the 

challenges to be faced in the implementation of Fog Computing in real-life 

applications. Currently, researchers are working on the implementation of fog for 

commercial applications. The challenge for further studies and solutions from experts 

is that we need to keep ourselves updated for online publications and updates from 

OpenFog consortium related to Fog Computing. 

According to author Sheikh (2023), Fog Computing's dynamic nature demands 

innovative solutions for effective task scheduling. Integrating K-Means clustering 

with fuzzy logic, addresses Fog's resource constraints, offering adaptability in task 

allocation. Leveraging machine learning, our methodology optimizes execution time, 

response time, and network usage by intelligently assigning tasks to Fog nodes.  

1.8 Fog Computing Task Scheduling 

Fog computing task scheduling refers to the process of efficiently allocating 

computational tasks to fog nodes in a fog computing environment. It plays a crucial 

role in optimizing resource utilization, reducing latency, and improving overall 

system performance. Task scheduling in fog computing involves determining which 

tasks should be executed, where they should be executed, and when they should be 

executed. This decision-making process takes into account various factors such as the 

computational requirements of tasks, the availability and capabilities of fog nodes, 

network conditions, and user requirements. Efficient fog task scheduling involves 

several considerations. These include load balancing, where tasks are evenly 

distributed among fog nodes to avoid overloading or underutilization of resources.  

Proximity-aware scheduling considers the geographic proximity of fog nodes to edge 

devices to minimize communication delays and improve real-time processing 

capabilities. Furthermore, energy-aware task scheduling focuses on optimizing energy 
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consumption by intelligently allocating tasks to energy-efficient fog nodes or 

selectively activating certain nodes based on workload requirements.  

Deadline-aware scheduling ensures that tasks with time constraints are scheduled 

promptly, meeting their deadlines. Various scheduling algorithms and techniques are 

employed in fog computing, such as heuristic-based algorithms, optimization 

algorithms, and machine learning-based approaches. These algorithms aim to balance 

the trade-offs between task performance, resource utilization, energy efficiency, and 

other system objectives. 

The study by Aimal (2022) addresses the challenges posed by traditional task 

scheduling methods in Fog computing for latency-critical applications. By introducing 

the "Critical Task First Scheduler", which prioritizes tasks based on their nature, 

particularly focusing on critical tasks with larger MIPs21 sizes, the proposed 

methodology aims to reduce latency, energy consumption, and network utilization. 

Implemented in a healthcare scenario using the Fog simulator, the Critical task First 

Scheduler, scheduler demonstrates superior performance compared to First Come 

First Served, Shortest Job First, and cloud-only approaches. Simulation results 

highlight the efficacy of the Critical task First Scheduler approach in enhancing 

latency, energy efficiency, and network utilization for critical tasks 

 
21 Million Instructions Per Seconds 
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Figure 1.8:  Fog Computing Task Scheduling (Alizadeh, 2020) 

Figure 1.8 shows the following categories can be used to categorize task scheduling 

techniques in a fog computing environment are as follows: 

• Static task scheduling methods 

• Dynamic task scheduling methods 

• Hybrid task scheduling methods 
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Overall, fog computing task scheduling plays a critical role in achieving efficient and 

effective utilization of fog resources. By carefully managing task allocation and 

considering various factors, fog computing systems can provide low-latency, energy-

efficient, and responsive services to edge devices, enabling a wide range of 

applications in areas such as IoT, real-time analytics, and edge computing. 

1.8.1 Static Scheduling Strategy 

The task requirements must be available to the task scheduler before the initial cutting 

scheduling strategy for static task scheduling approaches to work. Before beginning 

any scheduling procedure, the task scheduler calculates the needs for each job. In this 

case, the tasks are sent to the system without regard to the availability of computing 

resources or the statuses of those resources. The First Come First Serve scheduling 

approach and the round-robin method are the two most popular task-scheduling 

techniques in this category. There is different static scheduling strategies as follows: 

First Come First Served Method 

The First Come First Serve CPU scheduling algorithm processes jobs in the order that 

they arrive in the ready queue. Newly arrived processes are added to the tail of the 

FIFO queue. The first process in the queue is scheduled first and removed from the 

queue. 

Max Min Method 

Performs a linear transformation on the original data. This technique gets all the 

scaled data in the range (0,1). The formula to achieve this is that Min-max 

normalization preserves the relationships among the original data values. 

Minimum Completion Time Method  

This algorithm locates the task with minimum execution time and allocates the task to 

the resource on a first come first served basis. Severe load imbalance is the major 

issue in this algorithm. It does not consider the resource availability and its load. 

 

 

Opportunistic Load Balancing Method  
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Is a static load balancing algorithm. OLB keeps all nodes busy, so don't think about 

previous loads. However, OLB22 does not consider the execution time of the task on 

this node. 

Round Robin Method  

 reduce a multi-class problem to multiple two-class problems by learning one 

classifier for each pair of classes, using only training examples for these two classes, 

and ignoring all others 

Figure 1.9 shows static task scheduling approaches, the task requirements must be 

known to the task scheduler before initiating any scheduling strategy. The scheduler 

calculates the resource needs for each job before the scheduling process begins. 

Consequently, tasks are sent to the system without considering the availability or 

status of computing resources. Within this category, several task-scheduling 

techniques are commonly employed. 

 

Figure 1.9:  Static Scheduling Strategy (Alizadeh, 2020) 

One such method is the First Come First Served approach, where tasks are executed 

in the order they arrive, with no consideration for their resource requirements or 

priorities. Another technique is the round-robin method, which assigns each task a 

fixed time slice for execution in a cyclic manner, regardless of their resource needs. 

Additionally, there are other methods like the Max-Min Method, which allocates 

resources to tasks based on maximum possible resource utilization, and the Min-Min 

Method, which focuses on minimizing the completion time of the smallest tasks. 

Furthermore, the Minimum Completion Time Method prioritizes tasks with the 

 
22 Opportunistic load balancing 
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shortest expected completion times, and the Opportunistic Load Balancing Method 

dynamically allocates resources based on real-time availability and task demands. 

Each method has its advantages and limitations, and the choice of a specific task 

scheduling technique depends on the nature of the tasks, the system's resource 

capabilities, and the desired performance objectives. 

1.8.2 Dynamic Task Scheduling Methods 

Based on the task's arrival at a specific time and the status of the system machine, 

dynamic scheduling methods are created. These techniques might take into account a 

single task at a time or several tasks at once. 

Cross Entropy  

Cross-entropy, also known as logarithmic loss or log loss, is a popular loss function 

used in machine learning to measure the performance of a classification model. 

Namely, it measures the difference between the discovered probability distribution of 

a classification model and the predicted values. As per-word cross-entropy is the 

average number of bits required per word, which has the advantage that you can 

interpret it without knowing. randomly. Perplexity is closely related to per-word 

cross-entropy; it just undoes the log. One advantage is that you can interpret it without 

knowing the base of the log. 

Genetic Algorithm  

The genetic algorithm is a method for solving both constrained and unconstrained 

optimization problems that are based on natural selection, the process that drives 

biological evolution. The genetic algorithm repeatedly modifies a population of 

individual solutions. In computer science and operations research, a genetic algorithm 

GA is a metaheuristic inspired by the process of natural selection that belongs to the 

larger class of evolutionary algorithms EA. Genetic algorithms are commonly used to 

generate high-quality solutions to optimization and search problems by relying on 

biologically inspired operators such as mutation, crossover, and selection. Some 

examples of GA applications include optimizing decision trees for better 

performance, solving sudoku puzzles, hyperparameter optimization, causal inference, 

etc. 

Immune Algorithm 
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The immune algorithm is a new optimization algorithm imitating the immune system 

to solve the multimodal function optimization problem. This paper offers a newly 

modified immune algorithm based on several former immune algorithms and shows 

its ability to solve the multimodal function optimization problem. A digital immune 

system is a software development practice for safeguarding applications and services 

from software bugs and security flaws. 

Particle Swarm Optimization  

An iterative optimization technique that was inspired by the behavior of social 

animals such as birds or fish. It involves a group of particles, or agents, that move 

through a search space and try to find the optimal solution to a given problem. In 

computational science, particle swarm optimization (PSO) is a computational method 

that optimizes a problem by iteratively trying to improve a candidate solution 

concerning a given measure of quality. 

Ant Colony Optimization  

In computer science and operations research, the ant colony optimization algorithm is 

a probabilistic technique for solving computational problems that can be reduced to 

finding good paths through graphs. Artificial ants stand for multi-agent methods 

inspired by the behavior of real ants. The pheromone-based communication of 

biological ants is often the predominant paradigm used. Combinations of artificial 

ants and local search algorithms have become a method of choice for numerous 

optimization tasks involving some sort of graph. 

 

Figure 1.10:  Dynamic Task Scheduling (Alizadeh, 2020) 
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According to Figure 1.10, the dynamic scheduling approach reduces computing costs 

and long-term service latency. It utilized both a double deep Q learning-based task 

scheduling method and the reinforcement learning technique. The allocation of user 

tasks to virtual machines has previously been studied through studies that took into 

account the propagation, waiting, transmission, and execution delays of various 

activities. The experimental findings supported the methodology as superior to the 

existing algorithms. 

 

Figure 1.11: Hybrid Task Scheduling Methods (Wang, 2019) 

The combination of both Static Scheduling Strategy and Dynamic task scheduling is 

shown in Figure 1.11. Static scheduling is a strategy where tasks are assigned to 

resources before program execution and remain fixed during runtime, while dynamic 

task scheduling involves assigning tasks based on real-time conditions and workload 

variations. Static scheduling strategies, such as round-robin or block scheduling, 

provide predictable execution patterns but may not adapt well to dynamic changes. 

On the other hand, dynamic task scheduling strategies, like work-stealing or task 

prioritization, dynamically adjust task assignments to optimize performance, 

considering factors like load balancing and task dependencies. Dynamic scheduling 

offers flexibility but introduces overhead due to runtime decisions and coordination. 
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1.8.3 Hybrid Task Scheduling Methods 

Hybrid task scheduling methods in fog computing combine multiple approaches or 

techniques to optimize task allocation and resource utilization. These methods 

leverage the strengths of different scheduling strategies to address the unique 

challenges and requirements of fog computing environments. 

One common approach is to combine centralized and decentralized scheduling 

techniques. In centralized scheduling, a central controller or orchestrator is 

responsible for making task allocation decisions based on a global view of the system. 

Decentralized scheduling, on the other hand, distributes the task allocation decision-

making process among fog nodes themselves. Hybrid methods may use a combination 

of both approaches, with the central controller handling high-level task allocation 

decisions and individual fog nodes making local decisions based on their local 

knowledge and resources. 

Another hybrid approach is to combine static and dynamic scheduling. Static 

scheduling involves pre-determining task assignments based on static parameters such 

as task characteristics and node capabilities. Dynamic scheduling, on the other hand, 

adjusts task assignments in real-time based on changing system conditions and 

workload demands. Hybrid methods can utilize static scheduling for long-term task 

allocation planning while incorporating dynamic scheduling to adapt to dynamic 

changes in the system. 

Furthermore, hybrid methods may integrate heuristic algorithms with optimization 

techniques. Heuristic algorithms provide fast and approximate solutions by utilizing 

predefined rules or guidelines. Optimization techniques, such as genetic algorithms or 

particle swarm optimization, aim to find optimal solutions by exploring the search 

space. Hybrid methods leverage the speed and simplicity of heuristics for initial task 

allocation and use optimization techniques to refine and improve the initial solutions. 

Hybrid task scheduling methods in fog computing are designed to strike a balance 

between efficiency, scalability, adaptability, and system performance. By combining 

different scheduling approaches, these methods can effectively handle the complexity 

and variability of fog computing environments, leading to optimized task allocation, 

reduced latency, improved resource utilization, and enhanced overall system 

performance. 
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1.9 Fog Computing Challenges 

Fog computing faces several challenges that need to be addressed for its successful 

implementation and operation. Overcoming the challenges requires collaborative 

efforts from researchers, industry stakeholders, and standardization bodies to innovate 

and develop solutions that maximize resource utilization, enhance security, promote 

interoperability, scale the system, reduce energy consumption, and optimize task 

allocation. By addressing these challenges, fog computing can realize its potential in 

enabling efficient and reliable edge computing solutions for various applications. 

These challenges include:  

1.9.1 Drones 

Drones can be used in ITS23 applications not just as dumb sensors but also as smart 

fog nodes, with external devices like the Raspberry Pi, Intel Edison, and ROCK64 

placed on the top of the drone to aid in traffic monitoring by seeing and locating 

errant cars. Similar to this, a drone can serve as a flying policeman in tele-surveillance 

applications, able to identify and apprehend criminals. Therefore, further research 

must be done to determine how drones can be used in a fog computing architecture. 

1.9.2 Machine learning 

Applications like ITS, healthcare, and tele-surveillance require real-time data 

processing and speedy replies, which might be given by implementing machine 

learning in fog nodes. To make judgments based on the information gathered from the 

sensors, the fog nodes must be intelligent enough. We are proposing a more robust 

approach that integrates drones with machine learning and extends it to capture the 

misbehaving cars and the driver's face identification. An earlier study recommended 

utilizing machine learning in fog nodes to anticipate busy locations. 

1.9.3 Security and Privacy 

The sensors' limited resources prevent a large computation cryptography approach 

from being used. The current priority is to secure the system and duty of the fog nodes 

to prevent the spread of clouds with harmful packets.  Using the Diffie-Hellman 

problem for cryptography regarding the use of hash collision cryptography for traffic 

security ITS applications that use a light system and fog devices signal light. 

 
23Intelligent Transportation System 
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Additionally, fog nodes must confirm the queries made by IoT devices when the 

devices themselves must confirm the security of the fog node. 

1.9.4 Autonomic Fog Management and Connectivity 

To meet the real-time processing needs of ITS, tele-surveillance, and healthcare 

applications, fog devices must be able to control themselves independently. 

Additionally, it poses a problem to maintain a smooth connection between all 

deployed devices in the fog computing architecture because of the expectation that 

they would be diverse. 

Fog computing faces several challenges that require collaborative efforts to address 

and overcome. These challenges include the integration of drones as smart fog nodes 

for applications such as traffic monitoring and tele-surveillance, the implementation 

of machine learning in fog nodes for real-time data processing, ensuring security and 

privacy despite limited sensor resources, and achieving autonomic fog management 

and connectivity for efficient and smooth operations. Overcoming these challenges is 

crucial for realizing the potential of fog computing in enabling efficient edge 

computing solutions for various domains. Further research, innovation, and 

standardization efforts are necessary to tackle these challenges and unlock the full 

capabilities of fog computing. 

1.10 Machine Learning Algorithms 

To avoid imprecise or erroneous predictions, the data collected / generated must go 

through pre-processing, merging, modifying, and learning. the computational intensity 

and speed of a specific technique are two significant characteristics to consider while 

employing ML. techniques. The best algorithm is chosen based on the user 

application and should be fast enough to track changes in the input data and provide 

the desired output in a reasonable amount of time. ML algorithms create a 

mathematical model using sample data, known as "training data," on which to make 

predictions or choices. The training phase of supervised ML classifier development 

involves training a specific classifier from a set of labeled data. As the size of the 

training data increases, so do the classifiers. Some of the most popular ML algorithms 

are detailed further below. 

1.10.1 Naive Bayes 



33 
 

Based on Bayes' theorem, a naive Bayes classifier is a probabilistic classifier that 

works by assuming that no pair of features are dependent. Naive Bayes is a simple but 

powerful machine learning algorithm based on Bayes' theorem and the assumption of 

independence between features. Despite its simplicity, Naive Bayes is often effective 

and computationally efficient, so it is often used in a variety of classification tasks. It 

is particularly suitable for text classification and spam filtering. 

1.10.2 Logistic Regression  

Logistic regression is a machine learning algorithm commonly used for binary 

classification tasks, where the goal is to predict whether an instance belongs to one of 

two classes. Despite its name, logistic regression is more of a classification algorithm 

than a regression algorithm. Logistic regression is a fundamental machine learning 

algorithm that is widely used in various applications such as medical diagnostics, 

spam detection, and credit scoring due to its simplicity, interpretability, and 

effectiveness. Although it is designed for binary classification, it can be extended to 

handle multiple classes through techniques such as one-vs-rest regression and softmax 

regression. 

1.10.3 Sequential Minimal Optimization 

SMO is a machine learning algorithm designed to train SVMs in supervised learning. 

SVM is used for classification and regression tasks, and SMO is a specific algorithm 

used to efficiently solve the optimization problems associated with training these 

models. Although SMO is an important algorithm for SVM training, there are 

alternative approaches and optimizations to solve SVM problems, such as the widely 

used libsvm library that implements more general optimization techniques. Still, 

understanding SMO provides insight into the support vector machine training process. 

1.10.4 Instance-Based Learner 

IBk is a machine learning algorithm used for classification and regression tasks. It is 

part of the family of k-NN¹ algorithms, where the prediction of a new instance is 

based on the majority class for classification or mean for regression of the k-nearest 

neighbors in a function space. The main feature of the IBk algorithm is Instance-based 

learning. This means that no explicit model is created during training. Instead, save 

the training instance and use it to make predictions for new instances. In K-NN 

Predictions for new instances are determined by examining the class labels for 
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classification or values for regression of the k-nearest neighbors in the training data 

set. Small values of k give the model that is more flexible and sensitive to noise, and 

large values of k gives the model that is smoother and less sensitive. Regression uses 

the average of the k nearest neighbor target values as the prediction. IBk can be 

computationally expensive, especially for large datasets, as it must calculate the 

distance for each prediction. It is often more efficient when the dataset is small. IBk 

performance can be sensitive to feature scaling. Therefore, it is often recommended to 

normalize or standardize features to obtain a similar scale. IBk is a simple but 

effective algorithm, especially in situations where the decision boundary is complex 

and not easily captured by parametric models. It is widely used in various fields such 

as pattern recognition, classification, and regression. 

1.10.5 K-Star 

K Star was developed in 2009. K Star was originally implemented as part of DiPro 

toolset for generating counterexamples in probabilistic model checking. K. Star A 

directed search algorithm also called K. It Finds the k shortest paths between the 

given pair of vertices in the given directed weighted graph. K Star works on the fly. 

This means that the graph does not have to be made explicitly available and stored in 

main memory. K Star can be also be controlled using a heuristic function. 

1.10.6 Multi Class Classifier 

A multiclass classifier is a type of machine-learning algorithm that can assign 

instances to one of three or more classes. Unlike binary classifiers, which distinguish 

between two classes such as positive or negative, multiclass classifiers handle 

scenarios where there are multiple possible classes. Some of the common Multi Class 

algorithms are Support vector machine, Random Forest, K Nearest Neighbours, 

Neural Networks and Decision Trees. The choice of algorithm often depends on 

factors such as the size and type of the dataset, computational efficiency, and the 

desired interpretability of the model. 

 

 

1.10.7 Random Forest 

A decision tree-based supervised machine learning approach called RF depends on 

values from a random vector that is sampled separately and with the same distribution 
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across all of the trees in a forest. By averaging the results, this ensemble method 

lowers over-fitting and bias-related error, leading to superior outcomes. Random 

Forest is a powerful and versatile machine learning algorithm that belongs to the 

ensemble learning category.  

Ensemble learning combines the predictions of multiple models to create a more 

robust and accurate model. Random forests are particularly effective for both 

classification and regression tasks. The main features and characteristics of the 

Random Forest algorithm are: Ensemble of Decision Trees: Random Forest is an 

ensemble of Decision Trees. A decision tree is a discrete model that makes 

predictions based on a series of hierarchical decisions. Random forests create multiple 

decision trees and combine their predictions during the training phase. During the 

training process. Random Forest randomly selects a subset of the training data (with 

permutations) to train each decision tree. This process is called bootstrapping. 

Additionally, at each decision point in the tree, a random subset of features is also 

considered. Random Forest uses a technique called bagging, where each decision tree 

is trained independently on a different subset of the data. The final prediction is 

determined by aggregating the predictions of all trees. By training multiple decision 

trees on different subsets of data and features, random forests become more robust 

and less prone to overfitting compared to a single decision tree. Overfitting occurs 

when a model learns the training data well enough but is unable to generalize to new, 

unseen data. Random Forest provides a measure of feature importance.  

Analysing the contribution of each feature across multiple trees can help determine 

which features have the greatest impact on predictions. The training of individual 

decision trees in a random forest can be performed in parallel, resulting in a scalable 

algorithm that can efficiently process large amounts of data. Random forests tend to 

be less sensitive to outliers in a dataset. Because each tree is trained on a subset of the 

data, the impact of outliers is reduced. Random Forest has been implemented in 

various machine learning libraries such as Scikit-Learn in Python, making it highly 

accessible and widely used. 

1.10.8 Random Tree 

Random Tree is a term often associated with two different machine learning 

algorithms, Random Forest and Highly Randomized Trees Extra Trees. Both 
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algorithms fall into the category of ensemble learning and are used for classification 

and regression tasks. Both Random Forest and Extra Trees are powerful algorithms 

that leverage the concept of ensemble learning to improve predictive performance. 

They are widely used in various applications such as classification, regression, and 

feature importance analysis. The choice between random forests and extra trees may 

depend on the specific properties of your data and the desired trade-offs between 

computational efficiency and model accuracy. 

1.10.9 Multi-Layer Perceptron  

It is fully connected dense layers, which transform any input dimension to the desired 

dimension. A multi-layer perception is a neural network that has multiple layers. To 

create a neural network, we combine neurons so that the outputs of some neurons are 

inputs of other neurons. A multi-layer perceptron has one input layer and for each 

input, there is one neuron (or node), it has one output layer with a single node for each 

output and it can have any number of hidden layers and each hidden layer can have 

any number of nodes.  

1.10.10 k-Nearest Neighbors 

The k-nearest neighbor algorithm is a non-parametric, supervised learning classifier, 

which uses proximity to make classifications or predictions about the grouping of an 

individual data point. It is one of the popular and simplest classification and 

regression classifiers used in machine learning today. While the KNN algorithm can 

be used for either regression or classification problems, it is typically used as a 

classification algorithm, working off the assumption that similar points can be found 

near one another. 

1.10.11 Supervised 

Giving training data that has previously been "known" or "labeled" with the proper 

response and consists of N input-output pairs (X,Y) is how supervised learning 

functions. The ANN then generates an output 2 for each unknown X, which is then 

compared against Y using an error cost or distance function. Finally, an iterative 

process is used to minimize this mistake. Image Classification: Training with 

image/label datasets are examples of supervised learning methods. A new image is 

then presented later with the hope that the computer will pick up on the new object. 
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Regression: Giving the system marked historical data so it can forecast the future 

result of an identical circumstance. 

1.10.12 Unsupervised 

Using unsupervised learning methods, it self-organizes and finds hidden patterns in 

unlabeled input data to create neural networks. It can analyse data without sending an 

error signal so that the potential fix can be assessed. Unsupervised learning can 

occasionally be useful since it allows the algorithm to search the past for patterns that 

weren't previously taken into account. Unsupervised learning is necessary because 

manually inspecting huge datasets like those for speech recognition is highly 

expensive. Clustering is a very basic but well-known example of unsupervised 

learning. 

1.10.13 Semi-Supervised 

This category is a hybrid of the previous two. The algorithm is trained on a dataset 

that contains both labeled and unlabeled data. It works by taking enormous amounts 

of input data and labeling only a subset of it as training data. Reinforcement learning, 

a related strategy, provides feedback to guide the computer program in interacting 

with a dynamic environment. In this approach, a model is deployed using a small set 

of labeled samples and a larger set of unlabeled samples. The goal is to use labeled 

data to make predictions about unlabeled data and use the additional information to 

improve model performance. 

1.11 Fog Computing Real-Time Applications 

Fog computing offers significant advantages in real-time applications. It is often 

utilized in IoT applications that need real-time data. It functions as a more advanced 

kind of cloud computing. It serves as a conduit between end users and the cloud. It 

may be utilized in both scenarios—between humans and machines or between 

machines and machines. 

1.11.1 Mobile Big Data Analytics 

Data acquired by IoT devices is gathered in large quantities, making cloud storage 

ineffective. Fog computing, which uses nodes that are considerably closer to end 

systems than cloud computing, is advantageous in such circumstances. It also gets rid 

of additional issues like delays, traffic, processing speed, delivery time, response time, 
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data processing, data storage, and data transportation. IoT applications of the future 

may use fog computing. 

1.11.2 Dams Safety 

Dam sensors transmit data to the cloud, where it is examined and if there are any 

anomalies then officials are notified the issue here is the potentially deadly 

information delay. Fog is utilized to address this, and because it is located close to the 

end systems, it is simpler to send data, evaluate it, and provide immediate response. In 

dam monitoring scenarios, sensors play a vital role in collecting data related to dam 

conditions, such as water level, pressure, temperature, and structural integrity. 

Traditionally, this data was transmitted directly to the cloud for analysis and decision-

making. To address this challenge, fog-based architecture, also known as edge 

computing, is employed. Fog nodes, placed near the dam sensors, act as local 

processing hubs. These fog nodes receive the data from the sensors and perform real-

time analysis and anomaly detection locally. By doing so, they significantly reduce 

the data transmission time to the cloud and enable swift evaluation of dam conditions. 

1.11.3 Smart Utility Service 

Here, saving time, money, and energy is the major goal. Data analysis must be 

conducted every minute on current data. Since end users are primarily involved, cloud 

computing may not be useful. These programmers daily notify users of which 

appliances utilize the least amount of energy. Fog is an excellent option since IoT 

generates a lot of network traffic that makes it difficult to transfer other data. 

1.11.4 Health Data 

When information needs to be shared between hospitals, strict security, and data 

integrity are requirements. Fog may be used to achieve this because the data is 

conveyed locally. The laboratories may utilize these fog nodes to update the patient's 

lab information, which the adjacent hospitals can simply access. Since any clinician 

may access this unified information, patients do not need to carry hard copies of their 

medical histories or health concerns. 

1.11.5 Smart Cities 

The idea of a "smart city" has generated a great deal of attention in recent years 

because it promises to improve the quality of life. An urban setting known as a "Smart 
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City" is one in which several sectors work together to produce sustainable outcomes 

by analyzing real-time data. Building smart cities presents the problem of assuring 

accuracy and speed in reaction times when assessing the condition of infrastructure 

components like gas and oil pipelines, subways, and roadways. Additionally, the 

enormous amount of data the sensors produce creates problems with big data 

processing. 

1.11.6 Tele-Surveillance 

The concept of placing fog nodes next to CCTV24 cameras at shopping malls and 

railway stations to get data from them to identify hazards like trespassing in security 

zones and gunshots. A video content management system is employed in the fog 

nodes to process and store the footage for the threat detection process. 

Fog computing offers numerous benefits for real-time applications, particularly in the 

context of the IoT. It serves as an advanced form of cloud computing, acting as a 

bridge between end users and the cloud. Fog computing finds relevance in various 

scenarios, including human-machine and machine-machine interactions. Some 

notable real-time applications of fog computing include mobile big data analytics, 

ensuring dam safety through immediate data analysis and response, smart utility 

services for efficient energy consumption, secure health data exchange between 

hospitals, the development of smart cities for sustainable outcomes, and tele-

surveillance systems for threat detection. Fog computing provides advantages such as 

reduced delays, improved processing speed, enhanced data storage and transportation, 

and localized data communication, making it a valuable solution in these real-time 

scenarios. 

 
24Closed-Circuit Television 


