PRECISION FARMING: CNN-BASED SYSTEM FOR CROP AND WEED CLASSIFICATION AND DENSITY ANALYSIS

अत्याधुनिक खेती : फसल और खरपतवार वर्गीकरण एवं घनत्व मापन के लिए सीएनएन प्रणाली

A

Thesis

Submitted for the Award of the Ph.D. degree of PACIFIC ACADEMY OF HIGHER EDUCATION AND RESEARCH UNIVERSITY

By

TAKMARE SACHIN BALAWANT

ताकमारे सचिन बळवंत

Under the supervision of

Dr. MUKESH SHRIMALI Professor.

Education & Research University, Udaipur

Pacific Academy of Higher

Dr. RAHUL AMBEKAR

Department of Computer Engineering, A. P. Shah Institute of Technology, Thane, Mumbai

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING

PACIFIC ACADEMY OF HIGHER EDUCATION AND RESEARCH UNIVERSITY, UDAIPUR 2024

DECLARATION

I, TAKMARE SACHIN BALAWANT S/O SHRI BALAWANT TAKMARE resident of Flat no.102, Chestnut building, Cosmos Enclave, Ram Mandir Road, Kasarvadavali, Ghodbunder Road, Thane(W), Pin-400615, hereby declare that the research work incorporated in the present thesis entitled "Precision Farming: CNN-Based System for Crop and Weed Classification and Density Analysis" (अत्याधुनिक खेती : फसल और खरपतवार वर्गीकरण एवं घनत्व मापन के लिए सीएनएन प्रणाली) is my original work. This work (in part or in full) has not been submitted to any University for the award or a Degree or a Diploma. I have properly acknowledged the material collected from secondary sources wherever required.

I solely own the responsibility for the originality of the entire content.

Signature of the Candidate

Date:

FACULTY OF ENGINEERING PACIFIC ACADEMY OF HIGHER EDUCATION AND RESEARCH UNIVERSITY, UDAIPUR

Dr. MUKESH SHRIMALI Professor

CERTIFICATE

It gives me immense pleasure in certifying that the thesis "Precision Farming: CNN-Based System for Crop and Weed Classification and Density Analysis" (अत्याधुनिक खेती : फसल और खरपतवार वर्गीकरण एवं घनत्व मापन के लिए सीएनएन प्रणाली) and submitted by TAKMARE SACHIN BALAWANT is based on the research work carried out under my guidance. He / she have completed the following requirements as per Ph.D. regulations of the University;

- (i) Course work as per the University rules.
- (ii) Residential requirements of the University.
- (iii) Regularly presented Half Yearly Progress Report as prescribed by the University.
- (iv) Published / accepted minimum of two research paper in a refereed research journal.

I recommend the submission of thesis as prescribed/notified by the University.

Name and Designation of Supervisor

Date:

Dr. MUKESH SHRIMALI

Professor, Pacific Academy of Higher Education & Research University, Udaipur

CERTIFICATE

It gives me immense pleasure in certifying that the thesis "Precision Farming: CNN-Based System for Crop and Weed Classification and Density Analysis" (अत्याधुनिक खेती : फसल और खरपतवार वर्गीकरण एवं घनत्व मापन के लिए सीएनएन प्रणाली) and submitted by TAKMARE SACHIN BALAWANT is based on the research work carried out under my guidance. He / she have completed the following requirements as per Ph.D. regulations of the University;

- (i) Course work as per the University rules.
- (ii) Residential requirements of the University.
- (iii) Regularly presented Half Yearly Progress Report as prescribed by the University.
- (iv) Published / accepted minimum of two research paper in a refereed research journal.

I recommend the submission of thesis as prescribed/notified by the University.

Date:

Name and Designation of Co-Supervisor

Dr. RAHUL AMBEKAR

Department of Computer Engineering, A. P. Shah Institute of Technology, Thane, Mumbai,

COPYRIGHT

I, TAKMARE SACHIN BALAWANT, hereby declare that the Pacific Academy of Higher Education and Research University, Udaipur, Rajasthan, shall have the rights to preserve, use and disseminate this dissertation entitled "Precision Farming: CNN-Based System for Crop and Weed Classification and Density Analysis" (अत्याधुनिक खेती : फसल और खरपतवार वर्गीकरण एवं घनत्व मापन के लिए सीएनएन प्रणाली) in print or in electronic format for the academic research.

Date:

Signature of Candidate

Place:

ACKNOWLEDGEMENT

First and foremost, I would like to express my heartfelt gratitude to my beloved parents, whose unwavering support and encouragement have been the foundation of my success. I am deeply grateful to my father and mother for their constant love and guidance. To my wife, whose patience, understanding, and support have been my greatest strength, thank you for standing by me through all the challenges. To my children, **Shivay** and **Saharsha**, your smiles and love have been my source of inspiration and motivation.

Many people have helped me with this work, and I am thankful to each one of them. I especially want to thank **Prof. Hemant Kothari,** Dean of P.G. Studies at Pacific Academy of Higher Education and Research University, Udaipur, Rajasthan.

I am very grateful to my guide, **Dr. Mukesh Shrimali,** from Pacific Polytechnic College, Pacific University, Udaipur. His support, guidance, and motivation have been invaluable throughout my research. His knowledge and expertise have greatly shaped this work, and his encouragement helped me overcome many challenges.

I also want to thank my co-guide, **Dr. Rahul K. Ambekar**, from the Department of Computer Engineering at A. P. Shah Institute of Technology, Thane, Mumbai. His helpful suggestions, feedback, and cooperation have greatly improved the quality of this research.

Additionally, I would like to express my appreciation to the supporting staff and nonteaching staff of the university. Their assistance and support have been essential in completing this research. To all those who have contributed to this work, directly or indirectly, your support has been invaluable, and I am deeply thankful.

I am very grateful to *Dr. Surya Prakash Vaishnav*, Assistant Professor, PAHER University and friend for his valuable suggestions and encouragement throughout the period of my research.

The final one, my distinctive thanks to *Nav Nimantran Thesis Printing & Binding, Udaipur,* Admin Team *Mrs. Kusum and Mr. Hemant Sharma* for their role in shaping this research, creative design work and bringing out this document meticulously, neatly and timely.

DATE: -

TAKMARE SACHIN BALAWANT

DEDICATED TO MY FAMILY, FRIENDS AND WELL-WISHERS

PREFACE

This thesis presents a comprehensive study on the development of a CNN-based system for precision farming, specifically aimed at the classification of crops and weeds and the analysis of their density. Traditional farming practices often rely on manual methods for managing resources such as pesticides and fertilizers, leading to inefficiencies and environmental harm. The increasing global population and the emergence of herbicide-resistant weeds necessitate innovative solutions for sustainable agriculture.

Utilizing advancements in machine learning and computer vision, particularly Convolutional Neural Networks (CNNs), this research introduces an automated system capable of accurately identifying crop and weed species from image data. The system facilitates data-driven decisions for optimal fertilizer and pesticide application, thereby enhancing resource efficiency and reducing environmental impact.

The methodology involves data collection from various sources, preprocessing, and the development of multiple CNN models. The performance of these models is evaluated based on accuracy, precision, recall, and F1 score. The study's findings demonstrate the effectiveness of the proposed system in improving agricultural productivity and sustainability.

This research contributes to the field by providing a robust framework for precision farming, highlighting the practical implications of integrating advanced technologies in agriculture. Future research directions and potential improvements to the system are also discussed, aiming to further enhance the accuracy and applicability of the proposed approach.

CHAPT	ER- I INTRODUCTION	1 – 13
1.1	Background of the Research Work	1
1.2	Problem Statement	1
1.3	Importance of Solving the Problem	2
1.4	Objectives of the Research Work	3
1.5	Research Questions	5
1.6	Importance of the Research	6
	1.6.1 Contributing to the Domain	6
	1.6.2 Practical Implications	7
1.7	Scope of the Study	8
1.8	Limitations and Constraints	9
	1.8.1 Data Limitations	9
	1.8.2 Model Performance and Generalization	10
	1.8.3 Computational Constraints	10
	1.8.4 Environmental and Practical Constraints	11
	1.8.5 Constraints of YOLOv8 Model	11
	1.8.6 Potential Areas for Improvement	11
1.9	Thesis Organization	12
CHAPT	ER- II LITERATURE REVIEW	14 – 29
2.1	Introduction: An Overview of the Chapter	14
2.2	Theoretical Framework	14
	2.2.1 Machine Learning in Agriculture	14
	2.2.2 Deep Learning Architectures	15
	2.2.3 Precision Agriculture and Robotics	15
	2.2.4 Data Preprocessing and Augmentation	15
	2.2.5 Evaluation Metrics	15
2.3	Review of Key Studies	16
2.4	Identifying Gaps in Existing Research	23
2.5	Justification for the Current Study	25
2.6	Conceptual Framework	27
2.7	Block Diagram	28

INDEX

Index

СНАРТ	ER-III DATA COLLECTION AND PREPROCESSING	30 - 51
3.1	Introduction: An Overview of the Chapter	30
3.2	Data Sources	30
3.3	Data Collection Methods	31
3.4	Description of the Dataset Prepared	34
	3.4.1 Weeds	34
	3.4.2 Crops	37
3.5	Distribution of Crop and Weed Images in Dataset	39
3.6	Data Cleaning	41
3.7	Data Transformation and Normalization	43
3.8	Data Splitting Strategy	46
СНАРТ	ER- IV METHODOLOGY	52 - 67
4.1	Introduction: An Overview of the Chapter	52
4.2	Model Development	52
	4.2.1 Description of the Models Used	54
	4.2.2 Estimating Crop and Weed Density: Transfer Learning	59
	with YOLOv8	
4.3	Experimental Setup	61
	4.3.1 Implementation Environment	61
	4.3.2 Hardware and Software Specifications	62
	4.3.3 Training Parameters	63
	4.3.4 Evaluation Metrics	64
СНАРТ	ER- V RESULTS AND ANALYSIS	68 – 106
5.1	Introduction: An Overview of the Chapter	68
5.2	Model Architecture Selection	69
	5.2.1 Model-1: Customized CNN from Scratch	69
	5.2.2 Model-2: Model 1 with Image Augmentation	73
	5.2.3 Model-3: Transfer Learning with VGGNET	78
	5.2.4 Model-4: Transfer Learning with ResNet50	85
5.3	Model Selection Process	94
5.4	Actual Model Selected for classification task	99
5.5	Justification for Model Selection	99
5.6	Estimating Crop and Weed Population Density using YOLOv8	100

CHAPTER- VI CONCLUSION AND FUTURE SCOPE		107 - 118
6.1	Introduction: An Overview of the Chapter	107
6.2	Summary of the Main Findings from the Study	107
6.3	Contributions to the Field	109
6.4	Future Research Scope	111
6.5	Recommendations and Suggestions	113
6.6	Limitations of the Study	115
6.7	Concluding Remarks	117
LIST OF PUBLICATION		119 - 121
BIBLIOGRAPHY		122 - 126

LIST OF TABLE

Table No.	Particulars	Page No.
3.1	Distribution of Crop and Weed Images in Dataset	39
5.1	Model comparison w.r.t Detection accuracy	104
5.2	Model precision, recall, and F1 score comparison w.r.t Crop	104
5.3	Model precision, recall, and F1 score comparison w.r.t Weed	104
5.4	Bounding boxes counts for crops and weeds detected	105
5.5	Crop and weed density estimation results	106

LIST OF FIGURE

Fig. No.	Particulars	Page No.
2.1	Conceptual framework of proposed system	29
3.1	Random Sample Image of Each Species from the Dataset	33
3.2	Random Sample Image of Species Cyperus rotundus from the Dataset	34
3.3	Random Sample Image of Species Ammania baccifera from the Dataset	34
3.4	RandomSampleImageofSpeciesTrianthemaportulacastrum from the Dataset	35
3.5	Random Sample Image of Species Digera arvensis from the Dataset	36
3.6	Random Sample Image of Species Calotropis gigantea from the Dataset	36
3.7	Random Sample Image of Species Corn from the Dataset	37
3.8	Random Sample Image of Species Soyabean from the Dataset	38
3.9	Bar Chart of Number of Images for Each Species	39
3.10	Distribution of Dataset Images by Percentage	40
3.11	Distribution of Crop Dataset Images by Percentage	40
3.12	Distribution of Weed Dataset Images by Percentage	41
3.13	Sample images by Applying rotation data augmentation to produce rotated images	44
3.14	Sample images by Applying Horizontal and Vertical Flipping data augmentation techniques to produce rotated images	44
3.15	Sample images by Applying zooming data augmentation technique to produce rotated images	45
3.16	Sample images by Applying Brightness and Contrast Adjustment data augmentation technique to produce rotated images	46
3.17	Data Splitting Strategy for Each Species	47

Fig. No.	Particulars	Page No.
3.18	Training Dataset for Each Species	48
3.19	Validation Dataset for Each Species	49
3.20	Testing Dataset for Each Species	50
4.0	Steps in building deep learning models	53
4.1	The architecture of Model-1: Customized CNN from Scratch	55
4.2	The architecture of Model-2:Customized CNN with Image Augmentation	56
4.3	Fine-Tuned and Customized Architecture of Model-3	57
4.4	The architecture of actual VGGNet Model	57
4.5	Fine-Tuned and Customized Architecture of Model-4	58
4.6	The architecture of the actual ResNet50 Model	58
4.7	Process Flow for Population Density Analysis of Weeds and Crops Using YOLOv8	60
5.1	Model-1 Training Accuracy and Validation Accuracy	71
5.2	Model-1 Training Loss and Validation Loss	71
5.3	Model-1 Confusion Matrix	72
5.4	Classification Report of Model-1	73
5.5	Model-2 Confusion Matrix	75
5.6	Classification Report of Model-2	76
5.7	Model-2 Training Accuracy and Validation Accuracy	77
5.8	Model-2 Training Loss and Validation Loss	77
5.9	Model-3 Training Accuracy and Validation Accuracy	82
5.10	Model-3 Training Loss and Validation Loss	82
5.11	Model-3 Confusion Matrix	83
5.12	Classification Report of Model-3	83
5.13	Model-4 Training Accuracy and Validation Accuracy	91
5.14	Model-4 Training Loss and Validation Loss	91
5.15	Model-4 Confusion Matrix	92
5.16	Classification Report of Model-4	92

Index

Fig. No.	Particulars	Page No.
5.17	Model-1 Confusion Matrix	95
5.18	Model-2 Confusion Matrix	96
5.19	Model-3 Confusion Matrix	96
5.20	Model-4 Confusion Matrix	97
5.21	ROC Curves of Classification Models	97
5.22	Detection Accuracy of YOLOv8 Model	101
5.23	Performance Metrics for YOLOv8 Model	102

ABBREVIATIONS

- CNN Convolutional Neural Network
- YOLO You Only Look Once
- ResNet50V2 Residual Networks 50 Version 2
- VGG Visual Geometry Group
- IoT Internet of Things
- GANs Generative Adversarial Networks
- mAP mean Average Precision
- AP Average Precision
- RPN Region Proposal Network
- RoI Region of Interest
- TP True Positive
- FP False Positive
- FN False Negative
- TN True Negative
- F1 Score F1 Score (Harmonic Mean of Precision and Recall)
- RGB Red, Green, Blue
- MS COCO Microsoft Common Objects in Context
- NMS Non-Maximum Suppression
- ReLU Rectified Linear Unit
- SGD Stochastic Gradient Descent
- AP@0.5 Average Precision at IoU threshold 0.5
- API Application Programming Interface
- SVM Support Vector Machine
- ML Machine Learning
- DL Deep Learning
- CR Cyperus Rotundus
- AB Ammania Baccifera

- TP Trianthema Portulacastrum
- DA Digera Arvensis
- CG Calotropis Gigantea
- BR Brinjal
- CO Corn
- ON Onion
- SO Soybean
- SU Sugarcane

ABBREVIATIONS

- CNN Convolutional Neural Network
- YOLO You Only Look Once
- ResNet50V2 Residual Networks 50 Version 2
- VGG Visual Geometry Group
- IoT Internet of Things
- GANs Generative Adversarial Networks
- mAP mean Average Precision
- AP Average Precision
- RPN Region Proposal Network
- RoI Region of Interest
- TP True Positive
- FP False Positive
- FN False Negative
- TN True Negative
- F1 Score F1 Score (Harmonic Mean of Precision and Recall)
- RGB Red, Green, Blue
- MS COCO Microsoft Common Objects in Context
- NMS Non-Maximum Suppression
- ReLU Rectified Linear Unit
- SGD Stochastic Gradient Descent
- AP@0.5 Average Precision at IoU threshold 0.5
- API Application Programming Interface
- SVM Support Vector Machine
- ML Machine Learning
- DL Deep Learning
- CR Cyperus Rotundus
- AB Ammania Baccifera

- TP Trianthema Portulacastrum
- DA Digera Arvensis
- CG Calotropis Gigantea
- BR Brinjal
- CO Corn
- ON Onion
- SO Soybean
- SU Sugarcane