CHAPT	ER- I INTRODUCTION	1 – 13
1.1	Background of the Research Work	1
1.2	Problem Statement	1
1.3	Importance of Solving the Problem	2
1.4	Objectives of the Research Work	3
1.5	Research Questions	5
1.6	Importance of the Research	6
	1.6.1 Contributing to the Domain	6
	1.6.2 Practical Implications	7
1.7	Scope of the Study	8
1.8	Limitations and Constraints	9
	1.8.1 Data Limitations	9
	1.8.2 Model Performance and Generalization	10
	1.8.3 Computational Constraints	10
	1.8.4 Environmental and Practical Constraints	11
	1.8.5 Constraints of YOLOv8 Model	11
	1.8.6 Potential Areas for Improvement	11
1.9	Thesis Organization	12
CHAPT	ER- II LITERATURE REVIEW	14 – 29
2.1	Introduction: An Overview of the Chapter	14
2.2	Theoretical Framework	14
	2.2.1 Machine Learning in Agriculture	14
	2.2.2 Deep Learning Architectures	15
	2.2.3 Precision Agriculture and Robotics	15
	2.2.4 Data Preprocessing and Augmentation	15
	2.2.5 Evaluation Metrics	15
2.3	Review of Key Studies	16
2.4	Identifying Gaps in Existing Research	23
2.5	Justification for the Current Study	25
2.6	Conceptual Framework	27
2.7	Block Diagram	28

INDEX

Index

СНАРТ	ER-III DATA COLLECTION AND PREPROCESSING	30 - 51
3.1	Introduction: An Overview of the Chapter	30
3.2	Data Sources	30
3.3	Data Collection Methods	31
3.4	Description of the Dataset Prepared	34
	3.4.1 Weeds	34
	3.4.2 Crops	37
3.5	Distribution of Crop and Weed Images in Dataset	39
3.6	Data Cleaning	41
3.7	Data Transformation and Normalization	43
3.8	Data Splitting Strategy	46
СНАРТ	ER- IV METHODOLOGY	52 - 67
4.1	Introduction: An Overview of the Chapter	52
4.2	Model Development	52
	4.2.1 Description of the Models Used	54
	4.2.2 Estimating Crop and Weed Density: Transfer Learning	59
	with YOLOv8	
4.3	Experimental Setup	61
	4.3.1 Implementation Environment	61
	4.3.2 Hardware and Software Specifications	62
	4.3.3 Training Parameters	63
	4.3.4 Evaluation Metrics	64
СНАРТ	ER- V RESULTS AND ANALYSIS	68 – 106
5.1	Introduction: An Overview of the Chapter	68
5.2	Model Architecture Selection	69
	5.2.1 Model-1: Customized CNN from Scratch	69
	5.2.2 Model-2: Model 1 with Image Augmentation	73
	5.2.3 Model-3: Transfer Learning with VGGNET	78
	5.2.4 Model-4: Transfer Learning with ResNet50	85
5.3	Model Selection Process	94
5.4	Actual Model Selected for classification task	99
5.5	Justification for Model Selection	99
5.6	Estimating Crop and Weed Population Density using YOLOv8	100

CHAPT	107 - 118	
6.1	Introduction: An Overview of the Chapter	107
6.2	Summary of the Main Findings from the Study	107
6.3	Contributions to the Field	109
6.4	Future Research Scope	111
6.5	Recommendations and Suggestions	113
6.6	Limitations of the Study	115
6.7	Concluding Remarks	117
LIST OF PUBLICATION		119 - 121
BIBLIOGRAPHY		122 - 126

LIST OF TABLE

Table No.	Particulars	Page No.
3.1	Distribution of Crop and Weed Images in Dataset	39
5.1	Model comparison w.r.t Detection accuracy	104
5.2	Model precision, recall, and F1 score comparison w.r.t Crop	104
5.3	Model precision, recall, and F1 score comparison w.r.t Weed	104
5.4	Bounding boxes counts for crops and weeds detected	105
5.5	Crop and weed density estimation results	106