"Development, Optimization and Evaluation of Nanosized Particles Containing Anticancer Drug"

"कैंसर रोधी औषधि युक्त नैनो आकार के कणों का विकास, अनुकूलन और मूल्यांकन"

A Thesis

Submitted for the Award of the Ph. D. degree of

PACIFIC ACADEMY OF HIGHER EDUCATION AND RESEARCH UNIVERSITY

> By Priyanka Pandey

Under the Supervision of DR. Jayesh Dwivedi Professor Pacific College of Pharmacy, Udaipur

Co- Supervised By Dr. Shiv Shankar Shukla Professor Columbia Institute of Pharmacy, Raipur

FACULTY OF PHARMACY

PACIFIC ACADEMY OF HIGHER EDUCATION AND RESEARCH UNIVERSITY UDAIPUR YEAR 2024

DECLARATION

I Priyanka Pandey D/o Shri Ramji Upadhyay Resident of Indore Madhya Pradesh, hereby declare that the research work incorporated in the present thesis entitled "Development, Optimization and Evaluation of Nanosized Particles Containing Anticancer Drug" is our original work. This work (in part or in full) has not been submitted to any University for the award or a Degree or a Diploma. I have properly acknowledged the material collected from secondary sources wherever required. We solely own the responsibility for the originality of the entire content.

Signature of the Candidate

Date:

Signature of the Supervisor/s

CERTIFICATE

Its gives me immense pleasure in certifying that the thesis entitled "Development, Optimization and Evaluation of Nanosized Particles Containing Anticancer Drug" and submitted by Priyanka Pandey is based on the work research carried out under my guidance. She has completed the following requirements as per Ph.D. regulations of the University;

- i. Course work as per university rules.
- Regularly presented Half Yearly Progress Report as by prescribed the University.
- iii. Published/ accepted minimum of two research paper in a refereed research journal.

I recommend the submission of thesis as prescribed/ notified by the University.

Date:

Supervisor Dr. Jayesh Dwivedi Professor

CERTIFICATE

Its gives me immense pleasure in certifying that the thesis entitled "Development, Optimization and Evaluation of Nanosized Particles Containing Anticancer Drug" and submitted by Priyanka Pandey is based on the work research carried out under my guidance. She has completed the following requirements as per Ph.D. regulations of the University;

- i. Course work as per university rules.
- Regularly presented Half Yearly Progress Report as by prescribed the University.
- iii. Published/ accepted minimum of two research paper in a refereed research journal.

I recommend the submission of thesis as prescribed/ notified by the University.

Date:

Co-Supervisor Dr. Shiv Shankar Shukla Professor

COPYRIGHT

I, **Priyanka Pandey**, hereby declare that the Pacific Academy of Higher Education and Research University Udaipur, Rajasthan shall have the rights to preserve, use and disseminate this dissertation/thesis entitled "**Development**, **Optimization and Evaluation of Nanosized Particles Containing Anticancer Drug**" in print or electronic format for academic / research purpose.

Date:

Signature of the Candidate

Place:

ACKNOWLEDGEMENT

This thesis is the end of my journey in obtaining my Ph.D. I have not traveled in blankness in this journey. This thesis has been reserved on track and been seen through to completion with the support and encouragement of many people including my well wishers, my friends, colleagues and various institutions. At the end of my thesis I would like to thank all those people who made this thesis possible and an unforgettable experience for me. At the end of my thesis, it is a pleasant task to convey my thanks to all those who contributed in many ways to the success of this study and made it an unforgettable experience for me.

At this moment of achievement, first of all I pay reverence to my guide, **Dr. Jayesh Dwivedi, Professor**, Pacific College of Pharmacy, Udaipur. This work would not have been possible without his guidance, support and encouragement. Under his guidance I successfully overcame many difficulties and learned a lot. His unflinching courage and conviction will always inspire me, and I hope to continue to work with his noble thoughts.

I am also extremely indebted to my co-guide **Dr. Shiv Shankar Shukla**, Professor, Columbia College of Pharmacy; Raipur This work would not have been possible without his support and encouragement, guidance and his endless kindness.

I extent my heartily gratitude to the management Columbia Institute of pharmacy, Raipur for providing necessary infrastructure and resources to accomplish my research work.

I warmly thank Prof. Shailendra Saraf, Pt. Ravishankar Shukla University, Raipur, for his valuable advice, and Motivation throughout my work.

I gratefully acknowledge Prof. Swarnalata Saraf, Pt. Ravishankar Shukla University, Raipur, for her understanding, encouragement and personal devotion which have provided good and smooth basis for my Ph.D. tenure. This thesis is the result of Dr. Ravindra Pandey, Dr. Deependra Singh, Dr. Vishal Jain, Mr. Nirmal Dongre, Dr. Shailesh Jain, Dr. Amber Vyas, who were always there when I really needed. Thank you doesn't seem sufficient but it is said with appreciation and respect to all of them for their support, encouragement, care, understanding and precious friendship. I am much indebted to Dr. Satyendra Kumar Shrivastava, for his valuable advice in my work and gave his valuable suggestions.

I am heartily obliged to my dear friends and colleagues in line of work, for their kind, loving friendship, unwavering belief in me as a person and a thoughtful support provided to me along with jovial natters on regular basis. I will always cherish our time spent in little chats or long discussions as a treasured memory. In fact, I truly appreciate all my colleagues at work, at present for being such a friendly, chilled out lot and creating a pleasant, very professional and academically desirable environment at college.

I owe my deepest gratitude towards my husband for his endless support and understanding of my goals and aspirations. His patience and sacrifice will remain my inspiration throughout my life. Without his help, I would not have been able to complete much of what I have done and become who I am. It would be ungrateful on my part if I thank Dr. Rupesh Kumar Pandey in these few words.

Last but not least, I would like to pay high regards to my Mother and Father, sister and my loving son satvik for their sincere encouragement and inspiration throughout my research work and lifting me uphill this phase of life. I one everything to them. Besides this, several people have knowingly and unknowingly helped me in the successful completion of this project.

Priyanka Pandey

Table No.	Page
Table 4.1: Bendamustine brands in India	21
Table 5.1: Process and formulation parameter of Chitosan Nanoparticles prepared by Ionic gelation technique	36
Table 5.2: Process and formulation parameters for PLGA Nanoparticleprepared by emulsion solvent Diffusion technique:	36
Table 5.3: Highest and lowest range of selected independent variable for ionic gelation technique	38
Table 5.4: The independent variables with their coded and actual values of 8 batches of chitosan nanoparticle	38
Table 5.5: Highest and lowest range of selected independent variables for solvent diffusion technique	39
Table 5.6: Independent variables with their coded and actual value of 8 batches of Bendamustine loaded PLGA Nanoparticle	40
Table 5.7: Interpretation of Drug release mechanism	43
Table 6.1: Physical and morphological properties of Bendamustine	48
Table 6.2: solubility study of bendamustine	49
Table 6.3: Absorbance of bendamustine solution at 329 nm	50
Table 6.4: Important absorption peaks of bendamustine	52
Table 6.5: Important peaks of Chitosan	53
Table 6.6: Important peaks of PLGA	55

Table 6.7: Important peaks obtained from BM and PLGA interaction	57
Table 6.8: Some characteristic peaks obtained from BM and PVA interaction:	58
Table 6.9: Partition coefficient of Bendamustine	59
Table 6.10: The formula for the preparation of chitosan nanoparticles	59
Table 6.11: Formulations of Chitosan Nanoparticles Particle Size and Their Entrapment Efficiency	60
Table 6.12: Summary and results of analysis of variance for PS and EE (for BM-CH nanoparticle)	66
Table 6.13: results of In Vitro drug release of optimized bendamustine and chitosan nanoparticles	71
Table 6.14: Drug release behavior of BM from optimized Chitosan nanoparticle	72
Table 6.15: the formula for the PLGA Nanoparticles by Solvent Diffusion Technique	73
Table 6.16: Results of PLGA formulated nanoparticles on Particle size and entrapment efficiency	74
Table 6.17: Summary and results of analysis of variance for PS and EE (for BM-PLGA nanoparticle)	79
Table 6.18: Results of In-Vitro drug release of BM Suspension and BM Loaded PLGA Nanoparticles	84
Table 6.19: Drug release performance of BM from preferred PLGA nanoparticle	86

Table 6.20: Results of In- vitro drug release studies of prepared Lyophilized Formulation of BM	88
Table 6.21: Drug release behavior of lyophilized BM-CH formulation	89
Table 6.22: The half maximal Inhibitoryconcentration (IC ₅₀) of pure BM suspension also lyophilized formulation of BM-CH on Z-138 cells after 24, 48 and 72hours.	90
Table 6.23: Effect of storage condition on % residual drug content of BM	93
Table6.24:Cumulative percent of drug release from reconstitutedlyophilized powder of BM and the suspension	95
Table 6.25: Release kinetics of pure BM suspension and BM-PLGA lyophilized formulation in phosphate buffer.	97
Table 6.26: The IC_{50} value of pure drug suspension also lyophilized formulation of BM-PLGA on Z-138 cells after 24, 48 and 72hours	98
Table 6.24: Result of % residual drug content of BM on storage condition	101

Figure No.	Page No.
Figure 1.1: Blood cancer scenario in India	10
Figure 1.2: Solvent evaporation method	13
Figure 1.3: Ionic gelation technique	14
Figure 1.4: Solvent diffusion technique	14
Figure 4.1: Structure of bendamustine	22
Figure 4.2: Chemical structure of Chitosan	24
Figure 4.3: Chemical structure of Tripolyphosphate	25
Figure 4.4: Chemical structure of PLGA	26
Figure 4.5: Chemical structure of PVA	27
Figure 6.1: Standard calibration curve of bendamustine	50
Figure 6.2: Calibration curve of Bendamustine	51
Figure 6.3: FTIR Spectra of Bendamustine	51
Figure 6.4: FTIR Spectra of Chitosan	52
Figure 6.5: FTIR Spectra of TPP	53
Figure 6.6: FTIR Spectra of Bendamustine with Chitosan	54
Figure 6.7: FTIR Spectra of PLGA	55
Figure 6.8: FTIR Spectra of PVA	56
Figure 6.9: IR Spectra of BM and PLGA	57
Figure 6.20: IR Spectra of BM and PVA	58
Figure 6.21: 3D response surface plot PC and SC	62
Figure 6.22: 3D response plot between PC and ST	62
Figure 6.23: 3D surface plot between SC and ST	63
Figure 6.24: 3D surface plot between PC and SC	64

Figure 6.25: 3D surface plot between PC and ST	64
Figure 6.26: 3D surface plot between SC and ST	65
Figure 6.27: Result of Mean Particle Size, Polydispersity Index formulation.no.4	67
Figure 6.28: Zeta potential of preferred formulation.no.4 (Chitosan nanoparticle)	67
Figure 6.29: TEM image of chitosan nanoparticle	68
Figure 6.30: DSC Thermogram of TPP, Chitosan, Bendamustine and Chitosan Bendamustine nanoparticle	69
Figure 6.31: Peaks of X-Ray Diffraction Studies	70
Figure 6.32: Drug release study of pure drug suspension and Bendamustine loaded chitosan nanoparticle	72
Figure 6.33: 3D surface plot between PC and SC (For BM-PLGA nanoparticle)	76
Figure 6.34: 3D surface plot between PC and ST	76
Figure 6.35: 3D surface plot between SC and ST	77
Figure 6.36: 3D surface plot between PC and SC	78
Figure 6.37: 3D surface plot between PC and SC	78
Figure 6.38: 3D surface plot between SC and ST	79
Figure 6.39: Mean particle size of PLGA BM nanoparticle	80
Figure 6.40: Zeta potential of PLGA BM nanoparticles	81
Figure 6.41: TEM image of BM loaded PLGA nanoparticle	82
Figure 6.42: DSC thermogram of BM-PLGA nanoparticle	82
Figure 6.43: X-ray diffraction study of BM- PLGA nanoparticle	83
Figure 6.44: Drug release of pattern of BM suspension and BM loaded PLGA nanoparticle	85
Figure 6.45: Results of In-Vitro drug release of BM Suspension and BM Loaded chitosan Nanoparticles	88

Figure 6.46: Z -138 viability after 24 hours of incubation with pure BM suspension and lyophilized BM loaded chitosan formulation	91
Figure 6.47: Z -138 viability after 48 hours of incubation with pure BM suspension and lyophilized BM loaded chitosan formulation	92
Figure 6.48: Z -138 viability after 72 hours of incubation with pure BM suspension and lyophilized BM loaded chitosan formulation	92
Figure 6.49: Effect of storage conditions on percent residual drug content of pure drug suspension and lyophilized formulation of BM-PLGA	94
Figure 6.50: Drug release study of pure drug suspension of BM and BM loaded PLGA nanoparticle	96
Figure 6.51: Z-138 cells viability after 24 hours incubation with Pure BM suspension and lyophilized formulation of BM-CH	98
Figure 6.52: Z-138 cells viability after 48 hours incubation with Pure BM suspension and lyophilized formulation of BM-CH	99
Figure 6.53: Z-138 cells viability after 72 hours incubation with Pure BM suspension and lyophilized formulation of BM-CH	99
Figure 6.54: Result of % residual drug content of pure drug suspension and lyophilized formulation of BM-PLGA on storage conditions	101