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In the domain of visual question answering (VQA), the computational task involves 

presenting a computer with an image along with a relevant question, eliciting a 

response that adequately addresses the inquiry. A longstanding objective in the sphere 

of artificial intelligence research has been the development of machines capable of 

comprehending visual content and providing responses akin to human understanding. 

Notably, visual question answering (VQA) has emerged as a prominent academic 

discipline. Within the specific domain of medical visual question answering (Med-

VQA), clinical queries are accompanied by radiological images, aiming to devise a 

system that can accurately generate responses based on the visual data contained in 

the images. 

3.1 Description of the research design and methodology used 

The system architecture for a Visual QA (VQA) system in the context of skeletal 

images typically involves several key components designed to process and understand 

both skeletal image and textual knowledge in the current era. Here's an overview of a 

generalized architecture with Input module their Image and question as the input, This 

module handles the medical images. It may utilize various techniques like 

Convolutional NN (CNNs) for visual feature extraction. Pre-trained models like 

ResNet or VGG might be employed for this purpose. The textual input includes 

questions related to the medical images. Natural Language Processing (NLP) 

approaches are often used to preprocess and encode the textual data. Image and text 

features are extracted separately. For images, CNNs are employed to capture visual 

patterns and features. For text, embedding layers and recurrent networks like Long 

Short-Term Memory (LSTM) or bidirectional LSTMs may be used to understand the 

context and relationships in the question. 

Multimodal fusion pertains to the amalgamation of extracted features from both 

modalities, namely images and text. This fusion can occur at various levels, 

encompassing concatenative fusion, which requires integrating features at a basic 

level, and subsequent fusion, which integrates features at a higher, more abstract 

level. Techniques for multimodal fusion include concatenation, element-wise 

multiplication, and attention processes. The resultant fused features may undergo 

further processing, potentially within additional neural network layers. This stage 

facilitates the comprehension of intricate correlations between visual and textual 
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information. Ultimately, the final layer is tasked with making predictions or guesses, 

with a softmax layer commonly employed in classification challenges. In regression 

tasks, a linear layer is commonly employed. The training of the entire system involves 

utilizing a dataset consisting of paired medical images, associated questions, and 

corresponding responses. During training, the network's parameters are optimized to 

minimize the disparity between expected and actual answers. Following training, the 

system undergoes evaluation on a separate dataset to assess its effectiveness, 

frequently assessed using measures like accuracy, precision, recall, and F1 score. 

Post-processing techniques may be implemented based on specific needs, which could 

involve refining the answer or providing additional context. 

This design is adaptable and can be tailored to unique needs and the nature of the 

medical VQA assignment at hand. Various model topologies, pre-processing 

processes, and fusion procedures can be investigated to optimize performance. 

This section underscores the diverse visual feature extraction methods available for 

distinct datasets, with a specific emphasis on medical radiological images. The 

primary objective of the research is to proficiently train models using a variety of 

medical images, queries, and associated responses. To accomplish this, two distinct 

feature extraction methodologies were employed for the dataset. 

The feature extraction process involves two pivotal components—visual and textual. 

In the context of this proposal, the focus is directed towards medical radiological 

images.  The datasets are divided into a 70:30 training-to-testing ratio, which means 

that 70% of the dataset is allocated for training, while the remaining 30% is allocated 

for testing. 

There are various models of processing mentioned in this chapter, which  are 

highlighted below. 

User Interaction: The user initiates the process by inputting a medical image into the 

model along with relevant questions. 

Image Feature Extraction: The system meticulously extracts features from the input 

images, diligently searching for distinctive patterns. 
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Text Feature Extraction: Simultaneously, the text entered as a question undergoes 

feature extraction, ensuring that relevant textual features are identified. 

Question Classification and Prediction: The loaded question is subjected to 

classification, and the model employs predictive analysis to furnish accurate 

responses. 

This formal description elucidates the systematic approach adopted in the research, 

encompassing the selection of feature extraction methods, dataset distribution, and the 

intricate processes involved in model training and prediction. 

3.1.1 Morphology of a Radiology Image 

Radiology is a specialized field within the medical profession that employs various 

imaging techniques to detect, diagnose, and address a spectrum of disorders [63]. 

Within radiology, there are two key subspecialties: diagnostic radiology and 

interventional radiology [64]. 

Diagnostic Radiology: 

Diagnostic radiology enables radiologists to meticulously examine internal bodily 

structures, facilitating the identification of the root causes of symptoms, screening for 

health issues, and monitoring the body's response to treatment. Common modalities in 

diagnostic radiology encompass plain radiographic images, computed axial 

tomography (CT), magnetic resonance tomography, positron emission tomography 

(PET), and ultrasound imaging [65]. These modalities are adept at visualizing a 

diverse range of ailments, including but not limited to breast cancer, colon cancer, and 

heart disease. 

Diagnostic Imaging Modalities: 

CT (Computerised Tomography): Often referred to as CAT (Computerised Axial 

Tomography), CT is a widely utilized diagnostic radiology examination. It includes 

various applications such as CT angiography, fluoroscopy with upper gastrointestinal 

(GI) studies, MRI (Magnetic Resonance Imaging) and MRA (Magnetic Resonance 

Angiography) scans, mammography, bone scans, thyroid scans, plain x-rays, PET 

(Positron Emission Tomography) images, PET scans, PET-CT scans, and ultrasound 

[64, 31]. 
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System Functionality: 

When a user submits a medical image to the system, the system conducts a 

comprehensive comparison with its database. Subsequently, the system provides the 

user with pertinent information crucial for guiding the next phase of medical analysis 

and decision-making. This formal elucidation underscores the significance of 

diagnostic radiology in medical practice, elucidating its various modalities and their 

essential roles in disease detection and characterization. 

 

 

 

 

 

 

 

 

Fig 6 :  Types of Radiology Image 

The above figure indicates the different types of radiology images used for VQA 

systems. Each image describes a different description in a different angle. Based on 

the image the modality of question and answer will change. Fig (b) is from [66] which 

has lots of information about it, same for other images too. So collect a huge amount 

of information regarding images, question and answer. Remaining chapters elaborate 

the significance and methodology of current vqa system, architecture, uses, its error 

rate, accuracy. Then finally our proposed system projects the limitations of other 

models and introduces the new model to answer the question with high ratings. 

Specifically, many Visual or imaginary QA models have focused on how they 

incorporate question and skeletal inputs into the model. Various Visual or image QA 

techniques were reviewed in the previous chapters. Different datasets used for various 

methodology, based on the problem state, the models will differ. 

 

    

CT Scan MRI Scan Ultrasound PET Scan 
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3.2 Explanation of data collection methods, tools, and procedures 

As of the last knowledge update in September 2022, several Visual or imaginary QA 

(VQA) models have been proposed and applied in the healthcare sector. However, the 

field is dynamic, and new models may have been developed since then. Here are some 

notable VQA models that were relevant in healthcare. MedVQA is specifically 

designed for radiology visual question answering. The system employs convolutional 

neural networks (CNNs) to analyze images and recurrent neural networks (RNNs) to 

handle textual queries. Inspired by BERT (Bidirectional Encoder Representations 

from Transformers), Medical-BERT utilizes transformer-based models to respond to 

queries regarding both textual and visual content in medical images. The MQR-VQA 

(Multi-Modal Quality-Aware Relevance) model aims to assess the relevance and 

quality of regions in medical images to answer questions. It combines visual attention 

mechanisms with textual information. The MedVQA-Transformer model employs 

transformer architectures for processing both visual and textual information. 

Recognized for their effectiveness in capturing long-range dependencies in sequences. 

DeepMedQA uses a combination of deep learning techniques, including CNNs for 

image processing and recurrent networks for text. It is designed to answer questions 

related to medical images. The Attention-Gated CNN-LSTM model integrates 

attention mechanisms into a network composed of convolutional neural networks 

(CNNs) and long short-term memory (LSTM) units. The attention mechanism directs 

the model's attention to relevant sections of medical imagery.  Healthcare Image QA 

is a framework developed for skeletal visual or image question answering systems. It 

utilizes deep learning models to process both visual and textual data, enabling the 

model to answer questions about medical images. Remember to check for recent 

publications, conferences, or preprint archives for the latest advancements in the field. 

Additionally, the specific requirements of a healthcare application may lead to the 

development of specialized models tailored to particular tasks or medical domains. 

In this section, we are looking forward to current methodologies such as Linear 

classifier, k-nearest neighbors algorithm, Softmax classifier, support vector machine, 

Convolutional Neural Network (CNN), regions with convolutional neural networks 

(R-CNN), fast regions with convolutional neural networks (FR-CNN), Faster regions 
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with convolutional neural networks (FR-CNN), Deep Belief Networks (DBN), Long 

short-term memory (LSTM) AND Bidirectional Long short-term memory (BiLSTM). 

3.3 Current Methodology on Both Visual and Textual Feature Extraction 

Techniques 

3.3.1 Linear Classifier 

The purpose of this document is to investigate and analyze the application of linear 

classifiers in the domain of skeletal imaginary questions and answers specifically 

tailored to medical images. The focus will be on understanding how linear classifiers, 

known for their simplicity and interpretability, can contribute to answering questions 

related to complex medical visuals. Through a thorough exploration, we aim to 

uncover the strengths, limitations, and potential advancements that linear classifiers 

bring to the challenging task of VQA within the medical context. This exploration 

encompasses the entire pipeline, from the extraction of features from healthcare 

related images to the design, training, and optimization of linear classifiers, with a 

keen eye on their practical applications and performance evaluation metrics in the 

medical domain. Ultimately, this document seeks to provide insights into the role of 

linear classifiers as a valuable tool in enhancing the interpretability and accuracy of 

VQA systems when dealing with medical imagery. 

Linear classifiers are a category of machine learning models designed to categorize 

input data points into discrete groups or classes. The fundamental concept behind 

linear classifiers is based on the idea of drawing a decision boundary in the feature 

space, which separates the data instances belonging to various classes. This decision 

boundary is a hyperplane, a subspace with one dimension less than the input space, 

and is determined by a set of parameters. 

The linear classifier's decision-making process involves categorizing an input based 

on which side of the decision boundary the point falls on. The decision boundary is 

defined by a linear combination of the input features, each multiplied by a weight, 

plus an additional bias term. Mathematically, it can be represented as: 

�(�) 	= 	��	
(�
�


��
�
. �
 + �)																																																																										(1) 
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Here: 

• f(x) is the decision function. 

• xi represents the input features. 

• wi represents the weight associated with each feature. 

• B represents the intercept or bias term 

• Sign is the sign function, determining the class label based on the sign of the 

expression. 

Training a linear classifier entails determining the best values for the weights and 

bias. This is typically achieved through optimization algorithms that aim to minimize 

a certain objective function, often associated with the misclassification of training 

data. Key characteristics of linear classifiers include simplicity, interpretability, and 

efficiency. They work well when the relationship between features and classes is 

approximately linear. However, they may struggle with more complex, non-linear 

relationships in the data. Linear classifiers are frequently employed across diverse 

applications, including picture classification, text categorization, and, depending on 

your environment, visual or picture question answering (VQA). In the healthcare 

domain, linear classifiers can be useful for tasks such as disease diagnosis using visual 

data. 

3.3.2 Traditional Neural Network 

Suppose if the image pixel size is 1000 ✕ 1000, then their will be a total of 3 (rgb 

size) ✕ 1000 ✕ 1000 features, which means 3 million input features are their. The 

first layer of the neural network will have 1000 input characteristics that reflect the 

neural network's weight, or a connected layer of two layers. So the whole amount of 

weight is given below. 

No. of weights = 3 ✕ 106 ✕ 103  which means 3 ✕ 109 

So, there are 3 billion weight parameters in a single layer. 

The size is too large to load into the system and model. Also, it is very difficult to 

manage using laptops or our PCs because of this drawback. The time requirement to 

train the model is very high. The traditional neural network is overfitting for the 
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object detection concept. To overcome this drawback, a new technique arrived on the 

market that we called the Convolutional Neural Network (CNN). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7 :  Traditional Neural Network with a Single Layer 

3.3.3 The prime Idea behind a Convolutional Neural Network for image 

feature extraction 

The primary idea behind a neural network that uses convolution is to use filters. These 

filters are located on sliding windows. This filter is tasked with identifying the 

characteristics of objects and patterns in the image 

 

 

 

 

Fig: 8 :  RGB Image and Gray scale Image to find features of the image 
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The features of the above image are Shape, Size, Edges, Colors etc. We can use the 

images with vertical edge detector and horizontal edge detector, when combine  then 

it will be 3 ✕ 3 pixel filter which means 9 pixel size, Thus we reduce the number of 

parameters from the objects. 

1 0 -1 

1 0 -1 

1 0 -1 

Fig 9 :  3 ✕ 3 pixel object 

 

Fig 10 :  Structure of CNN process from Input object to final output object with 

feature extraction 

The RGB image converts to a black and white image; every pixel value starts at 0, 

which means black color, and ends with 255, which means white. 

 

 

 

 

 

 

 

 

Fig 11 :  The value of Black and white colors 0 to 255 
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Example: 

6 ✕ 6 Pixel images convolution operation with 3 ✕ 3 (RGB), then the Output Image 

size will be 4 ✕ 4 Pixel. 

 

Fig 12 :  How the convolution operation take place with 6 ✕ 6 Pixel images and  

3 ✕ 3 image 

The output result calculated as for first pixel is (1 ✕ 1) + (2 ✕ 1) + (3 ✕ 1) + (6 ✕ 

0) + (5 ✕ 0) + (7 ✕ 0) + (9 ✕ (-1)) + (1 ✕ (-1)) + (4 ✕ (-1)) = -8 

(
 � 
) ∗ (� � �) = (
 � � + 1) � (
 � � + 1). 
 

 

 

 

 

 

Fig 13 :  Black and white input image for convolution operation to identify the 

vertical edge 
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Fig 14 :  Black and White image with 3 ✕ 3 px vertical edge filter the output is in 

4 ✕ 4px 

 

Fig 15 :  Output image from above figure after 3 ✕ 3 px convolution with 6 ✕ 6 

px 
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The output result calculated as for first pixel is (1 ✕ 1) + (1 ✕ 1) + (1 ✕ 1) + (1 ✕ 

0) + (1 ✕ 0) + (1 ✕ (-1)) + (1 ✕ (-1)) + (1 ✕ (-1)) = 0 

The remaining calculation will be done the same way for other pixels. 

 

Fig 16 :  Image 3 ✕ 3 px horizontal edge filter 

 

Fig 17 :  n ✕ n ✕ 1 for Gray scale image with f ✕ f ✕ c number of filters the 

output will be multiple images. 

 

 

 

 

 

 

 

 

 

Fig: 17.  n ✕ n ✕ 1 for Gray scale image with f ✕ f ✕ c number of filters the 

output will be multiple images. 

When dealing with a colored or RGB image with dimensions n×n×3, the convolution 

process involves using a three-channel filter with dimensions f×f×3. Each channel of 
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the filter aligns with the corresponding channel of the input image. The filter, being a 

3D cube, consists of a total of 27 values (3 values per channel, totaling 9 values per 

layer). To perform convolution between the input image and the filter, we overlay the 

two images and multiply the values in each corresponding cell. These products are 

then added together to form a single output value, which is displayed in the first cell 

of the output image. This operation is repeated, shifting the filter one pixel to the right 

until the entire input image is covered. 

When converging an n×n×3 image with a f×f×3 filter, the resulting output image will 

have dimensions (n−f+1)×(n−f+1). This output represents a single image resulting 

from the convolution operation. In a convolutional neural network (CNN), multiple 

such filters are utilized in a single layer. Each filter may have different parameter 

values, which are acquired throughout the training procedure. For instance, in the 

example provided, a filter with hardcoded values such as (1, 1, 1), (0, 0, 0), and (-1, -

1, -1) may behave as a vertical filter. 

However, during training, these parameter values will adjust autonomously, allowing 

the filters to recognize relevant features in the images. The process of parameter 

adjustment during training enables the filters to effectively identify and extract 

meaningful patterns from the input data. 

In convolutional neural networks (CNNs), the parameters of the filters are adjusted 

during the training process, enabling them to adapt and identify specific features 

within input images. This capacity allows CNNs to accomplish tasks like image 

categorization, object identification, and image segmentation. 
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Fig 19 :  Multiple filter convolution with multiple output 

To mitigate this limitation, we can employ padding within the CNN architecture. 

When applying a 3 x 3 filter to a 6 x 6 image, for instance, the resulting output image 

would be reduced to a 4 x 4 size. This reduction in image size may lead to the loss of 

valuable information, especially when multiple layers of convolution are applied in a 

CNN. 

Additionally, the convolution process typically involves moving the filter one pixel at 

a time across the input image. As a result, some pixels may only be explored once 

during the convolution operation. To address this issue, the concept of padding is 

introduced. 

Padding entails arranging additional rows and columns of zeros around the input 

image. By padding the picture boundaries with zeros, we ensure that each pixel in the 

input image is examined several times during the convolution process. This helps to 

preserve spatial information while also preventing image size reductions caused by 

subsequent convolutional layers. 

By incorporating padding into the CNN architecture, we can maintain the spatial 

dimensions of the input images and ensure that valuable information is retained 

throughout the convolutional layers. This enhances the network's ability to effectively 

extract features and learn complex patterns from the input data. 

  

8 X 8 3 X 3 6 X 6 

Fig 20 : Padding in Convolutional Neural Network 
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There are two main choices when it comes to padding VALID and SAME. When 

VALID performs the convolution operation with no padding at all,. After performing 

the convolution operation, the output image should be the same size as the input 

image. The size of new image will be  

n’ = n +2p, where p is amount of padding that we are applying 

(n’ - f + 1) = n that is (n + 2p - f + 1) = n the value of p is given below 

�	 = (�	 � 	1
2 ) 

If we use the Tensor Flow framework and apply a convolution layer, we just specify 

what kind of padding we want. 

tf.nn.conv2D(X, W1, strides = [1, 1, 1, 1], padding = ‘VALID’). Here ‘f’ is usually 

taken as an odd number. If we take an even number, then we will need to apply 

uneven or asymmetric padding. 

For example, we might need 1 pixel of padding on one side of the image, and on the 

other side, we might need 2 pixels. 

Max Pooling is the most powerful operation on CNN. There can be many types of 

pooling layers. In CNN, the function pooling layer is to reduce the size of the 

dimension of the image by preserving the feature on it. For the max pooling operation, 

we need to fix a filter for a particular size and stride a particular amount. This filter 

can be of any size or amount. Usually, any amount of stride is taken from the same 

size as the side length of the filter. For example, the filter size is 2 ✕ 2 and the stride 

is 2. After the performance, the output will be an image with a 2 ✕  2 matrix. 

Performing the max pooling operation, we will see the filter image in the top left 

column of the input image,  then we will extract the maximum value of the window 

where the filter image is as per stride size for the next maximum value. This will be 

repeated till the last pixel. Why might we want to do this max pool? 

The first  reason is that it reduces the image size and, thus, the computational cost. So 

that we can get the output faster and train the model faster. We want to do our 

operations quickly. Even though it reduces the size of the image, it still preserves the 

features of that image, and max pooling works in such a way that it sharpens the 
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features or enhances the features. Suppose the input image has a vertical edge; this 

vertical edge is still preserved but actually enhanced in the output image. As shown in 

one window of an image, we can say that the maximum value holds the maximum 

intensity of the features. When they extract the maximum value, it sharpens the 

features. Now where do we need max pooling in CNN? 

The standard procedure in convolutional neural networks (CNNs) involves applying a 

max pooling layer after the convolutional layer. This step effectively reduces the size 

of the output image from the convolutional layer while also enhancing the extracted 

features. The convolution layer itself executes the convolution process using multiple 

filters. Suppose if we use 5 numbers of filters in one convolution layer then we know 

that it will generate 5 numbers of output images. Thus after performing the max 

pooling operation we will again get the same number of output images. Which means 

5 numbers of images in the output of the max pooling layer. From the entire CNN we 

will use many convolution layers and max pooling layers. Here there is a small side 

note that it does not always use max pooling layer after every convolution layer. We 

may use convolution layers and may skip max pooling layers or just fewer numbers of 

max pooling layers than the number of convolution layers. The reason for that is the 

max pooling layer reduces the size of the image but we might not reduce the size too 

much, if we are using a very big convolutional neural network. The use of max 

pooling will improve the performance of CNN. There are no parameters in it or no 

training in it. Another pooling method is average pooling, which takes the average of 

values filter size and image size pixel. 

To perform the convolutional layer we use the convolutional operation of the input 

radiology image to get the value of the input skeletal image which leads to it being 

scaled properly. So, we add a ‘bias’ which denotes ‘b’ and assign it to the nonlinear 

function. This non linear function can be tanh or ReLU but most commonly ReLU is 

used after that we will get the output as size as compared with input image. So the 

entire convolution is one applying the convolution operation and one applying ReLU 

operation or nonlinear activation function. These combain we called convolution 

layers. 
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If we use multiple layers, the bias will also be changed, and we will get multiple 

outputs, as shown in the below figure. 
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Let we see one image of MRI Brain as input which has the size 32 X 32 pixel with 

RGB value 3. So the image size is 32 x 32 x 3. First we will convolve the input image 

with the particular filter size 5 x 5 x 3 and use strider 1 with 4 filters so the output size 

will be 28 x 28 x 4. Here the 28 is n - f + 1 = 28. As we use 4 numbers of filters we 

will get 4 dimensional output. After convolving this image we pass this to a max 

pooling layer. So here we are using max polling 1 with the filter size 2 x 2 and slider 

2. Thus the dimension image will become half, which means 28 x 28 will become 14 

x 14 x 4 and the number of channels will remain the same. In the traditional CNN 

both convolutional layer and max pooling layer will be considered in one layer. So, 

now this output 14 x 14x 4 will pass another convolutional layer which we name 

Conv2. Here we will use another filter size 3 x 3 but the 4 will remain the same. In the 

Conv 2 layer we used a filter so the output has 8 channels, again it passes through the 

max pooling layer and we will get the output half of the input image size. In this we 

consider layer 2. So, we can continue these layers as many times as we want. It 

depends on the type of application. If we are performing a completed application like 

healthcare then we might need our complex or large convolutional architecture. Also 
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the another thing is that we can completely skip this max pooling operation if we  are 

building big CNN architecture because maxpooling will reduced the size of images 

that we are dealing with, and we might not want to reduce the size of images that we 

are dealing with, and we might not want to reduce size too much. 

So once we are done with all convolutional layers and max pooling layers then it's 

time to add fully connected layers, before we apply these connected layers we need to 

flatten the final output image. So, the 6 x 6 x 8 will be flatten only into the 1D factor 

which is 288 units in one flatten. Now once flattened it is now connected with a fully 

connected layer. This will represent FC3(Fully Connected layer), which indicates it as 

3 layers in our CNN architecture. Let we keep 120 neurons in FC3 so it will connect 

with all nodes of flatten output. So the number of weight parameters is 288 x 120. 

Now we add multiple fully connected layers as much as we want but, it is not fair 

adding fully connected layers highly increases the amount of parameters we need to 

deal with. Then in the final layer we will apply the sigmoid or softmax activation 

function depending on the types of applications we are making. For example if we are 

using binary classification then we will be using sigmoid or we will be using softmax 

activation. So, the final layer is called sigmoid or softmax or FC4 layer. In the 

softmax layer, there are huge numbers of neurons that must correspond to the number 

of output categories. This final layer is responsible for generating the predicted value. 

Prior to making predictions, it is imperative to train the system to ensure the factors 

are appropriately adjusted. Subsequently, the final predictor is utilized to compute the 

cost function, which quantifies the extent of inaccuracies in the model's predictions. 
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Now the question is which cost function is used? The answer is if we are using binary 

classification then it will be ‘Bn’  binary entropy cost function. If we are performing 

multiclass classification then we can use categorical class entropy classification. The 

goal is to lower the cost function so that we can train and improve our model's 

accuracy. So, how do we conduct the training? We employed the same old back 

propagation model as in our Artificial Neural Network or Neural Network. 

In Artificial Neural Networks we use dense networks. There is lots of redundancy. 

The parameters are very high but we can reduce the amount of factors by using 

convolutional and max pooling. So we can reduce the size by convolutional layer and 

max pooling layer. The implementation of the back propagation algorithm in CNN is 

actually very complicated because here we also need to calculate the � cost/ �	 w. The 
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challenge is that the ‘w’ parameters are actually inside the filters used for the 

convolution operation. 

Thus calculating this 
���� 
�!  and applying the greadent descent is very complicated in 

CNN. To make this job easy we use the Tensorflow framework in python. It makes 

our implementation very quick and easy. We do not need to deal with the details in 

the integrity of the complex technique but we can just mention the name. Example 

just mention what cost function we need or the name of back propagation we want to 

use Adam, or Momentum or greadent descent. So, tensorflow automatically 

implements for us. The advantage is to make CNN and find that the accuracy is not 

pretty good so you may want to add or remove some layer or modify the network. 

Whenever we modify the network layer we also need to do the same modification in 

back propagation as well. There are chances to lead to errors while doing back 

propagation. Thus all these will be very complicated and very time consuming and we 

won’t be able to focus on the architecture properly but in tensorflow we just mention 

the type of layer like conv layer and parameters like stride, padding etc. If we want to 

use max pooling then mention it in there and so on. 

 
Fig: 25 :  The Traditional Architecture of Artificial Neural Network 

3.3.4 Deep Belief Network model, the feature extraction of skeletal image 

A Deep Belief Network (DBN) is a form of artificial neural network made up of 

several layers of stochastic, latent variables known as hidden units. DBNs function as 
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generative models and are Well-suited for unsupervised learning tasks such as feature 

learning, dimensionality reduction, and data generation. 

A DBN typically consists of several layers of neurons systematized in a hierarchical 

pattern. The network's initial layer is the visible layer, and it interacts directly with 

input data. The following layers are made up of hidden layers, with each layer having 

a unique number of neurons. DBNs frequently feature a symmetric architecture, with 

connections between each layer and its neighboring layers but not inside the same 

layer. Restricted Boltzmann Machines (RBMs) are probabilistic, generative neural 

networks that serve as the foundation of Deep Belief Networks. RBMs comprise two 

layers: visible and hidden, connected by symmetric connections. The architecture 

follows a bipartite graph structure, where neurons in the visible layer connect to 

neurons in the hidden layer, with no connections within each layer. RBMs adopt a 

probabilistic approach, employing binary units to represent the presence or absence of 

features. During training, RBMs learn to reconstruct input data by altering connection 

weights with approaches like Contrastive Divergence (CD) and Persistent Contrastive 

Divergence (PCD). DBNs are often trained using a greedy layer-wise strategy, which 

involves training each layer of the network independently before fine-tuning the entire 

network. The first layer (visible layer) is learned directly on the input data using 

unsupervised learning techniques like RBMs. After the first layer is trained, its output 

is utilized as input to train the next layer, and so on until all layers are trained. After 

training each layer independently, the complete network is fine-tuned using 

supervised learning techniques like backpropagation. Fine-tuning changes the weights 

of connections across the network to improve performance on a specific job, such as 

classification or regression. DBNs have been effectively used for a variety of 

applications, including image identification, audio recognition, natural language 

processing, and collaborative filtering. They are especially good at learning 

hierarchical representations of complex data and extracting significant features from 

high-dimensional input spaces. In general, a Deep Belief Network is a hierarchical, 

generative neural network design made up of numerous layers of RB Machine. Using 

a greedy layer-wise training technique, Deep BNs may learn hierarchical data 

representations and extract valuable features for a variety of machine learning tasks. 
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Fig 26 :  Two-layer probabilistic neural network, RBM Architecture 

Deep Belief Networks (DBNs) can be used in visual question answering (VQA) 

systems to extract meaningful features from both the visual and textual modalities of 

input data. In a VQA system, the input consists of both images and textual questions. 

The initial phase involves extracting features from both modalities. Regarding the 

visual modality, the DBN can be used to extract hierarchical representations of image 

features. Each DBN layer learns more abstract and complicated features from the 

image's raw pixel values. Similarly, for the textual modality, the DBN can process the 

text input (questions) to learn hierarchical representations of word embeddings or 

semantic features. Once features are extracted from both modalities, they must be 

joined or fused to form a single representation that captures the relationship between 

the image and the question. The extracted features from the visual and textual 

modalities can be concatenated, merged, or processed using additional layers of 

neural networks to create a joint representation. The composite representation should 

include relevant inputs derived from both the image and the question, allowing the 

VQA system to generate precise predictions. The DBN-based VQA system is trained 

using a massive dataset of matched images and questions, as well as their responses. 

During training, the DBN layer parameters, as well as any additional layers used for 

fusion and prediction, are optimized using backpropagation and stochastic gradient 

descent algorithms. The goal is to reduce the prediction error between the forecasted 

and ground-truth responses in the training data. Once trained, the DBN-based VQA 

system can be used to answer questions about unseen images. Given a new image and 

a question, the system first extracts features from both modalities using the trained 
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DBN. The retrieved characteristics are then integrated to form a joint representation, 

which is used by the prediction layer to generate the answer. The projected answer is 

often the result of a softmax layer, which represents the probability distribution of 

probable replies. 

The performance of the DBN-based VQA system is examined using performance 

metrics such as accuracy, precision, recall, and F1 score. The system's ability to 

correctly answer questions about unseen images is assessed using a separate test 

dataset, and its performance is compared to other VQA systems using benchmark 

datasets. DBNs can be integrated into VQA systems to extract the features from both 

skeletal image and question-answer modalities, which are then fused to generate a 

joint representation for answering questions about images. By leveraging hierarchical 

feature learning, DBNs can capture complex relationships between visual and text, 

leading to improved performance in visual question-answering tasks. 

A neural network of beliefs is a deep learning model made up of numerous layers of 

probabilistic latent variables that are often placed in a stack of restricted Boltzmann 

machines (RBMs). A DBM design consists of alternating levels of visible and hidden 

units, with each layer fully connected to the next. An RBM is a generative 

probabilistic neural network that represents the joint probability distribution of visible 

and hidden units. On an RBM, each visible unit is linked to every hidden unit, 

Nevertheless, there are no inter-unit connections within the same layer.. The 

connections between visible and hidden units are weighted, and each connection has 

its own weight parameter. RB Machines (RBMs) comprise a visible layer that 

represents input data, such as pixel values in an image, and one or more hidden layers 

that capture latent features or representations of the input. Deep Belief Networks 

(DBNs) are constructed by stacking multiple RBMs, creating a deep architecture. 

Each RBM's visible layer is connected to the hidden layer of the subsequent RBM, 

forming a feedforward chain. This enables the network to acquire hierarchical 

representations of the input data. Typically, DBNs are trained using layer-wise 

pretraining followed by fine-tuning via backpropagation. The pretraining step in a 

DBN initializes the weights of the RBMs layer by layer, allowing each layer to 

acquire informative data representations before fine-tuning the entire network. After 

layer-wise pretraining, the complete DBN undergoes fine-tuning using supervised 
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learning techniques such as backpropagation. This process involves training the DBN 

on a labeled dataset using gradient-based optimization algorithms to minimize a 

predetermined loss function, such as cross-entropy loss. Fine-tuning adjusts the 

weights of the entire network, enhancing its capability for classification or data 

generation. Each unit, whether visible or hidden, typically applies an activation 

function to its input to produce an output. The logistic sigmoid function, hyperbolic 

tangent function, and rectified linear unit (ReLU) function are all examples of 

common activation functions used in deep neural networks. The output layer of a 

DBN is determined by the individual task being handled. For example, in a 

classification assignment, the output layer could be made up of softmax units that 

represent different classes. 

Overall, the architecture of a DB network consists of stacked RBMs with alternating 

layers of visible and hidden units. By learning hierarchical representations of 

leveraging the input data, DBNs have the capacity to apprehend complex patterns and 

dependencies, thereby proving effective in tasks such as feature acquisition, 

categorization, and generation. 

 

Fig: 27 :  Overall architecture of a Deep Belief Network 

A restricted Boltzmann machine is trained in a fundamentally different way from 

neural networks, which use stochastic gradient descent. There are two main steps to 
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train our dataset: the first one is Gibbs sampling, and the other one is the Contrastive 

Divergence Step. 

Gibbs collection is the initial stage of training. When we are provided an input vector, 

we use the following �(ℎ|$)) to forecast the hidden values h. However, if we know 

the hidden values h, we may utilize �($|ℎ)	to forecast the new input values. 

�($
 = 1	|	ℎ) = �
�&'((()*+,*-.)) = /′(1
 + 2ℎ3�
3)                                                      (1) 

This action is performed k times, generating a new input vector v_k that is derived 

from the initial input value v_0. 

�($
 = 1	|	$) = �
�&'(((4*+,*5.)) = 6(�3 +∑
 $3�
3)                                              (2) 

The contrastive divergence stage modifies the weight matrix. The vectors v_0 and v_k 

are utilized to compute the activation probability of the hidden variables h_0 and h_k. 

�($
 = 1	|	ℎ) = �
�&'((()*+,*-.)) = /′(1
 + 2ℎ3�
3)                                                     (3) 

The update matrix is calculated as the difference between the outer products of the 

probabilities with input vectors v_0 and v_k, as shown in the matrix below. 

89 = $� ⊗ ;(ℎ�|$�) � $< ⊗ ;(ℎ<|$<) � $<																																																																(4) 

We can now utilize this updated weight matrix to calculate new weight using gradient 

descent, as stated in the equation below. 

9�'! = 9�>? + 89																																																																																																									(5) 

To apply the architecture of a DB Network (DBN) to the task of visual question 

answering (VQA) using medical images, we need to adapt the network to handle both 

visual and textual input. The input layer of the DBN will consist of two components: 

Visual input: This component represents the medical images. Each image is 

represented as a vector of pixel values or a higher-level feature representation 

extracted using techniques such as convolutional neural networks (CNNs). 
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Textual input: This component represents the textual questions associated with each 

image. Each question is represented as a vector using techniques such as word 

embeddings or one-hot encoding. 

The DBN architecture will consist of alternating layers of visible and hidden units, 

similar to the traditional DBN architecture. However, each visible layer will now have 

two components: one for visual input and one for textual input. Each RBM in the 

stack will learn joint representations of the visual and textual inputs, capturing the 

relationships between the image content and the corresponding questions. During the 

layer-wise pretraining phase, each RBM in the stack will be trained independently 

using both visual and textual input. The pretraining phase initializes the weights of the 

RBMs, allowing them to learn hierarchical representations of both visual and textual 

features. After layer-wise pretraining, the entire DBN will be fine-tuned using 

supervised learning techniques.The network will undergo training using a dataset 

comprising labeled pairs of images and corresponding questions, aiming to predict 

accurate answers for each question based on the associated image. The output layer of 

the DBN will consist of units representing potential responses to inquiries, potentially 

employing a softmax activation function to produce probability distributions across 

potential answers. Integration of visual and linguistic components throughout the 

network will facilitate capturing the relationships between image content and textual 

queries. Through the hidden layers, the DBN will acquire composite representations 

of visual and linguistic attributes, enabling comprehension of the correlations between 

questions and images. By adapting the architecture of a DBN in this way, we can 

leverage its ability to learn hierarchical representations of complex data to effectively 

tackle the task of visual question answering in the medical domain. The network will 

be capable of understanding both the visual content of medical images and the textual 

queries associated with them, enabling it to provide accurate answers to a wide range 

of medical questions. 

3.3.5 The deep insights of Region-based Convolutional Neural Network (R-

CNN) for visual classification 

The Region-based CNN (R-CNN) represents a seminal advancement in object 

recognition methodology, seamlessly integrating deep learning with conventional 

computer vision methodologies. Introduced by Ross Girshick et al. in 2014, it has 
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emerged as a foundational model in the realm of object detection. R-CNN, along with 

its subsequent iterations, has laid the groundwork for contemporary object detection 

architectures such as Faster R-CNN and Mask R-CNN. Unlike traditional object 

detection methods which relied on handcrafted features and disparate algorithms for 

localization and classification, R-CNN endeavors to unify these tasks within a unified 

deep learning framework, facilitating end-to-end training and enhanced performance. 

R-CNN begins by generating region recommendations via a selective search method. 

This algorithm looks for probable object regions in an image using color, texture, and 

other low-level information. Each region suggestion is then sent into a pre-trained 

CNN, such as AlexNet or VGG-16, which produces fixed-length feature vectors. The 

collected characteristics are then utilized to train a linear SVM classifier for object 

categorization. Each SVM is taught to distinguish between various object categories 

(for example, person, automobile, and dog). R-CNN also adds a bounding box 

regression step to refine the location of detected objects. This phase teaches how to 

change the bounding box coordinates predicted by the selective search method. R-

CNN employs selective search to generate boundary recommendations from an user's 

input medical image. Each region suggestion is warped to a specific size and sent into 

a pre-trained CNN to extract features. The features are then sent via distinct SVM 

classifiers for object classification. Finally, the bounding box regression step adjusts 

the predicted bounding boxes to improve localization accuracy. 

• R-CNN is trained in multiple stages: 

o Pre-training: The CNN is trained in advance on an extensive dataset. 

(e.g., ImageNet) for feature extraction. 

o Fine-tuning: The CNN is adapted on the target dataset for object 

detection. 

o SVM training: Separate SVM classifiers are trained for each object 

category using the extracted features. 

o Bounding box regression: Another model is trained to learn the 

adjustment needed for bounding box coordinates. 

R-CNN has several limitations, including its slow inference speed due to the 

sequential processing of region proposals and the need to extract features for each 

proposal independently. This inefficiency makes it impractical for real-time 
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applications. Another limitation is the difficulty of end-to-end training, as the SVM 

classifiers and bounding box regressors are trained independently of the CNN. Several 

variants of R-CNN have been offered to address its limitations, including Fast R-

CNN, Faster R-CNN, and Mask R-CNN. These variations strive to increase object 

detection speed and accuracy by using innovations like region proposal networks 

(RPNs) and shared feature extraction. 

R-CNN takes a skeletal image as input and detects and localizes items in it. R-CNN 

starts by creating region proposals, which are candidate bounding boxes that may 

contain objects. These recommendations are often created with selective search, a 

standard computer vision technique that finds regions of interest based on color, 

texture, and other low-level properties. Selective search generates a huge number of 

area recommendations with different scales and aspect ratios. Each region proposal is 

cut from the input image and scaled to a predefined size, which typically corresponds 

to the input size predicted by a pre-trained convolutional neural network (CNN). The 

pre-trained CNN functions as a feature extractor and is often loaded with weights 

learned from a large-scale image classification challenge like ImageNet. The region 

proposals are fed through the CNN to produce fixed-length feature vectors. These 

feature vectors carry detailed semantic information about the content of each region 

proposal. The extracted feature vectors are subsequently fed into a sequence of fully 

connected layers, followed by a softmax layer for object categorization. Each 

completely linked layer serves as a classifier for a certain item category (such as a 

human, automobile, or dog). The softmax layer generates a probability distribution 

over the object categories, showing the likelihood that each region suggestion belongs 

to a specific category. In addition to object classification, R-CNN incorporates a 

bounding box regression phase to improve the localization of discovered objects. This 

phase teaches how to alter the coordinates of the bounding boxes predicted by the 

region proposal algorithm, improving their accuracy. Bounding box regression is 

often accomplished using a separate set of fully connected layers that forecast the 

offsets required to change the bounding box positions. The ultimate output of R-CNN 

comprises identified objects, their corresponding bounding boxes, and class labels. 

Each detected object is associated with a bounding box that precisely delineates its 

location within the input image, alongside a class label denoting its category. 
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• Training Stages of R-CNN in various steps: 

o Pre-training: The Convolutional NN is pre-trained on a large dataset 

(e.g., ImageNet) for feature extraction. 

o Fine-tuning: The Convolutional NN is optimized on the target dataset 

for object detection. 

o Object classification and bounding box regression: The fully connected 

layers in charge of object categorization and bounding box regression 

are trained by backpropagation and gradient descent. 

R-CNN has inspired several variants, including Fast R-CNN, Faster R-CNN, and 

Mask R-CNN, which enhance upon its speed and accuracy by introducing innovations 

such as region proposal networks (RPNs) and shared feature extraction. 

Region-based Convolutional Neural Network (R-CNN) can be used in a Visual 

Question Answering (VQA) system for image feature extraction by first selecting 

regions of interest within the image, and then extract features from these regions to 

answer image-related questions. 

R-CNN starts by generating region proposals within the input image. These region 

proposals are possible bounding boxes that may contain objects of interest. These 

region suggestions can be generated using selective search or another region proposal 

algorithm that takes into account low-level image properties like color, texture, and 

shape. Once the region proposals have been developed, R-CNN crops and warps each 

one from the original image to a defined size. The cropped regions are then fed into a 

pre-trained CNN, such as VGG, ResNet, or Inception, to extract features. The CNN 

functions as a feature extractor and is often trained on a large-scale picture dataset 

such as ImageNet. The output of the CNN is a fixed-length feature vector that 

encodes rich semantic information about the content within each region proposal. In 

parallel to extracting image features, the input question is processed using natural 

language processing (NLP) techniques to standardize it into a fixed-length vector 

representation, known as a question embedding. Techniques like word embedding 

(e.g., Word2Vec, GloVe) and recurrent neural networks (RNNs) or transformer 

models (e.g., BERT) can be used to encode the question into a numerical vector. The 

feature vector obtained from the image regions and the question embedding are then 

fused or concatenated to create a joint representation that combines both visual and 
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textual information. Various fusion methods can be employed, such as element-wise 

addition, concatenation, or attention mechanisms, to successfully integrate image 

characteristics and question embeddings effectively. The joint representation is then 

passed through a classifier, such as a multi-layer perceptron (MLP) or a softmax 

layer, to predict the answer to the input question. The classifier learns to map the joint 

representation to a probability distribution over a predefined set of answer options. 

The entire VQA system, including the R-CNN for image feature extraction, is trained 

end-to-end using a large dataset of image-question-answer triplets. During training, 

the parameters of the CNN, question embedding model, fusion method, and classifier 

are optimized using backpropagation and gradient descent to minimize the prediction 

error. During inference, given a new image and question, the trained VQA system 

predicts the most likely answer by passing the image through the R-CNN for feature 

extraction, processing the question to obtain its embedding, fusing the image features 

and question embedding, and finally predicting the answer using the trained classifier. 

By leveraging R-CNN for image feature extraction in a VQA system, the model can 

effectively extract visual features from specific regions of interest within the 

radiology image, enabling it to accurately answer questions about the content of the 

image. 

 

Fig: 28: Faster Region-based Convolutional Neural Network (R-CNN) 

Faster R-CNN enhances the original R-CNN by integrating a Region Proposal 

Network (RPN) directly into the architecture. This integration facilitates end-to-end 

training, leading to improved efficiency and accuracy in object detection tasks. The 
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RPN operates as a fully convolutional network, leveraging feature maps extracted 

from input images to generate region proposals, which represent potential bounding 

boxes containing objects. By sliding a tiny network across the feature map, the RPN 

anticipates the presence of objects ("foreground") within each anchor box and refines 

their positions. The Region Proposal Network (RPN) in Faster R-CNN generates 

region proposals by integrating expected bounding box coordinates with anchor boxes 

of different scales and aspect ratios. This process aims to efficiently cover potential 

object locations across the image. Additionally, Faster R-CNN utilizes a deep 

convolutional neural network (CNN) as a feature extraction backbone to extract high-

level features from the input image. Commonly used backbone networks include 

VGG, ResNet, and MobileNet, which are pretrained on extensive image classification 

datasets like ImageNet. These backbone networks process the input image to produce 

a feature map containing detailed spatial information.  After generating region 

proposals, Faster R-CNN uses RoI pooling to extract fixed-size feature vectors from 

each proposal. RoI pooling partitions each proposed region into a predetermined 

number of spatial bins, subsequently performing max pooling within each bin to yield 

a feature vector of fixed dimensions. 

This ensures that the features extracted from different-sized region proposals have the 

same spatial dimensions, which is essential for feeding them into subsequent layers of 

the network. RoI pooling generates fixed-size feature vectors, which are used in fully 

connected layers for object classification and bounding box regression. The 

classification branch assigns a class label to each proposal based on its likelihood to 

contain an item. The regression branch refines the coordinates of the bounding box to 

better localize the object within the proposal. Both the classification and regression 

branches are typically implemented as fully connected layers on top of the shared 

feature representation. After generating region proposals, Faster R-CNN employs 

Region of Interest (RoI) pooling to derive fixed-size feature vectors from individual 

proposals. This process entails segmenting each area proposal into a predefined 

number of spatial bins and subsequently applying max pooling within each bin to 

produce a fixed-size feature vector. This process ensures that features extracted from 

region proposals of different sizes have consistent spatial dimensions, which is 

necessary for subsequent layers in the network.The resulting fixed-size feature vectors 
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are then input into fully connected layers for object classification and bounding box 

regression. The classification branch determines the likelihood that each proposal 

contains an object and assigns a class label. 

Faster R-CNN can help with feature extraction for visual or skeletal image question 

answering (VQA) in radiology images by efficiently detecting and localizing relevant 

objects or regions within the images. Faster R-CNN can accurately localize and 

identify regions of interest (ROIs) within radiology images that contain anatomical 

structures, abnormalities, or other medically significant features. These ROIs can 

serve as the basis for answering questions related to specific areas or abnormalities 

within the image. Once the relevant regions are identified, Faster R-CNN can extract 

high-level features from these regions using RoI pooling. This process involves 

pooling characteristics from the convolutional layers of the network within the 

identified regions, allowing for the extraction of rich and discriminative feature 

representations. By detecting and localizing objects within radiology images, Faster 

R-CNN helps in understanding the semantic content of the images. This semantic 

understanding can be crucial for answering questions that require interpretation of the 

visual content, such as identifying anatomical structures, pathologies, or medical 

devices. 

Faster R-CNN offers cutting-edge performance in object detection tasks, providing 

accurate localization of objects with high precision and recall. This improved 

accuracy ensures that the extracted features are relevant to the task at hand, thereby 

enhancing the performance of the VQA system. Faster R-CNN can be seamlessly 

integrated into the VQA pipeline, allowing for end-to-end training of the system. This 

integration enables joint optimization of the object detection and question answering 

components, leading to better alignment between the visual and textual modalities and 

improved overall performance. 

Overall, Faster R-CNN serves as a powerful tool for feature extraction in VQA 

systems for radiology images, facilitating the identification of relevant visual content 

and enhancing the system's ability to provide accurate and informative answers to 

medical-related questions. 
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Multiple CNN-based object detection algorithms have been developed to address 

various challenges in computer vision tasks. These algorithms include R-CNN [87], 

SPPnet[88], Fast R-CNN [89], Faster R-CNN [90], You Only Look Once (YOLO) 

[91], and Single Shot Multibox Detector (SSD) [92]. Among these, Faster R-CNN 

stands out for its cutting-edge performance in object detection tasks. 

Faster R-CNN is renowned for its accuracy and ability to precisely localize objects 

within images. While it may have a slightly slower processing speed compared to 

newer approaches like YOLO and SSD, its performance and versatility make it an 

ideal choice for many applications, including visual or skeletal image question 

answering in the healthcare domain. 

One of the principal advantages of Faster R-CNN lies in its capacity to efficiently 

execute object identification tasks. It achieves this by employing a region proposal 

network (RPN) to create region recommendations directly from convolutional feature 

maps. These region proposals are then used to localize objects within the image, 

allowing for precise object detection. 

Another important characteristic of Faster R-CNN is its flexibility in handling images 

of varying sizes. Unlike some other object detection algorithms that require fixed 

input image sizes, Faster R-CNN can efficiently process images of different sizes 

using a sliding window approach. This makes it particularly useful for dealing with 

large medical images commonly encountered in radiology. 

Furthermore, Faster R-CNN does not compromise on accuracy despite its efficiency. 

It leverages deep convolutional neural networks (CNNs) to extract rich feature 

representations from images, enabling robust object detection and classification. 

Additionally, it incorporates advanced techniques such as region of interest (RoI) 

pooling to further enhance its performance. 

Faster R-CNN consists of two main modules: the region proposal network (RPN) and 

the object detection network. The RPN is responsible for generating region proposals, 

while the object detection network classifies the objects within these proposed 

regions. 

The workflow of Faster R-CNN begins with the radiology input image being 

processed by a feature extractor, typically a convolutional neural network (CNN) with 
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convolutional and pooling layers. This feature extractor generates feature maps, which 

contain high-level representations of the image that capture important visual 

information. 

The feature maps extracted from the input image are subsequently fed into the region 

proposal network (RPN) which examines them to determine whether regions are 

likely to contain objects. The RPN achieves this by traversing a small window 

(typically 3x3) across the feature maps, predicting the presence of an object within 

each window, and generating bounding box proposals for these regions. This process 

allows the network to propose candidate regions of interest for further analysis and 

classification. 

Once the region proposals are generated by the RPN, they are passed to the object 

detection network, which further processes each region to classify the objects within 

them and refine their bounding box coordinates if necessary. This network typically 

consists of additional convolutional and fully connected layers, followed by 

classification and regression heads. 

In the original Faster R-CNN architecture, the feature extractor often relies on 

established CNN architectures such as VGG-16. However, alternative models may 

offer better performance. For instance, Inception-ResNet, which merges the Inception 

and ResNet architectures, surpasses VGG-16 in certain applications. 

The region proposal network (RPN) of Faster R-CNN examines feature maps using a 

sliding window approach. However, utilizing a fixed-size window could be limiting, 

especially when dealing with objects of diverse shapes and sizes. Faster R-CNN 

mitigates this concern by introducing the notion of anchor boxes. 

Anchor boxes are predetermined bounding boxes with diverse scales and aspect ratios 

that are distributed across the image. These anchor boxes provide reference points for 

spotting items of various shapes and sizes.By using multiple anchor boxes, the RPN 

can better capture the variability in object shapes within the image. 

During the sliding window operation, each anchor box generates two scores: one 

indicating whether the window contains an object (foreground) or not (background), 

and the other indicating the class of the object if it is present. Specifically, for each 

anchor box, the RPN produces 4 × k pieces of information corresponding to the 
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bounding box coordinates (i.e., the coordinates of the box's top-left corner and 

bottom-right corner) and 2 × k pieces of information corresponding to the objectness 

score and the class score. 

Using anchor boxes with multiple scales and aspect ratios, the RPN can successfully 

handle objects of various forms and sizes, improving object detection accuracy in 

Faster R-CNN. This approach allows Faster R-CNN to perform consistently over a 

wide range of object types and combinations in input images. R-CNN's region 

proposal network (RPN) produces 4k × W × H pieces of area information and 2k × W 

× H pieces of class information, where k is the number of anchor boxes used and W × 

H is the size of the feature map. 

Initially, Faster R-CNN typically utilizes 9 anchor boxes (k = 9), each with a 

combination of scales and aspect ratios. However, to improve the detection of specific 

types of objects, such as glomeruli in medical images, the number of anchor boxes 

can be increased. In this case, 12 anchor boxes (k = 12) were employed, including 

variations in scale and aspect ratio to better capture the diversity of object shapes and 

sizes. 

Since the RPN may propose multiple candidate regions for the same object, it 

introduces redundancy in the detection process. To address this issue, non-maximum 

suppression (NMS) is applied based on the class scores associated with the proposed 

regions. NMS is a technique used to remove redundant bounding boxes by selecting 

the most confident detection and discarding overlapping detections with lower 

confidence scores. By applying NMS, the number of proposed regions of interest 

(ROIs) is typically reduced to a more manageable number, typically around 300, 

ensuring that only the most relevant and confident detections are retained for further 

processing. 

In Faster R-CNN, the region of interest (ROI) pooling technique is employed to 

convert ROIs of varying sizes into fixed-sized feature vectors. ROI pooling ensures 

that the input to subsequent layers remains consistent in size, regardless of the size or 

shape of the original ROIs. This process is crucial for maintaining spatial information 

while enabling the network to handle inputs of different dimensions. 
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Following ROI pooling [87], the fixed-sized feature vectors are sent through a fully 

linked layer. This layer is responsible for two major tasks: bounding box regression 

and object classification. 

Bounding box regression predicts the coordinates of the bounding boxes that surround 

the identified items. These coordinates usually contain the upper-left and lower-right 

corners of the bounding box. 

Object categorization seeks to assign a class label to every identified object. In the 

case of Faster R-CNN, the classification problem is distinguishing between different 

object classes, with an additional class for the background. The network is trained to 

classify objects into n + 1 classes, where n represents the number of distinct object 

categories, and the additional class represents the background. 

Both bounding box refinement and object classification are supervised tasks, meaning 

that the network's predictions are compared to ground truth annotations during 

training to optimize the network parameters and improve its performance. 

 

Fig 29 :  Understanding the Fast RCNN and Faster RCNN Architecture 

3.3.7 Long Short-Term Memory networks for question answering system 

Long Short-Term Memory Networks (LSTMs) are a sort of a recurrent neural 

network (RNN) architecture developed to solve the vanishing gradient problem., 

which impedes the training of standard RNNs on long sequences. LSTMs have 
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emerged as powerful tools for modeling sequences, with applications in natural 

language processing, speech recognition, and time series analysis. LSTMs are 

designed to capture long-term dependencies in sequential data while limiting the 

influence of disappearing gradients. They use a memory cell and a set of gates to 

regulate information flow, allowing them to selectively keep or discard information 

over time. The memory cell is the central component of an LSTM, temporally 

persistent storage The memory cell has a self-connected recurrent connection, 

allowing it to maintain its state over multiple time steps. The cell state, denoted as A  

is updated at each time step based on the input, previous cell state, and gate 

activations. 

• LSTMs use three types of gates to control the flow of information: input gate 

(� ), forget gate (� ), and output gate (/ ). 
• Each gate is made up of a logistic function or the normal logistic function, 

which produces values ranging from 0 to 1 that indicate how much 

information should be allowed through. 

• The input gate regulates the flow of new information into the cell state. 

• The forget gate controls the extent to which previous information should be 

forgotten from the cell state. 

• The output gate controls how much of the cell state is revealed to the network 

output. 

The gates are computed using following equations 

� = 6(9
	. [ℎ C�,� ] 	+ 	�
)																																																																																																	(6) 

� = 6(9G	. [ℎ C�,� ] 	+ 	�G)																																																																																																(7) 

/ = 6(9�	. [ℎ C�,� ] 	+ 	��)																																																																																														(8) 

σ represents the sigmoid activation function, 9 denotes weight matrices, ℎ C� is the 

previous hidden state, and � is the current input. 

The cell state is updated using following equations 

A = J1
ℎ(9�	. [ℎ C�,� ] 	+	��																																																																											(9) 
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A 	= 	 �
 	. A C� + � 	. A                                                                              (10) 

A  represents the new candidate values to be added to the cell state. 

Finally, the output of the LSTM at time step J, denoted as ℎ , is computed as: 

ℎ = / 	. tanh(A ) 
The output gate regulates the exposure of the cell state A to produce the final hidden 

state ℎ 	for the current time step. 

LSTMs are commonly trained using optimization techniques such as backpropagation 

through time (BPTT) or gradient descent, with gradients computed using 

backpropagation through time (BPTT) or more sophisticated methods like Long 

Short-Term Memory networks in deep learning. Throughout the training process, the 

LSTM's parameters, including gate weights and biases, are iteratively adjusted to 

minimize a specified loss function, such as cross-entropy loss or mean squared error. 

Several strategies and versions of Long Short-Term Memory (LSTM) networks were 

created to address certain difficulties or suit particular use cases. The conventional 

LSTM design is made up of memory cells, input gates, forget gates, and output gates, 

as indicated in the previous detailed perspective. BiLSTMs analyze input sequences in 

both forward and backward orientations, allowing the network to collect data from 

both past and future contexts concurrently. This leads to a better understanding of 

context and enhanced performance in tasks such as sequence labeling and sentiment 

analysis.. The placed LSTMs are made up of many LSTM layers placed on top of one 

another. Each layer gets input from the preceding layer and produces output for the 

subsequent layer. Stacking LSTMs enables the model to acquire hierarchical 

representations of sequential data, facilitating the capture of intricate patterns and 

dependencies. Alternatively, GRUs offer a simpler architecture with fewer parameters 

compared to LSTMs. GRUs consolidate the functionalities of input and forget gates 

into a single "update gate," enhancing computational efficiency while preserving 

long-term dependencies. Additionally, attention mechanisms enhance LSTM 

networks by enabling them to direct attention towards specific segments of the input 

sequence during output generation. Attention mechanisms enable the model to 

adaptively allocate its focus to salient information, dynamically assigning varying 

degrees of importance to different segments of the input sequence. This dynamic 
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weighting facilitates improved performance across various tasks such as machine 

translation, image captioning, and summarization. Several LSTM variations have 

been created to solve distinct issues in different domains. For example, medical 

LSTM variants may incorporate domain-specific features or pre-training on medical 

data to improve performance in healthcare-related tasks. Researchers and practitioners 

often develop customized LSTM architectures tailored to specific tasks or datasets. 

These customized architectures may include additional layers, connections, or 

modifications to the standard LSTM architecture to optimize performance for the 

given task. 

 

Fig 30 :  Architecture of Long Short-Term Memory (LSTM) networks 

3.4 The proposed Approach for Visual Question Answering System (VQAS) 

for skeletal Images 

The Visual Textual System or VQA model represents a significant advancement in 

artificial intelligence research, aiming to equip machines with the ability to grasp 

visual content and effectively respond to questions posed about it. In the domain of 

medical visual question answering (Med-VQA), this technology takes on added 

importance as it endeavors to provide accurate responses to clinical queries based on 

radiological images. 

In Med-VQA, the task involves presenting the computer with a radiological image 

alongside a relevant clinical question. The objective is to develop a sophisticated 

system capable of analyzing the visual information within the image and generating 
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appropriate answers to the posed questions. This demands a comprehensive 

understanding of both medical imaging and natural language processing, making 

Med-VQA a challenging yet promising field of study. 

The ultimate goal of Med-VQA is to enhance medical diagnostics, decision-making, 

and patient care by leveraging the capabilities of artificial intelligence to assist 

healthcare professionals in interpreting radiological images and extracting valuable 

insights from them. By seamlessly integrating image analysis with question answering 

capabilities, Med-VQA has the capability to innovate medical imaging interpretation 

and make a substantial contribution to the advancement of healthcare practices. 

Through rigorous research and development efforts in Med-VQA, we aim to achieve 

breakthroughs that not only augment the efficiency and accuracy of clinical decision-

making but also enhance patient outcomes and overall healthcare delivery. With its 

formalized methodologies and interdisciplinary approach, Med-VQA represents a 

pivotal area of exploration at the intersection of artificial intelligence and healthcare, 

with far-reaching implications for the future of medical diagnostics and treatment. 

3.4.1 Skeletal image Feature Extraction using Block_12_add Faster R-CNN 

(B12- FRCNN) algorithm  

Block_12_add Faster R-CNN (B12-FRCNN) extends the Faster R-CNN (Region-

based Convolutional Neural Network) approach, which is widely used for object 

detection. B12-FRCNN improves the performance of the Faster R-CNN architecture 

by including an additional block known as Block 12. 

B12-FRCNN has two basic components: The region proposal network (RPN), as well 

as the object detection network. The RPN creates region proposals, which are 

candidate bounding boxes that may include objects of interest. The object detection 

network refines and classifies these proposals before producing the final detection 

findings. 

B12-FRCNN inserts Block 12 into the Faster R-CNN network's feature extraction 

backbone. This block is often made up of numerous convolutional layers, followed by 

activation functions and pooling layers. Block 12's goal is to extract additional 

discriminative features from the input skeletal images, increasing the accuracy of 

object detection. 
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Block 12's design may change depending on the application and task requirements. It 

can be tailored to the complexity of the dataset, the diversity of the items to be 

detected, and the availability of computer resources. 

Overall, B12-FRCNN extends the capabilities of the original Faster R-CNN algorithm 

by incorporating additional layers for feature extraction, thereby enhancing its ability 

to detect objects accurately and efficiently. This makes it a valuable tool for a wide 

range of computer vision applications, including object detection in images and 

videos, surveillance, autonomous driving, and medical imaging. 

Block_12_add Faster R-CNN (B12-FRCNN) represents an enhanced iteration of the 

Faster R-CNN approach, renowned for its state-of-the-art capabilities in object 

detection within images. B12-FRCNN elevates the efficacy of Faster R-CNN by 

integrating a novel component known as Block 12 into its architecture. This pivotal 

block is seamlessly integrated into the feature extraction backbone of the network and 

is specifically designed to extract more discriminative features from input images. 

Faster R-CNN, a two-stage object detection methodology, comprises the region 

proposal network (RPN) and the object detection network. The RPN is responsible for 

generating region proposals, which serve as candidate bounding boxes potentially 

containing objects of interest. Subsequently, the object detection network refines and 

categorizes these proposals, ultimately yielding the definitive detection outcomes. 

B12-FRCNN adds an additional block, known as Block 12, to the Faster R-CNN 

network's feature extraction backbone. Block 12 is made up of many convolutional 

layers, subsequent to activation functions and pooling layers. The goal of Block 12 is 

to extract additional discriminative features from the input images, allowing the 

network to catch finer details and subtleties in the visual information. In the feature 

extraction process, the input image is transmitted via Block 12's convolutional layers. 

Each convolutional layer uses a sequence of learnable filters to extract features from 

the input image, including edges, textures, and forms. Activation functions, such as 

ReLU (Rectified Linear Unit), are then used to add nonlinearity to the network and 

allow it to learn complex patterns.Pooling layers play a crucial role in feature map 

downsampling, effectively reducing spatial dimensions while retaining essential 

information. In the case of Block 12, retrieved feature maps undergo integration into 

the Faster R-CNN framework. These enhanced feature maps serve as the foundation 
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for both the region proposal network (RPN) and the object detection network. The 

RPN utilizes these feature maps to generate region ideas, subsequently refined and 

categorized by the object detection network to discern objects within the image. 

Through the incorporation of Block 12 into the Faster R-CNN architecture, B12-

FRCNN achieves notable enhancements in object detection accuracy and efficiency. 

The additional layers within Block 12 enable the network to extract more intricate and 

nuanced characteristics from input images, thereby augmenting detection 

performance. B12-FRCNN is particularly effective in scenarios where detecting small 

or intricate objects is challenging, as it can extract finer-grained features from the 

images. 

In the proposed approach system, the feature extraction process plays an 

indispensable role in extracting discriminative features from radiology images to 

enable accurate question answering. Choosing the best feature extraction layer is 

critical for obtaining good performance in the visual question answering (VQA) 

assignment. Input data for the training phase includes radiological images and 

question-and-answer pairs. The goal is to train the VQA system to correctly answer 

questions concerning radiological images. The first stage of the training process 

involves extracting features from radiological images using the suggested 

Block_12_add Faster R-CNN (B12-FRCNN) method.  B12-FRCNN is used to extract 

image characteristics because it can capture finer-grained visual information than the 

current Faster R-CNN method. In B12-FRCNN, the "block_12_add" layer is used as 

the visual feature extraction layer instead of the conventional "activation_40_relu" 

layer used in Faster R-CNN. This modification addresses the gradient vanishing 

problem associated with the "activation_40_relu" layer and improves the quality of 

the extracted features from medical images. The selection of the optimal feature 

extraction layer, such as "block_12_add," is a critical aspect of the training phase. 

Empirical analysis is conducted to evaluate the performance of different feature 

extraction layers and determine which layer yields the best results for the VQA task. 

This analysis involves training the VQA system using different feature extraction 

layers, including "block_12_add" and other candidate layers. Each configuration's 

performance is appraised using measures such as accuracy, precision, recall, and F1-

score on a validation dataset. The layer that achieves the highest performance metrics 
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is selected as the optimal feature extraction layer for the VQA system. After selecting 

the optimal feature extraction layer, the VQA system is validated on a separate 

validation dataset to ensure its generalization performance. Fine-tuning may be 

performed to further optimize the VQA system's performance in accordance with the 

validation results. In the testing phase, the trained VQA system is evaluated on unseen 

radiology images and question-answer pairs to assess its performance in real-world 

scenarios. By empirically analyzing and selecting the optimal feature extraction layer, 

the proposed system ensures that the VQA system can effectively leverage visual 

information from radiology images to generate accurate answers to clinical questions. 

 

 

 

 

 

 

 

 

Fig 31 :  B12-FRCNN, the "block_12_add" layer 

B12-FRCNN begins by extracting features from medical images using a CNN 

backbone. Let's denote the input image as II, and the feature extraction function as 

AOO(P) . The output of this process is a set of feature maps denoted as QR1J =
{�R1J�, �R1JT, . . . . . . , �R1JU}, where each �R1J
 represents a feature map produced by 

the CNN backbone. 

The RPN generates candidate regions of interest (RoIs) by scanning the feature maps 

Feat. Let �
 denote the position and scale information of the � W anchor box, and �
 
denote the feature vector extracted from the corresponding region of the feature map. 

The RPN predicts the probability �(/�XRYJ) and adjusts the coordinates �
  to refine 

the proposed bounding boxes. RoI pooling extracts fixed-size feature vectors from 

each RoI to facilitate subsequent processing. Let Z/P
   denote the � W  RoI, and 
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�R1J[�\*, denote the feature vector extracted from Z/P
. The RoI pooling operation 

transforms variable-sized RoIs into fixed-size feature vectors by dividing the RoI into 

a grid and applying max pooling within each grid cell. The extracted RoI features are 

passed through classification and regression heads. Let �[�\* denote the feature vector 

of Z/P
 after RoI pooling. The classification head predicts the probability distribution 

over object classes �(Y]1��|Z/P
, QR1J) , while the regression head refines the 

bounding box coordinates �
  based on the extracted features Feat. Finally, B12-

FRCNN integrates with a question answering (QA) module to answer clinical queries 

based on the detected objects and their contextual information. The QA module 

processes textual questions ^ related to the medical images and utilizes the detected 

objects' features QR1J  to generate appropriate answers. The integration of object 

detection and question answering can be represented as follows: _
��R` =
	^_(QR1J) This equation indicates that the answer generated by the QA module is a 

function of the textual question ^	and the extracted features QR1J from the medical 

images. 

Overall, B12-FRCNN combines advanced object detection techniques with question 

answering capabilities, leveraging both skeletal image and question answer 

information to provide accurate and meaningful responses to clinical queries related 

to medical images. 

3.4.2 The proposed approach Kai-Bi-LSTM for Question Answering feature 

extraction 

The Question-Answer (QA) pairs undergo preprocessing, starting with the splitting of 

the question text into individual words. Subsequently, stop word removal eliminates 

frequently occurring words like "a", "an", and "the", which do not contribute to the 

text's meaning. The root forms of words are then extracted via stemming, which 

condenses words with different suffixes under the same root word. This process 

minimizes the index size and improves computational efficiency. 

After preprocessing, keywords are extracted from the question, representing highly 

relevant information. Keyword extraction entails obtaining relevant information from 

a text. For the response, text-only splitting is used. This step's output is in string 
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format, which is then translated to numerical format for effective categorization. This 

conversion is based on the word representation hypothesis. 

LogishBERT is used for this purpose, a variation of Bidirectional Encoder 

Representations from Transformers (BERT) that employs a Logarithmic Swish 

activation function to handle complex data more effectively than the traditional 

GELU activation function. It is an activation function commonly used in deep 

learning models, significantly in neural networks. GELU is designed to approximate 

the Gaussian cumulative distribution function and has been found to perform well in 

various tasks, including natural language processing and computer vision. It is defined 

mathematically as: 

abcd(�) = �. ;(e ≤ �) = �.g(�).            (10) 

where g(�) represents the cumulative distribution function of the standard normal 

distribution. 

LogishBERT converts the output from its fully connected layer into numerical data, 

referred to as a score value. 

The radiological imagine feature and LogishBERT score value are merged and used 

to train a Kai-Bi-LSTM classifier to predict answers. This classifier employs 

Bidirectional Long Short-Term Memory (BiLSTM) networks to address dependencies 

and different timelines. The Kaiming Initialization function is used to set the 

activation value for the forget gate. 

During the testing phase, the system receives a sample image and question, initiating 

feature extraction and preprocessing procedures akin to those employed during 

training. The extracted features and corresponding scores are then fed into the 

classifier, which predicts a score value corresponding to the answer. Subsequently, 

this score value and the question are cross-referenced with the LogishBERT lexicon 

to determine the appropriate response. 

In the results analysis section, the performance of the proposed system is assessed by 

juxtaposing it against existing methodologies, scrutinizing its innovative aspects, and 

evaluating various performance metrics including accuracy, precision, recall, and F-

measure. Figure 31 illustrates a block diagram delineating the proposed technique. 
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LogishBERT is an adaptation of Bidirectional Encoder Representations from 

Transformers (BERT), a pre-trained Linguistic-focused model understanding tasks. 

BERT has gained significant attention in the field of textual feature extraction 

processing due to its effectiveness in capturing contextual information and semantic 

relationships in text data. LogishBERT enhances the traditional BERT model by 

introducing a logarithmic swish activation function, which aims to handle complex 

data more effectively. BERT, an acronym for the same, adopts a transformer-based 

methodology to glean contextual insights from input text. Its architecture comprises 

multiple layers of bidirectional encoders, facilitating the extraction of nuanced 

contextual information. BERT undergoes pre-training on extensive text corpora, 

engaging in two unsupervised learning tasks: masked language modeling (MLM) and 

next sentence prediction. Renowned for its exceptional performance, BERT has 

showcased state-of-the-art results across a spectrum of natural language processing 

tasks, encompassing text classification, named entity recognition, and question 

answering. The traditional BERT model uses the GELU (Gaussian Error Linear Unit) 

activation function in its fully connected layers. LogishBERT replaces the GELU 

activation function with a logarithmic swish activation function. The logarithmic 

swish function is defined as. 

]/	��ℎ(ℎ) 	= 	ln	(1	 +	R∧�																																																																																									(11) 
Compared to the GELU function, the logarithmic swish function introduces a 

logarithmic term in the activation function, which helps in handling complex data 

distributions more effectively. The logarithmic swish function is believed to provide 

smoother gradients and better performance on tasks with complex data distributions. 

After processing the input text data through the LogishBERT model, the output from 

the fully connected layers is converted into numerical scores. These numerical scores 

represent the likelihood or confidence of different answers or predictions. The scores 

are typically obtained by applying a softmax function to the output vector, which 

normalizes the values to probabilities, ensuring that they sum up to one. LogishBERT 

is particularly useful in question answering systems, where it can effectively process 

and understand textual data to generate accurate answers to user queries. It is 

integrated into the proposed system architecture described earlier, where it plays a 
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crucial role in converting textual input (questions and answers) into numerical 

representations for further processing and classification. 

The Kaiming Initialization, also referred to as He Initialization, is a technique utilized 

to instigate the parameters of deep neural networks, including RN networks (RNNs) 

such as the Bidirectional LSTM (BiLSTM) model. This initialization method 

determines the initial weights of the neural network layers, encompassing the 

recurrent connections within the BiLSTM model. Its primary objective is to set the 

weights' initial values in a manner that prevents them from being excessively small or 

large, thereby mitigating issues related to vanishing or exploding gradients during the 

training process. Kaiming Initialization takes into consideration the activation 

function employed by the network, such as hyperbolic tangent (tanh) or rectified 

linear unit (ReLU), to ensure optimal performance. It adjusts the scale of initialization 

based on the characteristics of the activation function to ensure that the activations do 

not saturate too quickly, leading to gradient convergence/divergence issues. In the 

case of the BiLSTM model, which consists of multiple recurrent layers with forward 

and backward connections, the Kaiming Initialization function initializes the weights 

of both the forward and backward connections. It ensures that the weights of the 

recurrent connections are initialized in a way that allows information to flow 

effectively in both directions through the network during training. By initializing the 

weights appropriately, the Kaiming Initialization function helps in stabilizing the 

learning dynamics of the neural network. It facilitates smoother and more efficient 

training by preventing the gradients from becoming too small or too large, which can 

hinder the convergence of the optimization process. The Kaiming Initialization 

function combined with the BiLSTM algorithm can increase learning performance, 

accelerate convergence, and improve generalization to previously unknown material. 

It aids in overcoming the difficulties involved with training deep recurrent neural 

networks, particularly in tasks that require sequential data processing, such as natural 

language processing and time series analysis. 
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Fig 32 : Block diagram of QA System in the Training phase 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 33 :  Block diagram of QA System on Testing Phase 

 

 

Import 

thousands of 

 

 

Related 

Questions 
Which organ 

system 
is shown in CT 

scan? 

Related 

Answers 
lung, 

mediastinum,  
pleura 

 
Preprocessing 

both Question 

and Answer 
Text 

 

Image 

Feature 

B12-

 

Text 

Splitting 

Stop word 

Removal 

Stemming 

 Classificati

Kai-Bi-LSTM 

Score 


