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5.1 Introduction: An Overview of the Chapter 

This section provides a thorough analysis of the results obtained from the experiments 

carried out in this study. This chapter is organized to give a thorough assessment of 

the effectiveness of the different models used for weed and crop categorization and 

density estimate. The analysis provides a comprehensive and lucid overview of the 

model's efficacy and correctness by incorporating a variety of statistical measures and 

visual aids. 

The chapter begins with a presentation of the descriptive statistics, summarizing the 

key characteristics of the dataset used in the experiments. This section sets the 

foundation for understanding the data distribution and its implications for model 

performance. 

Following the descriptive statistics, the results of the classification models are 

detailed. A number of performance metrics are used to assess each model, including 

the Customized CNN from Scratch, Model with Image Augmentation, Transfer 

Learning with VGGNet, and Transfer Learning with ResNet50. These metrics include 

accuracy, precision, recall, and F1-score. In order to shed light on the advantages and 

disadvantages of each model and provide comparisons regarding their respective 

performances, comparative assessments are carried out. 

The chapter then delves into the results of the YOLOv8 model for crop and weed 

density estimation. This section includes an analysis of the model's detection 

accuracy, processing speed, and its applicability to real-time agricultural monitoring. 

The model's predictions are shown through visual examples and heatmaps, which 

provide a concrete understanding of how well it performs in real-world situations. 

Subsequently, the chapter discusses the inferential statistics, focusing on hypothesis 

testing results and confidence intervals. This section interprets the statistical 

significance of the findings, linking them back to the research questions and 

hypotheses outlined in the earlier chapters. 

A thorough analysis of the findings and their implications for precision agriculture are 

included in this chapter. The results are discussed in relation to agricultural methods, 

technology developments, and the possibility of further research. The last section of 
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the chapter sets the stage for the thesis's last chapter by summarizing the major 

discoveries and their contributions to the discipline. 

5.2 Model Architecture Selection 

Any machine learning activity, including agricultural categorization, depends on 

choosing a suitable model architecture. This section covers the process of choosing a 

model architecture and lists the four models that were taken into consideration for our 

agricultural classification task: a VGGNET and ResNet50 architecture-based transfer 

learning approach, an augmented version of the customized CNN, and a customized 

CNN built from scratch. 

5.2.1 Model-1: Customized CNN from Scratch 

The first model we consider is a customized CNN architecture built from scratch 

specifically for the agricultural classification task. This model includes several 

convolutional layers for feature extraction and spatial dimension reduction, which are 

followed by max-pooling layers. Subsequently, fully connected layers are employed 

for classification, with softmax activation at the output layer to generate class 

probabilities. 

We can customize the architecture of a CNN to the unique features of the agricultural 

photos and the difficulty of the classification task by creating a CNN from the ground 

up. We may finely tune the number of layers, the size of filters, and the connectivity 

patterns by starting from scratch when constructing the architecture. This allows us to 

experiment and observe real-world data to maximize the model's performance. 

Explanation of the components used in the architecture of model-1 

Convolutional Layers (Conv2D): 

• The model is comprised of several convolutional layers at first. The learning of 

the spatial hierarchies of features in the input images is done by these layers. 

• The Conv2D layers convolve over the input image using a predetermined number 

of filters or kernels. 

• After every convolution process, activation functions (relu) are added to the model 

to introduce non-linearity and allow it to learn intricate patterns. 

• The first Conv2D layer specifies the input shape of the images and applies a 

kernel size of 3x3. 
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• To capture more abstract elements, Conv2D layers after this one add extra filters. 

Batch Normalization: 

• To normalize the activations of the preceding layer, batch normalization is used 

after a few convolutional layers. It facilitates and quickens the training process. 

MaxPooling2D: 

• The input feature maps' spatial dimensions are down sampled using max pooling 

layers, which lowers computational cost and manages overfitting. 

Dropout: 

• In order to avoid overfitting, dropout layers randomly deactivate a portion of 

neurons during training. In this model, the designated dropout rate is 0.25. 

Flattening: 

• The feature maps are flattened into a one-dimensional vector to be fed into the 

fully connected layers after the convolutional layers. 

Dense (Fully Connected) Layers: 

• Dense layers are used for classification. They take the flattened feature vector as 

input and perform classification based on learned features. 

• Activation functions (relu) introduce non-linearity. 

• The neurons in the final dense layer are called num_classes, and num_classes is 

the number of output classes. It outputs class probabilities using a softmax 

activation function. 

Model Compilation: 

• The Adam optimizer, which adjusts the learning rate during training, is used to 

build the model. 

• Since categorical cross-entropy is appropriate for multi-class classification issues, 

it is utilized as the loss function. 

• Selecting accuracy as the evaluation metric. 

Training: 

• The fit function, which provides both training and validation data, is used to train 

the model. 
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• The training process is monitored and managed by callbacks over a predetermined 

number of epochs (epochs=10). 

Model evaluation 

 

Fig. 5.1 : Model-1 Training Accuracy and Validation Accuracy 

 

Fig. 5.2 : Model-1 Training Loss  and Validation Loss 

The performance of our trained model on the training and validation datasets is shown 

by the model evaluation findings. 

Training Dataset Evaluation: 

Loss: 1.8045 is the loss value on the training dataset. The discrepancy between the 

actual labels and the anticipated probabilities is represented by the loss. Better 

performance is shown by lower loss values. 
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Accuracy: 62.11% is the accuracy on the training dataset. The percentage of correctly 

categorized samples in the training dataset is known as accuracy. Better performance 

is indicated by higher accuracy values. 

Validation Dataset Evaluation: 

Loss: The validation dataset's loss value is 2.0106. The difference between the true 

labels and the predicted probabilities on the validation dataset is represented by this 

loss value. 

Accuracy: 55.52% of the validation dataset's data were accurate. The accuracy of the 

classification indicates the percentage of samples in the validation dataset that were 

properly classified out of all the samples. 

Further analysis is required to understand why the validation accuracy is lower than 

the training accuracy. Increasing the quantity of training data, fine-tuning 

hyperparameters, or changing the model architecture are some possible courses of 

action. 

Additionally, monitoring the model's performance over more epochs or using 

techniques like early stopping will help prevent overfitting and improve 

generalization to unseen data. 

 

Fig. 5.3 : Model-1 Confusion Matrix 
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Fig. 5.4 : Classification Report of Model-1 

5.2.2 Model-2: Model 1 with Image Augmentation 

We improve upon Model-1's performance in the second model by using picture 

augmentation techniques in both the training and validation stages. To increase the 

diversity of the training dataset, image augmentation entails applying a range of 

transformations, including rotation, flipping, scaling, and translation, to the input 

images. 

Our goal is to increase the model's capacity for generalization and resilience to 

changes in the input images by adding more data to the training set. In order to assist 

the model acquire additional discriminative features and lower the likelihood of 

overfitting to the training dataset, augmented training data exposes it to a wider range 

of scenarios and variations. 

To build Model-2, we employed the same architecture as Model-1 but introduced 

image augmentation techniques using the Keras Image Data Generator class. 

ImageDataGenerator Configuration: You configured the ImageDataGenerator class 

with various augmentation options: 

Rescaling: Pixel values are rescaled from the range [0, 255] to [0, 1]. 
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Rotation Range: The training images are subjected to random rotation within a 

predefined degree range, which enhances the model's resistance to changes in object 

orientation and provides diversity. 

Width and Height Shift: Randomly shifts the width and height of the images, 

providing the model with additional positional information and enabling it to learn 

from variations in object position within the image. 

Shear Range: Introduces shearing transformations to the images, which helps the 

model learn from distorted perspectives of objects. 

Zoom Range: Randomly zooms into or out of the images, enabling the model to learn 

from variations in scale. 

Horizontal Flip: Randomly flips images horizontally, which increases the diversity of 

training data by presenting mirrored versions of objects. 

Fill Mode: Determines the strategy to fill newly created pixels, ensuring that the 

transformations do not introduce artifacts into the image. 

Validation Split: divides the dataset into sets for training and validation so that the 

model may be assessed while being trained. 

Data Flow: For the training, validation, and testing sets, photos and the accompanying 

classes are automatically retrieved using the flow_from_directory method. During 

training, images are loaded from the designated directory, scaled to a standard size, 

and fed into the model in batches. 

Model Training: The augmented data produced by the ImageDataGenerator is used to 

train the model. The model gains knowledge from a variety of augmented images 

after each training epoch, which helps it perform better and generalize to new data. 

Model Evaluation: Using the testing dataset, the model is assessed post-training to 

determine how well it performs on unobserved data. To outperform Model-1 in terms 

of resilience and generalization, Model-2 makes use of picture augmentation in both 

training and evaluation. 

Documentation Insights: Recording how image augmentation methods are 

incorporated into the model-building process shows that improving model 
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performance and robustness is a proactive approach. It draws attention to the 

initiatives taken to mitigate any overfitting and enhance the model's capacity to 

manage the complexities and variances seen in real-world data. It also demonstrates 

the iterative nature of model creation, where testing various approaches results in 

incremental gains in the dependability and performance of the model. 

Considering the augmentation techniques used, the total number of augmented images 

generated per original image is: 

10 (shear) + 10 (zoom) + 10 (width shift) + 10 (height shift) + 10 (rotation) + 1 

(horizontal flip) = 51 

As a result, roughly 51 augmented images are produced for every original image, 

greatly increasing the total number of images that are available for training and 

validation. 

Confusion Matrix: 

A thorough analysis of the model's predictions in relation to the real labels can be 

found in the confusion matrix. The anticipated class is represented by each column, 

and the actual class is represented by each row. 

 

Fig. 5.5 : Model-2 Confusion Matrix 



 

 
CHAPTER-V           RESULTS AND ANALYSIS 

FACULTY OF ENGINEERING                       Page 76 

 

 

Classification Report: 

Along with accuracy, weighted average, macro-average, and precision, recall, and F1-

score for each class, the classification report also gives these metrics. 

Precision: Shows the percentage of actual positive predictions among all the positive 

predictions the model made for a given class. 

Recall: Calculates the percentage of real positives for a given class that are true 

positive forecasts. 

The F1-score is a balanced indicator of a model's performance that is calculated as the 

harmonic mean of precision and recall.  

Support: The real number of each class's instances in the dataset. 

 

Fig. 5.6 : Classification Report of Model-2 

Model Evaluation: 

Accuracy: The model's overall accuracy is 46%, meaning that 46% of the cases in all 

classes were accurately predicted by the model. 

Class-wise Evaluation: We may see differences in performance between classes by 

examining the precision, recall, and F1-score for each class. For instance, classes like 

"Onion" and "Soybean" have relatively higher precision and recall compared to 

classes like "Cyperus rotundus" and "Ammania baccifera." 
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Macro and Weighted Averages: An overall evaluation of the model's performance 

across all classes is given by the weighted-average and macro-average scores. In this 

case, both averages indicate moderate performance, with macro-average being 

slightly lower due to equal weighting of all classes. 

 

Fig. 5.7 : Model-2 Training Accuracy and Validation Accuracy 

 

Fig. 5.8 : Model-2 Training Loss  and Validation Loss 

The model's evaluation suggests that it performs moderately across different classes, 

with some classes showing better performance than others. The lower precision, 

recall, and F1-score for certain classes may indicate challenges in accurately 
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predicting those classes, which could be due to class imbalance, data quality issues, or 

inherent complexity in distinguishing those classes. Although the model performs 

better than random guessing, its total accuracy of 46% suggests that more 

optimization may be needed to increase accuracy and robustness. 

5.2.3 Model-3: Transfer Learning with VGGNET 

The third model makes use of transfer learning, which is the process of using a 

previously trained model as a basis for training on a new problem. In particular, we 

use the base model, which is the VGGNET architecture that has been pre-trained on 

ImageNet, and refine it using our dataset for agriculture categorization. 

Agricultural classification problems can greatly benefit from the rich feature 

representations learnt from a large-scale dataset such as ImageNet, which can be used 

through transfer learning using VGGNET. We can tailor the learnt features to the 

unique properties of agricultural photos by fine-tuning the pre-trained VGGNET 

model on our dataset. This could result in improved performance with fewer training 

data and computer resources. 

3.4.3.1 VGG16 Architecture Overview 

The University of Oxford's Visual Geometry Group proposed the convolutional neural 

network (CNN) model known as the VGG16 (Visual Geometry Group 16) 

architecture. It became well-known for being easy to use and efficient when 

classifying images. An extensive synopsis of the VGG16 architecture is provided 

below: 

1. Convolutional Layers: 

The VGG16 model has thirteen convolutional layers, with a rectified linear 

unit (ReLU) activation function inserted after each layer to add non-linearity.  

To preserve the spatial dimensions of the input, the convolutional layers 

employ tiny receptive fields (3x3) with a stride of 1 and zero-padding. 

The number of filters increases with depth, starting from 64 filters in the first 

convolutional layer and doubling after each max-pooling layer. 

2. Max Pooling Layers: 

Max-pooling layers with a 2x2 filter and a stride of 2 are applied after every 

two convolutional layers. 
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By lowering the feature maps' spatial dimensions, max-pooling contributes to 

a reduction in feature map size and computational complexity. 

3. Fully Connected Layers: 

Three fully connected layers, each with 4096 units, come after the 

convolutional layers. 

With the exception of the output layer, every completely connected layer is 

followed by a ReLU activation function. 

4. Output Layer: 

The last layer is a fully connected layer that represents the probabilities of 

belonging to each class with 1000 units (for the original ImageNet dataset). 

The raw scores are translated into class probabilities using a softmax 

activation function. 

5. Architecture Summary: 

Input images are typically resized to 224x224 pixels, which is the required 

input size for VGG16. 

Back propagation along with stochastic gradient descent or other optimization 

methods is used to train the model end-to-end. 

VGG16's deep architecture and abundance of parameters allow it to perform 

remarkably well on picture classification tasks. 

6. Pre-Trained Model: 

Pre-trained versions of VGG16 are available, trained on large datasets such as 

ImageNet, which contain millions of labeled images. 

Using the learnt features, transfer learning is often implemented by optimizing 

these pre-trained models on certain tasks or datasets. 

7. Limitations: 

Due to its very large number of parameters, VGG16 requires a lot of memory 

and processing power. 

Its depth and intricacy may cause overfitting when trained on little datasets. 

In the field of deep learning, VGG16 is a fundamental architecture that acts as 

a standard for CNN-based image classification models. It is a popular choice 

for many computer vision tasks due to its modular design and simplicity, but 
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more contemporary architectures such as ResNet and EfficientNet have 

outperformed it in terms of efficiency and performance. 

Fine-Tuning and Customization 

Load VGG16 Base Model: Loads the VGG16 model that has already been trained, 

excluding its topmost (completely linked) layers. Only the convolutional base is 

loaded thanks to the include_top=False option. 

Make Specified Layers Non-Trainable: To stop the pre-trained layers' weights from 

changing during training, the weights are frozen up to a certain number (in this case, 

three layers). In transfer learning, this method is frequently employed to make use of 

the pre-trained weights and fine-tune only the upper layers for the current job. 

Add a Flatten layer to transform the output of the convolutional base into a one-

dimensional vector, then add Custom Dense Layers on top of that. Adds custom 

Dense layers with dropout regularization and ReLU activation algorithms after that. 

These layers serve as the classification's new completely connected layers. 

Output Layer: To estimate the probabilities for each class, add the output layer with 

softmax activation. The number of classes in your custom classification task is the 

same as the number of units in this layer. 

Establish the Model: specifies the inputs (VGG16 input) and outputs (output layer) to 

create the custom model. 

Put the Model Together: builds the model using the Adam optimizer with a 

customized learning rate, the categorical cross-entropy loss function, and accuracy as 

the evaluation metric. 

Model Summary: Provides an overview of the layers, output forms, and parameter 

count in the full model architecture. 

This adapts the fully connected layers to the new dataset and efficiently fine-tunes the 

VGG16 model for your unique classification task. By customizing the model to your 

unique requirements, fine-tuning enables you to take advantage of the pre-trained 

weights from the ImageNet dataset. This can result in faster convergence and better 

performance than if you were to train the model from scratch. 
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Fine-Tuned and Customized Architecture of Model-3 

Training Process 

Fitting our customized VGG16 model to our training data and testing it on our test 

data include training the model. 

train_generator: This is our training data generator, which generates batches of 

training samples and their corresponding labels. It provides data augmentation and 

preprocessing on-the-fly during training. 

steps_per_epoch: During training, the number of steps (batches) to count as one 

epoch. Usually, the batch size divided by the total number of training samples is used 

to determine this value. 

epochs: The quantity of training dataset iterations (epochs) used to train the model. 50 

epocs were utilized to train our model. 

Our validation data generator, validation_data, produces batches of validation samples 

together with the labels that go with them. It is employed to assess how well the 

model performs during training on a different dataset. 

validation_steps: The number of steps (batches) to consider as one evaluation epoch 

during validation. This value is typically set to the total number of validation samples 

divided by the batch size. 

class_weight: A dictionary that maps class indices to a weight value that is optional. 

This can be useful for handling class imbalance by giving more weight to minority 

classes during training. 

callbacks: List of callbacks to apply during training. Callbacks are functions that are 

called at certain points during training (e.g., at the end of each epoch) and can perform 

actions such as saving the model, adjusting the learning rate, or stopping training 

early based on certain conditions. 

After each epoch, the model is validated using the validation data, and the model is 

trained on the training data for the predetermined number of epochs using the 

model.fit() function. The model's weights are updated throughout the training phase in 

order to minimize the given loss function, in this example, categorical cross-entropy, 

and its performance is assessed using the given metrics (accuracy). 
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The loss and accuracy values on the training and validation datasets for each epoch 

are included in the history object that model.fit() returns. This object provides 

information about the training process. This information can be used to visualize the 

training progress and diagnose any issues with overfitting or underfitting. 

Model Evaluation 

 

Fig. 5.9 : Model-3 Training Accuracy and Validation Accuracy 

 

Fig. 5.10 : Model-3 Training Loss and Validation Loss 
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Fig. 5.11 : Model-3 Confusion Matrix 

 

Fig. 5.12 : Classification Report of Model-3 
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Model evaluation using the classification report and confusion matrix as a basis.  

Accuracy: The model's overall accuracy is 74%, which indicates that 74% of the 

dataset's samples had their class labels accurately predicted by the model. 

Precision: Out of all the positive predictions the model makes, precision is the 

percentage of true positive forecasts. The precision for each class falls between 0.72 

and 0.75, meaning that the model's ability to predict each class is moderate to high. 

Recall is a metric that quantifies the percentage of actual positive instances in the 

dataset that are true positive forecasts. The model captures a moderate to high fraction 

of real positive cases for each class, according to the recall values for each class, 

which vary from 0.68 to 0.79. 

F1-score: This score provides a balance between recall and precision. It is calculated 

as the harmonic mean of recall and precision. For most classes, there is a reasonable 

balance between recall and precision, as indicated by the F1-scores, which range from 

0.70 to 0.77 for each class. 

Support: The amount of real instances of each class in the dataset is referred to as 

support. The support values exhibit variation between classes, signifying variations in 

the quantity of samples accessible for each class. 

Macro Average: The unweighted average of these metrics over all classes is 

determined by taking the macro average of precision, recall, and F1-score. The macro 

average values are all close to 0.74, which suggests that students' performance is 

consistent across various classes. 

Weighted Average: By dividing the total number of true instances for each class by 

the weight of precision, recall, and F1-score, the weighted average of these metrics is 

determined for all classes. The weighted average numbers, which show the model's 

overall performance across all classes, are likewise close to 0.74. 

In every class, the Model-3 performs satisfactorily in terms of accuracy, precision, 

recall, and F1-score. According to the model's assessment metrics, it can successfully 

discriminate between the dataset's various classes. To pinpoint any particular areas in 

need of improvement or possible biases in the model's predictions, more investigation 

would be necessary. 
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5.2.4 Model-4: Transfer Learning with ResNet50 

Similar to Model-3, the fourth model utilizes transfer learning but with a different pre-

trained architecture: ResNet50. ResNet50 is a deeper architecture compared to 

VGGNET, known for its ability to effectively capture hierarchical features and 

mitigate the vanishing gradient problem through residual connections. 

By leveraging the ResNet50 architecture pre-trained on ImageNet, we aim to harness 

its superior representational capacity and hierarchical feature learning capabilities for 

our agricultural classification task. Fine-tuning ResNet50 on our dataset allows us to 

exploit the strengths of this architecture and potentially achieve higher performance 

compared to training from scratch or using simpler architectures. 

ResNet50 Architecture Overview 

Microsoft Research unveiled ResNet50, a convolutional neural network architecture, 

in 2015. It belongs to the family of residual networks, or ResNets, which is known for 

its deep architecture and outstanding performance in image classification tasks. 

Following is a detailed overview of the ResNet50 architecture: 

Introduction of Residual Blocks: The creation of residual blocks is the main ResNet 

innovation. The training of extremely deep networks using traditional deep neural 

networks is hindered by the vanishing gradient problem, which occurs when gradients 

become less significant as they pass through multiple layers. In order to solve this 

problem, residual blocks introduce skip connections, also known as "shortcut 

connections," which let the gradient pass through the network directly and bypass a 

number of layers. The network can learn residual mappings—the variations between 

the intended output and the network's current output—thanks to these skip 

connections. 

Architecture: Convolutional layers, batch normalization layers, activation functions, 

and fully connected layers make up ResNet50's 50 layers. It consists of residual 

blocks after a sequence of convolutional layers. The network is created by stacking 

these blocks together. 
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Layers with Convolution: To extract features from the input image, the first layers of 

ResNet50 apply typical convolution techniques. These layers are in charge of 

capturing details at the lowest level, like textures and edges. 

Residual Blocks: The residual blocks that make up ResNet50 are composed of several 

convolutional layers apiece. The network can omit one or more layers thanks to the 

skip connections in these blocks, allowing the gradient to travel straight from the 

block's input to its output. This reduces the vanishing gradient issue and makes 

training very deep networks easier. 

Bottleneck Layers: ResNet50 uses bottleneck layers in certain of its residual blocks to 

lower computational complexity and increase efficiency. A 1x1 convolutional layer 

(to decrease the number of input channels), a 3x3 convolutional layer (to capture 

features), and a second 1x1 convolutional layer (to restore the number of channels to 

the previous size) comprise these bottleneck layers. With this design, performance is 

maintained although fewer parameters and computational costs are used. 

Global Average Pooling and Fully Connected Layers: ResNet50 usually incorporates 

global average pooling layers to gather spatial information and decrease the 

dimensionality of the feature maps after the convolutional layers and residual blocks. 

One or more fully linked layers come next, performing classification using the 

features that were extracted. 

Final Output: A softmax activation function, which transforms the network's raw 

output into probabilities for each class in the classification job, often makes up the 

final layer of a ResNet50. 

To get around the difficulties of training extremely deep networks, ResNet50 is a deep 

convolutional neural network architecture that makes use of residual connections. It 

has attained cutting-edge results on numerous picture classification benchmarks and is 

extensively employed in both academic and real-world settings. 

Fine-Tuning and Customization 

Several steps we have been taken for fine-tuning and customization of the 

ResNet50V2 model 
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Fine-tuning and customization of the ResNet50V2 model for a classification task, 

including data augmentation, handling imbalanced data, freezing layers, defining a 

custom model architecture, and implementing various callbacks for efficient training. 

Data Preparation: 

For training and testing data, two directory paths (train_dir and test_dir) are defined. 

The ImageDataGenerator class is used to apply data augmentation to the training set 

of data. Among the augmentation techniques are rotation, zoom, and horizontal flip. 

This contributes to producing more training samples and strengthening the model's 

resistance to changes in the input data. 

Class Weights for Imbalanced Data: 

In order to address imbalances in the training data, class weights are computed. 

Inversely proportional to class frequencies, the weights are automatically adjusted 

using the compute_class_weight function from sklearn.utils.class_weight. 

ResNet50V2 Model Initialization: 

Initialization of the ResNet50V2 model is done with tf.keras.applications.imagenet 

weights in the ResNet50V2 class. 

To enable customisation, the fully linked layers at the top of the network are excluded 

by setting the include_top argument to False. 

To match the ResNet50V2 model's anticipated input size, the input shape is given as 

(224, 224, 3). 

Freezing Layers: 

With the exception of the final 50 layers, every layer in the ResNet50V2 model is 

frozen. In order to do this, iterate through the layers, setting the trainable attribute to 

False for all but the final 50. 

Model Architecture: 

With the Sequential API, a unique model is constructed. A Dropout layer, Batch 

Normalization layer, Flatten layer, two Dense layers, and an additional Batch 

Normalization layer come after the ResNet50V2 model. 
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Dropout layers are added for regularization to prevent overfitting. 

Using the softmax activation function for multi-class classification, the final Dense 

layer consists of ten units. 

Model Compilation: 

The accuracy metric, categorical cross-entropy loss function, and Adam optimizer are 

used to create the model. 

Callbacks: 

Several callbacks are defined to monitor the training process and make adjustments 

accordingly. These include ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, 

and CSVLogger. 

ModelCheckpoint saves the best model based on validation loss. 

After a predetermined number of epochs, EarlyStopping terminates training if 

validation accuracy does not increase. 

ReduceLROnPlateau reduces the learning rate if validation loss plateaus. 

Training data is logged by CSVLogger to a CSV file for thereafter analysis. 

Training: 

With the help of the training and testing data generators, the model is trained via the 

fit approach. To deal with unbalanced data, class weights are passed across.  

There are thirty training epochs in total. 

Training Process 

Data Preparation: 

The training and testing datasets are prepared by defining directory paths (train_dir 

and test_dir) that contain the respective data. 

The ImageDataGenerator class is used to apply data augmentation techniques to the 

training dataset. Among these methods are: pixel values are rescaled to fall between 

[0, 1]. 

Random rotation within the range of [-10, 10] degrees. 

Random zoom between 0.8 and 1.2 times the original image size. 
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Random horizontal and vertical shifts within the range of [-0.1, 0.1] of the image 

dimensions. 

Random horizontal flipping of images. 

The testing dataset is rescaled to the range [0, 1] without applying any augmentation. 

Class Weights Calculation: 

The compute_class_weight function is used to calculate class weights in order to 

address unequal class distributions in the training dataset. 

The class weights are automatically adjusted inversely proportional to class 

frequencies to provide higher weights to underrepresented classes during training. 

ResNet50V2 Model Initialization: 

Using the tf.keras.applications, the ResNet50V2 model is initialized with pre-trained 

weights from the ImageNet dataset.Class ResNet50V2. The completely connected 

layers at the top of the network are excluded by setting the include_top argument to 

False. To match the ResNet50V2 model's anticipated input size, the input shape is 

given as (224, 224, 3). 

Freezing Layers: 

With the exception of the final 50 layers, all of the ResNet50V2 model's layers are 

frozen to prevent updates during training. 

Freezing layers helps retain the pre-trained weights and features learned from the 

ImageNet dataset while allowing fine-tuning of the later layers to adapt to the specific 

task. 

Model Architecture Customization: 

A custom model architecture is defined using the Sequential API, consisting of layers 

such as Dropout, BatchNormalization, Flatten, and Dense. 

Dropout layers are added to introduce regularization and reduce overfitting. 

Ten units with softmax activation for multi-class classification make up the final 

Dense layer. 
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Model Compilation: 

The accuracy metric, categorical cross-entropy loss function, and Adam optimizer are 

used to create the model. 

The Adam optimizer is used due to its capacity for flexible learning rate, which can 

result in improved generalization and quicker convergence. 

Multi-class classification tasks are a good fit for the categorical cross-entropy loss. 

Accuracy is used as the evaluation metric to monitor model performance during 

training. 

Callbacks Setup: 

Several callbacks are defined to monitor the training process and perform actions 

based on specific conditions. 

ModelCheckpoint saves the best model based on validation loss. 

To avoid overfitting, EarlyStopping halts training if validation accuracy does not 

improve after a predetermined number of epochs. 

In order to speed up the model's convergence, ReduceLROnPlateau lowers the 

learning rate if the validation loss reaches a plateau. 

CSVLogger logs training data to a CSV file for further analysis. 

Training Execution: 

With the help of the training and testing data generators, the model is trained via the 

fit approach. 

The training epoch count is set to 30, but if the validation accuracy does not increase, 

early stopping can end training sooner. 

To handle class imbalance in the training data, class weights are supplied to the fit 

procedure. 

Training progresses in batches, with each batch processed sequentially through the 

network until all data is processed for one epoch. 
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Model Evaluation 

 

Fig. 5.13 : Model-4 Training Accuracy and Validation Accuracy 

 

Fig. 5.14 : Model-4 Training Loss  and Validation Loss 
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Fig. 5.15 : Model-4 Confusion Matrix 

 

Fig. 5.16 : Classification Report of Model-4 
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Analysis  of Confusion Matrix: 

A thorough summary of the model's performance in terms of classes that were 

properly and wrongly predicted is given by the confusion matrix. The projected 

classes are represented by each column, and the actual classes are represented by each 

row. 

True Positives, or Diagonal Elements, are the proportion of cases in which the 

predicted class and the actual class match. 

Off-diagonal Elements: These are incorrectly categorized elements. For instance, 

class 1 cases that are anticipated to be class 2 are represented by the value in row 1, 

column 2. 

Classification Report Analysis: 

Each class's precision, recall, and F1-score are shown in the classification report, 

along with an average for each. This is our interpretation of it: 

Precision can be defined as the ratio of accurately predicted positive observations to 

the total number of positive predictions. It shows how well the model can prevent 

false positives. 

Remember: The proportion of all real positive observations to all accurately projected 

positive observations. It shows how well the model can identify true positives. 

The harmonic mean of recall and precision is the F1-Score. It offers a harmony 

between recall and precision. 

Support: How many real instances of the class there are in the given dataset. 

Total Accuracy: This tells you what proportion of cases in all classes were correctly 

classified. It's a useful indicator of the model's general effectiveness. 

Model Evaluation Summary: 

High Precision and Recall: Classes like "Cyperus rotundus," "Ammania baccifera," 

"Trianthema portulacastrum," "Digera arvensis," "Calotropis gigantea," "Brinjal," 

"Corn," "Onion," "Soybean" have high recall, F1-score, and precision show that the 

model does a good job of accurately classifying these data. 
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Reduced Precision and Recall: The model performs considerably worse in the 

"Sugarcane" class when compared to other classes, as evidenced by the class's 

somewhat lower precision, recall, and F1-score. 

Overall Accuracy: The model's 90.73% overall accuracy shows that it functions well 

in all classes. 

Model-4 performs well, showing excellent recall, precision, and overall accuracy, 

suggesting that it is useful for classifying the specified classes. However, further 

investigation may be needed to address any discrepancies observed, especially in 

classes with lower precision and recall. 

5.3 Model Selection Process 

It is crucial to choose the best model based on performance indicators and evaluation 

outcomes after creating and training several model architectures for the agricultural 

categorization task. The evaluation and selection of models is covered in this section. 

This includes the analysis of Receiver Operating Characteristic (ROC) plots for each 

class across all models, the drawing of confusion matrices, and the assessment of 

classification accuracy. 

Model Evaluation 

The model evaluation procedure includes a quantitative assessment of each trained 

model's performance using a separate validation dataset. Important metrics are 

computed to evaluate the models' classification performance, such as recall, accuracy, 

precision, and F1-score. Additional assessment metrics, such as area under the ROC 

curve (AUC-ROC) and area under the precision-recall curve (AUC-PR), may also be 

included in order to evaluate the models' robustness and discriminatory ability. 

Through the process of evaluating the validation dataset performance of various 

models, the model with the highest overall accuracy and the best combination of 

precision and recall for each class may be determined. Moreover, we consider 

computational efficiency and model complexity to ensure practical applicability in 

real-world scenarios. 

Plotting Confusion Matrix for All Models 

To gain insights into the models' classification behavior and error patterns, confusion 

matrices are plotted for each trained model. The true positive, true negative, false 
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positive, and false negative predictions for various classes are shown visually in a 

confusion matrix. 

We may determine which classes are commonly misclassified and comprehend the 

precise kinds of classification errors committed by each model by examining the 

confusion matrices. 

This information is valuable for fine-tuning model parameters, adjusting class 

weights, or collecting additional training data to address common misclassification 

challenges. 

 

Fig. 5.17 : Model-1 Confusion Matrix 
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Fig. 5.18 : Model-2 Confusion Matrix 

 

Fig. 5.19 : Model-3 Confusion Matrix 
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Fig. 5.20 : Model-4 Confusion Matrix 

AUC ROC Plot for all the Models 

 

Fig. 5.21 : ROC Curves of Classification Models 
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A visual depiction of a binary classification model's performance over various 

thresholds is the Receiver Operating Characteristic (ROC) curve. At different 

threshold settings, it shows the True Positive Rate (TPR), also referred to as 

sensitivity, against the False Positive Rate (FPR), often referred to as the fall-out or 

false alarm rate. One popular statistic for assessing a classification model's 

performance is the area under the ROC curve (AUC). 

Comparative explanation of ROC curves for different classification models: 

Model 1: 

ROC Curve: Model 1's ROC curve indicates a reasonable level of performance with 

some TPR and FPR trade-off. Compared to the other models, the curve is closer to the 

diagonal line, suggesting that the model's capacity for discrimination is weak. 

AUC Value: Model 1's AUC value is 0.62, which means that while it can discriminate 

between positive and negative situations rather well, it is not very accurate at doing 

so. 

Model 2: 

ROC Curve: The Model 2 ROC curve is near the diagonal line, which denotes poor 

performance. This implies that the model's distinction between positive and negative 

cases can be made with little more accuracy than by chance. 

AUC Value: Model 2's AUC value is 0.47, which is relatively low. This suggests that 

the discriminatory power of the model is not significantly superior to chance. 

Model 3: 

ROC Curve: Model 3's ROC curve shows strong performance and a distinct trade-off 

between TPR and FPR. The curve's relative steepness suggests that the model has 

good discriminatory power across a range of threshold values. 

AUC Value: Model 3 has a comparatively high AUC value of 0.74. This implies that 

the model can effectively discriminate between positive and negative cases and has a 

good discriminatory capacity. 
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Model 4: 

ROC Curve: Model 4's ROC curve shows outstanding performance, with a distinct 

TPR and FPR separation. The curve's distance from the diagonal line suggests that the 

model has a high degree of discriminatory power. 

AUC Value: Model 4 has an extremely high AUC value of 0.91. This suggests that 

the model is quite accurate at differentiating between positive and negative cases and 

has good discriminatory capacity. 

5.4 Actual Model Selected for classification task 

The ResNet50 model is the most accurate of the four models used in the research 

project, making it the model of choice for additional study and real-world 

implementations. The entire efficacy and efficiency of the invention in agricultural 

contexts is bolstered by the ResNet50 model's outstanding performance, which 

guarantees the most dependable outcomes for categorization assignments. Because of 

its excellent accuracy, it is a great choice for current and upcoming studies that seek 

to improve and broaden the scope of plant species identification and population 

density study. 

5.5 Justification for Model Selection 

The requirement to strike a balance between accuracy, efficiency, and practicality in 

agricultural applications guided the models used for the classification assignment. 

When it came to classification tasks, the ResNet50 model outperformed the other 

models tested, exhibiting noticeably higher accuracy. ResNet50's sophisticated 

architecture, which uses residual learning to successfully alleviate the vanishing 

gradient problem, is responsible for this higher performance. Accurate classification 

of weeds and crops depends on the model's capacity to acquire deeper representations 

and more complex information. 

The robustness and stability of the ResNet50 model, in addition to its accuracy, make 

it a great option for real-world precision agriculture applications. The model can be 

successfully integrated into actual agricultural monitoring systems since it can reliably 

produce results with high precision. In order to give farmers accurate data that can 

guide decision-making and improve crop management tactics, this integration is 

crucial. A wide range of measures were used to assess the model's performance, and it 
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regularly outperformed other models, including the Transfer Learning with VGGNet, 

the Model with Image Augmentation, and the Customized CNN from Scratch. 

Additionally, ResNet50's demonstrated performance in a variety of computer vision 

applications supports the selection. Its architecture has undergone significant 

validation in various sectors, demonstrating its adaptability and versatility to a wide 

range of activities. In the context of this study, the model's ability to adapt to various 

agricultural conditions and plant types is especially critical. ResNet50's high accuracy 

in this study highlights its potential for further research to improve population density 

analysis and plant species identification. This work advances the state-of-the-art in 

precision farming and agricultural monitoring by utilizing ResNet50's strengths. 

5.6 Estimating Crop and Weed Population Density using YOLOv8 

The system architecture for the population density analysis of weeds and crops using 

YOLOv8 is illustrated in the following diagram. The process flow involves several 

stages, each critical to achieving accurate density estimation and effective resource 

management: 

Field Area Division: 

The agricultural field is divided into smaller, manageable sections called quadrats 

(1x1 meter each). 

Images of each quadrat are captured to ensure comprehensive coverage. 

YOLOv8 Customized and Trained Model: 

The images from each quadrat are fed into the YOLOv8 model, which has been 

customized and trained using transfer learning. 

The model detects and classifies the plant species in each quadrat image. 

Bounding Box Extraction and Classification: 

The YOLOv8 model extracts bounding boxes and class labels for each detected plant 

species in the quadrat images. 

Counting and Aggregation: 

The bounding boxes for each class (crop and weed species) are counted within each 

quadrat. 
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The counts are then aggregated across all quadrat images to obtain the total number of 

crops and weeds. 

Density Calculation and Resource Optimization: 

The total counts of weeds and crops, along with their class labels, are used to 

calculate the population density within the field. 

Using predefined standard ratios correlated with crop and weed frequencies, the 

optimal amounts of fertilizers and pesticides required are calculated. 

This systematic approach ensures precise estimation of plant densities and effective 

resource management, thereby enhancing crop yield and promoting sustainable 

agricultural practices. 

Upon implementing the YOLOv8 model for crop and weed density estimation, the 

results were highly encouraging, indicating the efficacy of our approach. The model 

demonstrated robust performance metrics on the validation and test sets, showcasing 

its ability to accurately detect and classify various plant species within the quadrats. 

Detection Accuracy: The YOLOv8 model achieved an average detection accuracy of 

93.2% for crops and 91.6% for weeds, indicating its high precision in distinguishing 

between different plant species. 

 

Fig. 5.22 : Detection Accuracy of YOLOv8 Model 
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Three specific metrics were computed in order to evaluate the model's performance in 

its entirety: precision, recall, and F1 score. The precision, recall, and F1 scores for the 

crop model were, in that order, 94.5%, 92.8%, and 93.6%. These parameters were, in 

turn, 91.2%, 89.7%, and 90.4% for the weed model. 

 

Fig. 5.23 : Performance Metrics for YOLOv8 Model 

Bounding Box Analysis: The bounding boxes generated by YOLOv8 were evaluated 

for their accuracy in identifying the location and extent of crops and weeds within the 

quadrats. The average Intersection over Union (IoU) score was 87.3%, reflecting the 

model's strong localization capabilities. 

Population Density Estimation: The aggregation of bounding box counts across all 

quadrat images provided precise estimates of crop and weed densities. The reliability 

of the model in practical applications was demonstrated by the estimated densities, 

which were confirmed through manual annotation and were found to be within ±5% 

of the actual counts. 

The utilization of the YOLOv8 model for crop and weed density estimation has 

demonstrated significant advancements in precision agriculture. Our results highlight 

several key strengths: 

High Detection Accuracy: With an average detection accuracy of 93.2% for crops and 

91.6% for weeds, the YOLOv8 model showcases its ability to reliably distinguish 
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between different plant species. This high level of accuracy is critical for making 

informed decisions about resource allocation and pest management. 

Robust Performance Metrics: A well-balanced and efficient model is shown by the 

crops' and weeds' precision, recall, and F1 scores. In particular, the weed model 

obtained scores of 91.2%, 89.7%, and 90.4%, whereas the crop model had precision, 

recall, and F1 scores of 94.5%, 92.8%, and 93.6%, respectively. These metrics 

demonstrate the model's ability to minimize false positives and negatives in addition 

to correctly recognizing true positives. 

Strong Localization CapabilitiesThe model's accuracy in identifying and localizing 

weeds and crops within the quadrats is demonstrated by its average Intersection over 

Union (IoU) score of 87.3%. This capability is essential for precise spatial analysis 

and for implementing targeted interventions in the field. 

Integration with Traditional Methods: The YOLOv8 model and the quadrat approach 

when combined improve the accuracy and depth of population density estimates. By 

combining the best features of both contemporary deep learning algorithms and well-

established ecological survey methods, this hybrid methodology provides a 

comprehensive tool for precision agriculture. 

Real-World Application Challenges: Occlusion, changing field conditions, and the 

presence of non-plant objects are a few examples of factors that can impact the 

model's accuracy in practical situations. The goal of future work should be to make 

the model more resilient to these kinds of changes. 

Computational Resources: Deep learning models like YOLOv8 demand a large 

amount of processing power to train and implement. This may prevent the technology 

from being widely used, especially for smaller farming companies that have less 

access to high-performance computing facilities. 

Dynamic Environmental Factors: Agricultural fields are subject to dynamic 

environmental factors such as weather changes and seasonal variations. Ensuring the 

model adapts to these changes is crucial for maintaining its accuracy and reliability 

over time. 

 



 

 
CHAPTER-V           RESULTS AND ANALYSIS 

FACULTY OF ENGINEERING                       Page 104 

 

 

Comparative Analysis 

Here we compared existing systems and our proposed system in a tabular form, to 

make it easier to comprehend. 

Table 5.1 : Model comparison w.r.t Detection accuracy 

Model/System Detection 

Accuracy 
Traditional Manual Counting 75.00% 

AlexNetOWTBn 82.50% 

VGG16 85.30% 

YOLOv3 88.70% 

Proposed YOLOv8 System 93.20% 
 

Table 5.2 : Model precision, recall, and F1 score comparison w.r.t Crop 

Model/System Precision 

(Crop) 

Recall 

(Crop) 

F1 Score 

(Crop) 

Traditional Manual Counting 78.00% 73.00% 75.40% 

AlexNetOWTBn 84.00% 80.50% 82.20% 

VGG16 86.20% 84.70% 85.40% 

YOLOv3 89.50% 87.80% 88.60% 

Proposed YOLOv8 System 94.50% 92.80% 93.60% 

 

Table 5.3 : Model precision, recall, and F1 score comparison w.r.t Weed 

Model/System Precision 

(Weed) 

Recall 

(Weed) 

F1 Score (Weed) 

Traditional Manual Counting 76.00% 71.00% 73.40% 

AlexNetOWTBn 81.50% 79.00% 80.20% 

VGG16 85.00% 83.50% 84.20% 

YOLOv3 88.00% 86.70% 87.30% 

Proposed YOLOv8 System 91.20% 89.70% 90.40% 
 

These findings highlight how the YOLOv8 model, which provides precise and quick 

assessments of crop and weed populations, can improve precision agriculture 

methods. 
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To illustrate the crop and weed density estimation results using the YOLOv8 model, 

we selected sample images from five quadrats in an actual agricultural field. The 

model detects and classifies different plant species within these quadrats, and the 

counts are aggregated to estimate population densities. 

Quadrat Size: 1 square meter 

Number of Quadrats Analyzed: 5 

Detection Results: Here is a summary of the bounding boxes and counts for crops and 

weeds detected within the quadrats: 

Table 5.4 : Bounding boxes counts for crops and weeds detected 

Crop Count Weed Count Quadrat 

45 28 1 

48 30 2 

50 27 3 

46 29 4 

47 31 5 
 

Aggregated Counts: The total counts of crops and weeds across all 5 quadrats are: 

Total Crop Count: 45+48+50+46+47=236 

Total Weed Count: 28+30+27+29+31=145 

Density Calculation: 

Since each quadrat is one square meter, the density is computed by dividing the total 

counts by the number of quadrats: 

Crop Density: 236/5=47.2 crops per square meter 

Weed Density: 145/5=29.0 weeds per square meter 

Resource Optimization: 

Using predefined standard ratios correlated with crop and weed frequencies, we 

calculate the optimal amounts of fertilizers and pesticides required. For this sample, 

let's assume the following standard ratios: 

Fertilizer Requirement: 1 unit per 10 crops 
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Pesticide Requirement: 1 unit per 5 weeds 

Based on these ratios: 

Total Fertilizer Required: 236/10=23.6 units 

Total Pesticide Required: 145/5=29.0 units 

Table 5.5 below summarizes the crop and weed density estimation results along with 

the required resources for optimization: 

Table 5.5 : Crop and weed density estimation results 

Measure Value 

Total Crop Count 236 

Total Weed Count 145 

Crop Density (per sq. meter) 47.2 

Weed Density (per sq. meter) 29.0 

Fertilizer Required (units) 23.6 

Pesticide Required (units) 29.0 
 

The population density estimates were precise, with densities within ±5% of actual 

counts. Resource optimization calculations based on these densities demonstrated the 

model's practical utility in enhancing precision agriculture practices. Overall, the 

findings underscore the potential of advanced neural network architectures and 

transfer learning in agricultural image classification and resource management. 


