
 

CHAPTER – IV 

 

 

METHODOLOGY 

 

 

 

 

 



 

 
CHAPTER-IV              METHODOLOGY 

FACULTY OF ENGINEERING                       Page 52 

 

 

4.1 Introduction: An Overview of the Chapter 

The methodological approach for creating and validating the Convolutional Neural 

Network (CNN)-based system for classifying weeds and crops is described in this 

chapter. This chapter offers a thorough explanation of the model architecture, the 

research design, and the several methods used to accomplish the study's goals. 

We begin by detailing the research design, explaining the rationale behind the chosen 

methodology and how it aligns with the research objectives. Following this, we delve 

into the specifics of the CNN architecture, particularly focusing on the YOLOv8 

model, which is central to our approach. The chapter also covers the training process, 

including the selection of hyperparameters, optimization techniques, and the strategies 

used to prevent overfitting. 

Additionally, this chapter has a section on the validation methods and assessment 

metrics used to evaluate the model's performance. We go over how crucial these 

indicators are to giving us a thorough grasp of the model's recall, accuracy, precision, 

and overall efficacy. 

Lastly, we explore the comparative analysis conducted between our proposed model 

and existing models, such as AlexNetOWTBn, VGG16, and YOLOv3. This 

comparison highlights the advantages and potential limitations of our approach, 

providing a context for interpreting the results presented in the subsequent chapter. 

This chapter tries to give a clear and repeatable framework for creating a reliable and 

efficient CNN-based precision agriculture system by going into great detail on the 

approach. 

4.2 Model Development 

With layers like convolutional, pooling, and fully connected layers, CNNs are 

effective tools for classifying images. For our agricultural classification jobs, we 

employ pre-trained models through techniques like transfer learning, callbacks to 

optimize the training process, and ImageGenerators to load and preprocess data 

efficiently. 

A thorough process for developing and assessing deep learning models for precision 

agricultural picture classification is shown in Figure 4. To improve robustness and 

generalization, it begins with a dataset of annotated pictures that are subjected to data 



 

 
CHAPTER-IV              METHODOLOGY 

FACULTY OF ENGINEERING                       Page 53 

 

 

augmentation techniques including rotation and flipping. Three sets of augmented 

data are created: training, validation, and testing. The validation set is used to adjust 

hyperparameters and avoid overfitting, while the training phase teaches the model to 

recognize patterns and features from the training data. The test data is then used to 

analyze the final trained model in order to guarantee an objective evaluation of 

performance. 

 

Fig. 4 : Steps in building deep learning models 

We create four distinct models using these procedures for building deep learning 

models, and we compare them using the following performance metrics: accuracy 

(Equation (4)), recall (Equation (2)), F1-score (Equation (3)), and precision (Equation 

(1)). The precision of a set of items indicates its relevance, recall the percentage of 

true positives that are correctly detected, the F1-score strikes a balance between recall 

and precision, and accuracy gauges the overall accuracy of forecasts. This structured 

approach ensures that the model not only learns effectively but also performs reliably 

in real-world applications, enhancing resource management and decision-making in 



 

 
CHAPTER-IV              METHODOLOGY 

FACULTY OF ENGINEERING                       Page 54 

 

 

agricultural practices. The most efficient model from this comparative study will be 

selected for the classification task, optimizing the system's overall accuracy and 

effectiveness. 

��������� =

�

�
��

                                (1) 

������ =

�

�
���
                                      (2) 

�1 − ����� =
�×
������� ×!��"##


������� �!��"##
										 (3) 

															%��&���' =
�
�����
���

�
���
																   (4)  

The detailed discussion of the aforementioned equations will be provided in the 

subsequent sections of this chapter. 

4.2.1 Description of the Models Used 

This section describes the many models used to classify crops and weeds and estimate 

their densities. Five distinct models were utilized, each tailored for specific tasks, and 

the following subsections provide a comprehensive description of each model. 

Model-1: Customized CNN from Scratch 

A bespoke Convolutional Neural Network (CNN) created from scratch makes up the 

initial model. The purpose of this model was to categorize photos of weeds and crops. 

Multiple convolutional layers make up the architecture, which is then followed by 

pooling layers that take features out of the input images. The classification is done by 

fully connected layers at the end of the network. When comparing performance, this 

model acts as the reference point. 

 



 

 
CHAPTER-IV              METHODOLOGY 

FACULTY OF ENGINEERING                       Page 55 

 

 

 
Fig. 4.1 : The architecture of Model-1: Customized CNN from Scratch 

Model-2: Customized CNN from Scratch with Image Augmentation 

Building upon the first model, the second model incorporates image augmentation 

techniques to enhance the training data. Image augmentation entails randomly 

transforming the input images, such as flipping, rotating, and zooming in order to 

improve the resilience of the model and diversify the training set. This approach helps 

mitigate overfitting and improves generalization to new, unseen images. 



 

 
CHAPTER-IV              METHODOLOGY 

FACULTY OF ENGINEERING                       Page 56 

 

 

 

Fig.4.2:The architecture of Model-2:Customized CNN with Image Augmentation 

Model-3: Transfer Learning with VGGNet 

The third model makes use of VGGNet architecture—more specifically, VGG16—for 

transfer learning. Transfer learning is the process of optimizing a pre-trained model 

for a given classification job by employing it on a sizable dataset. The crop and weed 

dataset was used to refine the VGG16 model, which is renowned for its depth and 

effectiveness in picture classification tasks. This approach leverages the rich feature 



 

 
CHAPTER-IV              METHODOLOGY 

FACULTY OF ENGINEERING                       Page 57 

 

 

representations learned by VGG16, providing a strong baseline for comparison with 

other models. 

 
Fig. 4.3 : Fine-Tuned and Customized 

Architecture of Model-3 

 
Fig. 4.4 : The architecture of actual 

VGGNet Model 

 

Model-4: Transfer Learning with ResNet50 

The fourth model, which uses the ResNet50 architecture, also makes use of transfer 

learning, just like Model 3. ResNet50, also known as the Residual Network with 50 

layers, is well known for its ability to use residual connections to train extremely deep 



 

 
CHAPTER-IV              METHODOLOGY 

FACULTY OF ENGINEERING                       Page 58 

 

 

networks. By reducing the impact of the vanishing gradient issue, these connections 

enhance the network's capacity for learning. Using the crop and weed dataset, the 

ResNet50 model was adjusted to enhance classification performance. 

 
Fig. 4.5 : Fine-Tuned and Customized 

Architecture of Model-4: 

 
Fig. 4.6 : The architecture of the actual 

ResNet50 Model 

 



 

 
CHAPTER-IV              METHODOLOGY 

FACULTY OF ENGINEERING                       Page 59 

 

 

4.2.2 Estimating Crop and Weed Density: Transfer Learning with YOLOv8 

We used the YOLOv8 (You Only Look Once) object identification technique to 

assess the population density of weeds and crops. This process begins with 

segmenting high-resolution images of agricultural fields into smaller sections, known 

as quadrats. Each quadrat is then analyzed using the YOLOv8 model to detect and 

count the occurrences of weeds and crops. By leveraging the pre-trained YOLOv8 

model and applying transfer learning techniques, we adapted the model to our specific 

dataset, ensuring high accuracy in detection. This technique is ideal for real-time 

applications in large-scale farming operations because it makes precise and effective 

monitoring of plant populations across vast agricultural areas possible. 

The use of YOLOv8 in this context offers significant advantages in speed and 

accuracy, facilitating rapid analysis and decision-making. The data gathered from the 

detection process is aggregated to estimate the population density of weeds and crops 

across the entire field. In addition to increasing crop optimization and weed control 

effectiveness, this strategy enhances precision agricultural methods by offering in-

depth understanding of plant population dynamics. The integration of advanced object 

detection algorithms like YOLOv8 enhances the overall capability to monitor and 

manage agricultural fields effectively. 



 

 
CHAPTER-IV              METHODOLOGY 

FACULTY OF ENGINEERING                       Page 60 

 

 

 

Fig. 4.7 : Process Flow for Population Density Analysis of Weeds and Crops 

Using YOLOv8 



 

 
CHAPTER-IV              METHODOLOGY 

FACULTY OF ENGINEERING                       Page 61 

 

 

4.3 Experimental Setup 

This section offers a thorough rundown of the experimental configuration that was 

utilized to train, adjust, and assess the CNN models for classifying plant species and 

weeds. The experiments were conducted on Google Colab, leveraging the capabilities 

of the Keras and TensorFlow libraries for deep learning tasks. The experimental 

pipeline encompassed data preprocessing, model training, evaluation metrics 

computation, and model deployment using Gradio for real-time predictions. 

4.3.1 Implementation Environment 

Google Colab, a cloud-based platform that offers free access to GPU resources for 

deep learning model training, was used for the trials. Using Google Colab made it 

possible to effectively employ GPU acceleration, which sped up training and made it 

easier to experiment with various model architectures and hyperparameters. 

Libraries and Frameworks 

The implementation of the research project relied on a combination of popular 

libraries and frameworks in the Python ecosystem, primarily focused on deep 

learning, image processing, and data visualization. Below is a detailed overview of 

the libraries and frameworks utilized: 

NumPy: A set of mathematical methods to manipulate massive, multi-dimensional 

arrays and matrices, as well as support for these arrays, make NumPy an essential 

package for scientific computing with Python. 

Pandas: Data structures and procedures for working with numerical tables and time 

series data are provided by this robust Python data manipulation and analysis 

package. 

Matplotlib is a feature-rich Python visualization toolkit that can be used to create 

static, interactive, and animated graphics. It offers a MATLAB-like interface for 

customizing and plotting different kinds of charts and graphs. 

OpenCV (cv2): Known for its broad support for image processing tasks like feature 

extraction, object detection, and picture segmentation, OpenCV is a popular computer 

vision library. Real-time computer vision applications make extensive use of it. 



 

 
CHAPTER-IV              METHODOLOGY 

FACULTY OF ENGINEERING                       Page 62 

 

 

TensorFlow: Created by Google Brain, TensorFlow is an open-source deep learning 

framework for creating and refining neural network models. It provides an adaptable 

architecture that may be used to implement machine learning models on CPUs, GPUs, 

and TPUs, among other platforms. 

Keras: Written in Python, Keras is an API for high-level neural networks that may be 

used with TensorFlow, Theano, or Microsoft Cognitive Toolkit (CNTK). It offers a 

simple-to-use interface with less coding complexity for creating and refining deep 

learning models. 

Seaborn: Seaborn is a Matplotlib-based statistical data visualization library that offers 

an aesthetically beautiful and educational depiction of intricate datasets. It makes the 

process of creating aesthetically pleasing graphs for statistical modeling and 

exploratory data analysis easier. 

scikit-learn: Supporting both supervised and unsupervised learning techniques, scikit-

learn is a flexible Python machine learning library. It offers tools for selecting, 

evaluating, and preparing data as well as for calculating performance indicators. 

Gradio: Gradio is a straightforward yet effective framework for building user 

interfaces for machine learning models. Through web-based interfaces, it makes it 

easier for ML models to be deployed and interacted with, allowing users to input data, 

see predictions, and investigate model behavior in real-time. 

4.3.2  Hardware and Software Specifications 

For the experimental setup, the following hardware and software specifications were 

utilized: 

Hardware: 

GPU: The experiments were conducted using a GPU-accelerated environment 

provided by Google Colab. Specifically, a Tesla P100 GPU was allocated for training 

the deep learning models. The GPU acceleration significantly reduced the training 

time compared to CPU-only execution, enabling faster experimentation and model 

iteration. 

 

 



 

 
CHAPTER-IV              METHODOLOGY 

FACULTY OF ENGINEERING                       Page 63 

 

 

Software: 

Operating System: The experiments were performed on Google Colab, which 

provides a cloud-based Jupyter notebook environment. 

Deep Learning Frameworks: The primary deep learning frameworks used for model 

development and training were Keras and TensorFlow. The high-level API for 

creating and training neural networks was given by Keras, and the backend for 

effective computation and optimization was supplied by TensorFlow. 

Python Libraries: Various Python libraries were employed for data preprocessing, 

model evaluation, and deployment. These include NumPy, Pandas, Matplotlib, and 

Gradio. 

Development Environment: The experiments were conducted using Python 3.x within 

the Google Colab environment, leveraging its integration with Jupyter notebooks for 

interactive development and experimentation. 

4.3.3 Training Parameters 

The following training parameters were applied in the experimental setup: 

1. Batch Size: During training, the batch size is the quantity of training examples 

processed in a single iteration. The CNN models were trained with a batch size 

of 32 to balance memory usage and computational effectiveness. 

2. Number of Epochs: One full run through the training dataset is represented by 

one epoch. In order to avoid overfitting, the models were trained for a 

predetermined amount of epochs and then stopped early. For every model, 

there were between fifty and one hundred epochs. 

3. Optimizer: During model training, gradient descent optimization was 

performed using the Adam optimizer. Adam is an adaptive learning rate 

optimization algorithm that produces better performance and faster 

convergence by computing individual adaptive learning rates for various 

parameters. 

4. Learning Rate: During optimization, the step size is decided by the learning 

rate at each iteration. The CNN models were trained at a learning rate of 

0.001, which ensured effective and steady convergence without generating 

oscillation or divergence. 



 

 
CHAPTER-IV              METHODOLOGY 

FACULTY OF ENGINEERING                       Page 64 

 

 

4.3.4  Evaluation Metrics 

The performance of the trained CNN models was evaluated using the evaluation 

metrics listed below: 

1. Confusion Matrix: When comparing the model's predictions to the ground 

truth labels, a confusion matrix offers a thorough synopsis. True positives, 

false positives, true negatives, and false negatives can all be shown, providing 

insights into the classification accuracy and error kinds of the model. 

a. A tabular representation of the actual vs. expected classes generated by 

a classification model is called a confusion matrix. 

b. True Positives (TP), True Negatives (TN), False Positives (FP), and 

False Negatives (FN) are its four constituent parts. 

c. The confusion matrix for an N-class multi-class classification issue is a 

N×N matrix. 

d. In the matrix, each column (i, j) denotes the number of class I 

occurrences that were incorrectly projected to be class J. 

e. Misclassifications are represented by off-diagonal matrix elements, 

whereas correctly categorized instances are represented by diagonal 

matrix elements (from top-left to bottom-right). 

2. Accuracy: The percentage of correctly identified cases relative to the total 

number of instances is called accuracy. Although it offers a broad evaluation 

of the model's overall effectiveness, it might not be enough for datasets that 

are unbalanced. 

a. The ratio of successfully predicted instances to all instances is how 

accuracy is measured. Accuracy assesses the overall correctness of the 

model's predictions across all classes. 

b. Although accuracy by itself might not be appropriate for unbalanced 

datasets, it does offer a broad picture of the performance of the model. 

Accuracy formula 

%��&���' =
TP + TN + FP + FN

-� + -.
 

3. Precision: The percentage of true positive predictions among all the model's 

positive predictions is measured by precision. It shows how well the model 

can prevent false positive mistakes. 



 

 
CHAPTER-IV              METHODOLOGY 

FACULTY OF ENGINEERING                       Page 65 

 

 

a. Precision gauges how well the model predicts favorable outcomes. 

b. The ratio of real positives to the total of false positives and true 

positives is used to compute it. 

c. Precision is the percentage of cases that are actually positive that are 

anticipated to be positive. 

d. Precision calculation formula 

��������� =
TP

-� + ��
 

4. Recall (Sensitivity): The percentage of accurate positive predictions among all 

real positive examples in the dataset is measured by recall. It evaluates how 

well the model captures all positive events, leaving none out. 

a. Recall quantifies the model's accuracy in identifying positive 

examples. 

b. The ratio of true positives to the total of false negatives and true 

positives is used to compute it. 

c. The percentage of real positive cases that the model correctly identified 

is known as recall.Formula to calculate Recall 

������ =
TP

-� + �.
 

5. F1-Score: This balanced indicator of the model's performance across precision 

and recall is the harmonic mean of precision and recall. It is especially helpful 

for datasets that are unbalanced. 

a. The F1-Score, which is the harmonic mean of recall and accuracy, is 

helpful in situations when there is an unequal class distribution because 

it strikes a balance between memory and precision. 

b. The F1-Score has a maximum value of 1 and a minimum value of 0. 

c. Formula to calculate F1-Score 

�1 − ����� =
2 × Precision × Recall

��������� + ������
 

6. Support: The number of real instances of each class in the dataset is 

represented by support. It aids in interpreting the importance of evaluation 

measures and offers insights into the distribution of classes. 



 

 
CHAPTER-IV              METHODOLOGY 

FACULTY OF ENGINEERING                       Page 66 

 

 

In classification reports, support is frequently shown in addition to precision, 

recall, and F1-score to give a comprehensive view of the model's performance 

across many classes. It assists in determining whether the assessment metrics 

are impacted by dataset imbalances or are based on an adequate number of 

cases for each class. 

7. AUC ROC Plot: A graphical depiction of the model's performance across 

various threshold values is the Area Under the Receiver Operating 

Characteristic (ROC) curve. It offers a comprehensive evaluation of the 

model's class discrimination capabilities, particularly in binary classification 

problems. 

7.1 The Curve of Receiver Operating Characteristic (ROC): 

• For various threshold values, the relationship between the true 

positive rate (Sensitivity) and the false positive rate (1 - 

Specificity) is shown graphically by the ROC curve. 

• Sensitivity is a metric that quantifies the percentage of actual 

positive cases among all true positive predictions that the model 

accurately recognized. 

• Specificity quantifies the percentage of real negative occurrences 

across all actual negative cases that the model properly identified 

as true negative predictions. 

• Sensitivity is plotted against 1-Specificity at different threshold 

values, often between 0 and 1, to form the ROC curve. 

7.2 Interpretation of ROC Curve: 

• A perfect classification model would have a ROC curve that 

hugged the upper-left corner of the plot, achieving high sensitivity 

and specificity at the same time. 

• The ROC curve of a random guessing model is represented by a 

diagonal line that runs from bottom-left to top-right, and for all 

threshold values, the true positive rate equals the false positive rate. 

It is believed that a model that falls within this range has no 

discriminating power.The model performs better the farther the 



 

 
CHAPTER-IV              METHODOLOGY 

FACULTY OF ENGINEERING                       Page 67 

 

 

ROC curve is from the random guessing line and the closer it is to 

the top-left corner. 

7.3  Area Under the Curve (AUC): 

• An binary classification model's total performance is measured by 

the AUC. It stands for the ROC curve's area under the curve. 

• AUC values vary from 0 to 1, with a perfect classifier being 

indicated by an AUC of 1. 

• AUC = 0.5 indicates that a model has no ability to discriminate—

the same as guesswork. 

• AUC less than 0.5 suggests that the model is not as good as random 

guessing. 

The stronger the model's capacity to discriminate between positive and negative 

instances, the higher its AUC score. 

 


