

Chapter – 5

 Utilization of AI and ML Prediction Algorithms

5.1

Traffic Control Systems for Smart Cities

5.1.1 IoT-Based Traffic Prediction Models

5.1.2 Machine Learning-Based Traffic Prediction Models

5.2

5.3

5.4

5.5

Machine Learning Predictive Model for Smart Transportation

Analysis of Machine Learning Models for Smart Transportation

5.3.1 Performance Measure

5.3.2 Error Measures

5.3.3 Cross-Validation Configuration Setting (10-folds) Results

 A. Performance Measures

 i. Accuracy Measures

 ii. Confusion Matrix Parameters – Low Traffic

 iii. Confusion Matrix Parameters – Heavy Traffic

 B. Error Measure Results

 C. Execution Time Results

5.3.4 Cross-Validation Configuration Setting (25-folds) Results

 A. Performance Measures

 i. Accuracy Measures

 ii. Confusion Matrix Parameters – Low Traffic

 iii. Confusion Matrix Parameters – Heavy Traffic

 B. Error Measure Results

 C. Execution Time Results

5.3.5 Cross-Validation Configuration Setting (30% Split) Results

 A. Performance Measures

 i. Accuracy Measures

 ii. Confusion Matrix Parameters – Low Traffic

 iii. Confusion Matrix Parameters – Heavy Traffic

 B. Error Measure Results

 C. Execution Time Results

5.3.6 Consolidated Result

5.3.7 Dominance Chart

5.3.8 Weighted Sum Model Analysis Using Python

5.3.9 Rank and Percentile Method

Hypothesis Testing Results

Summary

123

Artificial Intelligence and Machine Learning prediction algorithms are revolutionizing

industries and domains by harnessing data to make precise forecasts and informed

decisions. In smart cities it can be used to solve traffic congestion problems, traffic

prediction and vehicle maintenance insights, In healthcare, they aid in disease diagnosis

and drug discovery, In finance it benefits from risk assessment and stock market

predictions, e-commerce relies on recommendation systems and demand forecasting,

manufacturing optimizes operations with predictive maintenance and quality control,

Energy sector uses it for forecasting consumption and renewable energy utilization,

Agriculture improves crop yields and pest detection, Customer service employs

chatbots and sentiment analysis, Weather forecasting becomes more accurate,

Education adopts personalized learning and student success prediction, all contributing

to enhanced efficiency, cost reduction, and better decision-making across various

sectors.

5.1 Traffic Control Systems for Smart Cities

Traffic prediction and control systems in smart cities are essential for managing urban

congestion and improving overall transportation efficiency. Various machine learning

and IoT-based models have been developed to address these challenges. Some of the

existing approaches in this field are:

Adaptive Traffic Signal Control: Using real-time traffic data collected from IoT

sensors, adaptive traffic signal control systems can adjust signal timings based on

current traffic conditions. These systems aim to minimize congestion and improve

traffic flow efficiency.

Intelligent Transportation Systems (ITS): ITS integrates various technologies,

including IoT, machine learning, and data analytics, to manage traffic in real-time. It

involves strategies such as dynamic route guidance, incident detection, and congestion

pricing to optimize traffic control in smart cities.

Predictive Traffic Control: By combining machine learning-based traffic prediction

models with control algorithms, predictive traffic control systems can anticipate traffic

conditions and adjust signal timings proactively. These systems help prevent congestion

before it occurs.

124

Figure 5.1: Vehicle Location Tracking Using IoT and Machine Learning

The Figure 5.1 shown above explains the vehicle tracking system using IOT and

Machine learning. Various IoT sensors, like Camera, GPS Probes, Motion Sensors etc.

are used to collect raw traffic data, which is preprocessed for missing values and other

non-linearities. Collected data is used for training the machine learning model, which

will be used to forecast vehicle location on live data in future.

5.1.1 IoT-Based Traffic Prediction Models

Today traffic density is increasing in smart cities due to rise in population. This traffic

rise results in time wastage, fuel wastage, environmental problems and casualties. Many

solutions and methods are suggested in the past by many researchers but they lack in

accuracy and reliability. IoT based traffic prediction models have shown us new ray of

hope to overcome congestion problems in smart cities. Some of the IoT methods are

described below.

a. Sensor Networks: IoT devices and sensors deployed across road networks can

collect real-time data on traffic flow, vehicle speeds, and occupancy. By analyzing this

data, traffic prediction models can provide accurate and up-to-date traffic forecasts.

125

b. Vehicle-to-Infrastructure Communication: IoT-enabled vehicles can

communicate with smart infrastructure systems, such as traffic lights and road sensors,

to gather real-time data. This information can be used to predict traffic patterns and

optimize traffic control strategies.

These IoT models integrates data from different sources, including traffic cameras, GPS

devices, and proximity sensors to predict and optimize vehicle density, traffic

congestion, vehicle routing and improve the overall transportation experience.

5.1.2 Machine Learning-Based Traffic Prediction Models

In last one decade machine learning algorithms are increasingly becoming popular to

solve traffic congestion problems due to static and error prone traditional statistical

methods. Today’s ever increasing city limits and population growth, has made city

traffic management very difficult and demanding. Improvement in Machine learning

technology is a new ray of hope for us. Some of the machine learning technologies used

are described below.

a. Time-Series Forecasting Models: Models like ARIMA1 and SARIMA2 use

historical traffic data to predict future traffic patterns. They consider factors like time

of day, day of the week, and seasonality to forecast traffic conditions accurately.

b. Artificial Neural Networks: ANNs, such as MLP3 and RNNs4 like Long Short-

Term Memory, are capable of learning complex patterns in traffic data. These models

can capture temporal dependencies and perform well in long-term traffic prediction.

c. Support Vector Machines: SVMs are used for both classification and regression

tasks. They can be employed to predict traffic conditions based on historical data,

considering features like weather, events, and road characteristics.

1 Auto Regressive Integrated Moving Average
2 Seasonal Auto Regressive Integrated Moving Average
3 Multilayer Perceptron
4 Recurrent Neural Networks

126

d. Random Forests: Random Forest models combine multiple decision trees to make

predictions. They can handle both numerical and categorical features, making them

suitable for traffic prediction tasks involving multiple input variables.

In summary above set of algorithms have the capability to learn to perform tasks such

as prediction and classification effectively using data. Learning is achieved using

additional data and or additional models. A machine learning algorithm uses the

following steps:

1. Identify the problems.

2. Identify sources of information / data.

3. Pre-process the data for missing and incorrect data and transform the data if

required.

4. Divide the data into training and testing datasets.

5. Build ML models and identify the best model performance in validation data.

6. Implement solution / develop product.

An algorithm can be called as learning algorithm when it improves on a performance

metric while performing a task.

5.2 Machine Learning Predictive Model for Smart Transportation

A Machine Learning Predictive Model for a Smart Transportation System integrates

data from diverse sources, including traffic cameras, GPS devices, and weather

forecasts, to predict traffic congestion, optimize vehicle routing, enhance public

transportation efficiency, and improve the overall transportation experience. By

analyzing historical and real-time data, these models offer solutions such as rerouting

traffic, suggesting efficient routes for logistics, predicting public transportation

demand, enabling predictive maintenance, promoting sustainability, enhancing

security, and informing government policies, ultimately revolutionizing the way

transportation is managed and transforming urban mobility for the better.

127

Figure 5.2: Smart Transportation System

The Smart Transportation System is being divided into three modules which includes

ML applications, AI applications and IoT applications as shown in Figure 5.2. These

modules are further being divided into submodules such as the ML application module

includes traffic flow detection and travel time prediction, accident detection and

prevention, smart city lights city, infrastructure and road anomaly detection. Similarly,

the AI application is being subdivided into safety and emergency management,

autonomous vehicles, smart parking management, incident detection and predictive

models. The IoT applications include security surveillance, smart vehicle application

and navigation.

128

5.3 Analysis of Machine Learning Models for Smart Transportation

Machine Learning Predictive Models for Smart Transportation provide data-driven

insights and solutions to address complex urban mobility challenges. These models

harness vast datasets from traffic sensors, GPS devices, and various sources to forecast

traffic patterns, optimize routes, and improve public transportation systems. By

leveraging historical and real-time data, they enable more efficient traffic management,

reduce congestion, enhance user experience, and promote sustainable transportation

practices. Additionally, these predictive models have the potential to play a pivotal role

in shaping future transportation policies and infrastructure development for smarter and

more accessible cities. Various Algorithms were used for feature/attribute extraction

and selection. Based on the results provided by Algorithms out of twenty one attributes

following seven attributes are selected for Machine Learning Algorithms.

1. SPEED

2. NUM_READS

3. HOUR

4. ZIP CODES

5. REGION

6. BUS_COUNT

7. CLASS LABEL

5.3.1 Performance Measure

To analyze different prediction models, the performance measure like accuracy,

incorrectly classified instances, Kappa statistic, precision, recall, F-measure , ROC

Area ,TP Rate, FP Rate, precision and recall were being used, which are explained

below.

Accuracy: It is a commonly used metric to evaluate the performance of machine

learning classification models. It measures the ratio of correctly predicted instances to

the total number of instances in the dataset. The formula for precision is:

 Accuracy =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡
 [i]

129

Incorrectly Classified Instances: In machine learning, a misclassified instance is a

data point or instance in a data set that is incorrectly predicted or labeled by a machine

learning model. These instances represent errors that the model made in its predictions.

There are two types of errors:

➢ False Positive: Negative Instances are predicted as Positive by Model. In

 terms of Traffic Congestion this can be low traffic is

 predicted as heavy traffic.

➢ False Negative: Positive Instances are predicted as Negative by Model. In

 terms of Traffic Congestion this can be heavy traffic is

 predicted as low traffic.

Kappa Statistics: The kappa statistic, also known as Cohen's kappa, is a measure of

agreement or reliability between classification algorithms. It is often used to assess

agreement between two classification algorithms. Kappa value ranges from -1 to +1.

Positive 1 indicates perfect agreement and Negative 1 indicates worst agreement. The

various agreement interpretations are given below.

➢ Kappa > 0.8: Excellent Agreement

➢ 0.6 < Kappa < 0.8: Good Agreement

➢ 0.4 < Kappa < 0.6: Moderate Agreement

➢ Kappa ≤ 0.4: Poor Agreement

Confusion Matrix Parameters: Confusion matrix shows the different ways in which

the classification model gets confused when making predictions. The predicted values

are compared with Actual values to find out various performance parameters. The

Parameter like TP Rate, FP Rate , Precision, Recall and ROC Area are derived from a

confusion matrix.

130

Figure 5.3: Confusion Matrix

 Source: Towards Data Science [23]

TP5: It refers to the number of predictions where the classifier correctly predicts the

positive class as positive. For example in terms of Traffic Congestion this can be heavy

traffic is predicted as heavy traffic.

TN6: It refers to the number of predictions where the classifier correctly predicts the

negative class as negative. For example in terms of Traffic Congestion this can be low

traffic is predicted as low traffic.

FP7: It refers to the number of predictions where the classifier incorrectly predicts the

negative class as positive. For example in terms of Traffic Congestion this can be low

traffic is predicted as heavy traffic.

FN8: It refers to the number of predictions where the classifier incorrectly predicts the

positive class as negative. For example in terms of Traffic Congestion this can be heavy

traffic is predicted as low traffic.

Precision: It is the quality of a positive prediction made by the model. Precision refers

to the number of True Positives divided by the total number of Positive predictions.

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 [ii]

Recall: It is the measures of how well a machine learning model can detect positive

instances. It is also called as Sensitivity. Sensitivity refers to the number of true

5 True Positive
6 True Negative
7 False Positive
8 False Negative

131

positives divided by the sum of True Positives and False Negatives. The model with

high Sensitivity will have significantly fewer False Negatives.

 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 [iii]

F-Measure: It also known as F1-score, It is a machine learning metric that combines

precision and recall into one value.

 F-Measure = 2 ×
𝑃𝑟𝑒𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 [iv]

F-Measure value changes between 0 and 1, Where 1 indicates ideal Precision and Recall

and 0 indicates poor performance.

ROC9: It is a graph showing the performance of a classification mode. This curve plots

two parameters: TPR10 and FPR11. TP Rate is used to measure the percentage of actual

positives which are correctly identified by model . TPR is synonym for Recall. FP Rate

also known as Type - I error is used to measure the percentage of actual positives which

are incorrectly identified by model.

Figure 5.4: ROC Curve

Source: Google developer site [27]

9 Receiver Operating Characteristics
10 True Positive Rate
11 False Positive Rate

132

ROC Area: AUC12 measures the entire two-dimensional area underneath the entire

ROC curve. AUC indicates how well predictions are ranked. AUC ranges in value from

0 to 1. A model whose predictions are 100% wrong has an AUC of 0.0; one whose

predictions are 100% correct has an AUC of 1.0.

Figure 5.5: Area Under ROC Curve

Source: Google developer site [27]

In summary, performance measurements play a critical role in evaluating the

effectiveness of machine learning algorithms, providing insight into their ability to

make accurate predictions and transform appropriately to new, unseen data. Choosing

the most appropriate metric depends on the nature of your particular problem, the

characteristics of your data, and your analysis goals.

5.3.2. Error Measures

Machine learning uses various error measures to evaluate the performance of

algorithms and models. These measurements help quantify the difference between

predicted and actual values and provide insight into model performance. Common error

remedies includes:

Mean Absolute Error: it is Average of absolute differences between Actual values and

Predicted values. Lower the value of Mean Absolute Error, better the Prediction

Algorithm.

12 Area Under ROC Curve

133

 Mean Absolute Error =
1

𝑛
∑ |𝑦𝑎𝑖

− 𝑦𝑝𝑖
|𝑛

𝑖=1 [v]

 Where

➢ 𝑦𝑎 = Actual Output Value

➢ 𝑦𝑝 = Predicted Output Value

Root Mean Square Error: It is the root of mean square error. It considers the effect

of negative as well positive errors in considerations.

 Root Mean Square Error = √
1

𝑛
∑ (𝑦𝑎𝑖

− 𝑦𝑝𝑖
)2𝑛

𝑖=1 [vi]

Relative Absolute Error: It is used to measure accuracy of predictions. It compares

the distance of actual values from predicted values with distance of actual values from

average values. Its value lie between 0 to positive infinite. A lower Relative Absolute

Error indicates better performance.

 Relative Absolute Error =
∑ |𝑦𝑎𝑖

−𝑦𝑝𝑖
|𝑛

𝑖=1

∑ |𝑦𝑎𝑖
−𝑦̅|𝑛

𝑖=1

 [vii]

 Where

 𝑦̅ = Mean of Actual Values

Root Relative Square Error: It is the root of relative square error. The relative square

error is the ratio of total square error to average of actual values. Relative square error

normalizes total square error.

 Relative Square Error =
∑ (𝑦𝑎𝑖

−𝑦𝑝𝑖
)2𝑛

𝑖=1

𝑦̅
 [viii]

By Taking root of Relative Square Error we are reducing the normalize square error

value and bringing it closer to predicted value.

 Root Relative Square Error = √𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜 [ix]

 Root Relative Square Error = √
∑ (𝑦𝑎𝑖

−𝑦𝑝𝑖
)

2𝑛
𝑖=1

𝑦̅
 [x]

134

Lower the value of Root Relative Square Error, better the performance of Machine

Learning prediction model. The choice of error measure depends on the nature of the

problem and the specific objectives of the analysis. When choosing an appropriate error

measure, it is important to consider the characteristics of the data and the objectives of

the modeling task.

In summary, understanding and effectively using error counter measures is a

fundamental aspect of creating and improving machine learning algorithms. Error

measurements provide a quantitative means of assessing model accuracy and

performance, allowing practitioners to make informed decisions, compare different

algorithms, and optimize predictive capabilities.

5.3.3 Cross-Validation Configuration Setting (10-folds) Results

The Weka tool was being used for the analysis of various classification machine

learning algorithms. K-folds Cross-Validation Approach is used for evaluating the

Performance of Machine learning Algorithms, where K value is changed to study

different cases. For example in 4 folds Cross-Validation K value is 4 where data set is

divided into 4 parts, out of which 3 parts are used for training the Machine learning

Algorithm and only One part is used for testing the Algorithm.

Figure 5.6: 4-fold Cross-Validation Example

 Iteration – (i) Iteration – (ii) Iteration – (iii) Iteration – (iv)

As shown in above figure 5.6, four iterations are executed for 4-folds, In first iteration

part one will be used for testing and remaining three parts will be used for training. In

second iteration part two will be used for testing and remaining three parts will be used

for training. This recursion will continue up to the last iteration to complete the Cross-

Validation. For 10-fold Cross-Validation K value is 10 and data set will be divided into

10 parts, Nine parts for Training the algorithm and One part for testing the algorithm.

Data Set Data Set Data Set Data Set

Training

Training Training

Testing Training

Training

Training

Testing

Training Training

Training Testing Training

Training Testing

Training

135

Similarly for 25-fold Cross-Validation K value is 25 and data set will be divided into

25 parts, Twenty four parts for Training the algorithm and One part for testing the

algorithm.

Data Analysis Credentials:

Dataset: Udaipur_Traffic Source: TOMTOM Server

Date: October 2023 Duration: One Month

Number of Instances: 1000

Number of Attributes (After Feature Extraction and Selection): 7

A. Performance Measures

i. Accuracy Measures

Table 5.1: Classifiers and Accuracy Measures (Cross Validation: 10-Folds)

Classifier Accuracy
Incorrectly

Classified

Instances

Kappa

statistic

Bayes Net 99.6% 0.4% 0.967

Naïve Bayes 97.9% 2.1% 0.815

Logistic 99.7% 0.3% 0.976

SMO 97.2% 2.8% 0.722

IBk 98.7% 1.3% 0.898

KStar 98.8% 1.2% 0.905

MultiClass

Classifier
99.7% 0.3% 0.976

Random

Forest
100.0% 0.0% 1.000

RandomTree 100.0% 0.0% 1.000

Figure 5.7: Performance Measure Accuracy (Cross-Validation: 10 Folds)

94.0%

96.0%

98.0%

100.0%
99.6%

97.9%
99.7%

97.2%
98.7% 98.8%

99.7% 100.0% 100.0%

Accuracy

136

Based on the performance measure accuracy it can be interpreted that Random Forest

classifier was the most appropriate one as it was having the highest accuracy value of

100% whereas SMO and Naïve Bayes were having the lowest value of accuracy 97.2%

and 97.9%.

Figure 5.8: Incorrectly Classified Instances (Cross-Validation: 10 Folds)

According to the performance measure incorrectly classified instances it can be

interpreted that Random Forest and Random Tree classifiers were the most appropriate

one as these were having the lowest number of incorrectly classifies instances

accounting for 0% each whereas SMO and Naïve Bayes classifiers were having the

highest number of incorrectly classifies instances accounting for 2.8% and 2.1%

respectively.

Figure 5.9: Kappa Statistic Values (Cross-Validation: 10 Folds)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

0.4%

2.1%

0.3%

2.8%

1.3% 1.2%

0.3%
0.0% 0.0%

Incorrectly Classified Instances

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

0.967

0.815

0.976

0.722

0.898 0.905
0.976 1.000 1.000

Kappa statistic

137

The provided data consists of a set of Kappa statistic values, which are used to assess

the agreement or consistency between classifiers in different situations. These Kappa

values range from 0.722 to 1.000, indicating varying levels of agreement. The highest

Kappa value, 1.000, suggests a very good level of agreement between the classifiers in

that particular scenario, while the lowest value, 0.722, falls into the good to moderate

agreement range. Overall, the data suggests that there is a generally positive level of

agreement in the assessed situations, with some instances demonstrating higher

agreement than others.

In correctly classified instances and kappa statistics are performance metrics which are

important to explore to get more comprehensive insights to develop accurate machine

learning model.

ii. Confusion Matrix Parameters – Low Traffic

Table 5.2 shows confusion matrix parameters TP Rate, FP Rate, Precision, Recall, F-

Measure and ROC Area for Low Traffic case. Machine learning often requires a limited

amount of data when dealing with low-traffic scenarios. In such cases, the challenge is

to create a robust model despite data limitations. Data Augmentation techniques are

used to artificially increase the size of data set which can be helpful especially in low

traffic scenarios.

Table 5.2: Classifiers and Performance Measures Class Label: Low Traffic

 Cross Validation: 10-Folds

Classifier
TP

Rate
FP Rate Precision Recall

F-

Measure

ROC

Area

Bayes Net 1.000 0.060 0.996 1.000 0.998 1.000

Naïve Bayes 0.996 0.254 0.982 0.996 0.989 0.988

Logistic 0.999 0.03 0.998 0.999 0.998 1.000

SMO 1.000 0.418 0.971 1.000 0.985 0.791

IBk 0.991 0.075 0.995 0.991 0.993 0.958

KStar 0.992 0.075 0.995 0.992 0.994 0.997

MultiClass

Classifier
0.999 0.030 0.998 0.999 0.998 1.000

Random

Forest
1.000 0.000 1.000 1.000 1.000 1.000

RandomTree 1.000 0.000 1.000 1.000 1.000 1.000

138

Figure 5.10: TP Rate (Cross Validation: 10-Folds – Low Traffic)

According to the performance measure TP rate it was found that the highest true

positive rate was of the classifiers Bayes Net, Random Forest and Random Tree with

value 1.000, followed by 0.999 and 0.999 of Logistic and MultiClass Classifier

respectively whereas the lowest TP rate was found to be of the classifiers IBK with

value 0.991. Overall it can be interpreted that there are three most appropriate

classifiers based on the performance measure TP rate with the value of 1.000.

Figure 5.11: FP Rate (Cross Validation: 10-Folds – Low Traffic)

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

1.000

0.996

0.999
1.000

0.991
0.992

0.999
1.000 1.000

TP Rate

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.060

0.254

0.030

0.418

0.075 0.075

0.030
0.000 0.000

FP Rate

139

Based on the performance measure FP rate it was found that the lowest false positive

rate was of the classifiers Random Forest and Random Tree with value 0.000, followed

by 0.030 of Logistic and MultiClass Classifier whereas the highest FP rate was found

to be of the classifiers SMO with value 0.418. Overall, it can be interpreted the most

appropriate classifier based on the performance measure FP rate is found to be Random

Forest and Random Tree with lowest FP rate value.

Figure 5.12: Precision (Cross Validation: 10-Folds – Low Traffic)

According to the performance measure precision it was found that the highest precision

value was of the classifier Random Forest and Random Tree with value 1.000, followed

by 0.998 of Logistic and MultiClass Classifier respectively whereas the lowest

precision value was found to be of the classifier SMO with value 0.971. Overall, it can

be interpreted the most appropriate classifiers based on the performance measure

precision are found to be Random Forest and Random Tree.

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000 0.996

0.982

0.998

0.971

0.995 0.995
0.998

1.000 1.000

Precision

140

Figure 5.13: Recall (Cross Validation: 10-Folds – Low Traffic)

Based on the performance measure recall it was found that the highest recall value was

of the classifiers Bayes Net, SMO, Random Forest and Random Tree with value 1.000,

followed by 0.999 of Logistic and MultiClass Classifier respectively whereas the lowest

recall value was found to be of the classifier IBK with value 0.991. Overall, it can be

interpreted the most appropriate classifier based on the performance measure recall is

found to be four algorithms Bayes Net, SMO, Random Forest and Random Tree.

Figure 5.14: F-Measure (Cross Validation: 10-Folds – Low Traffic)

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

1.000

0.996

0.999
1.000

0.991
0.992

0.999
1.000 1.000

Recall

0.975

0.980

0.985

0.990

0.995

1.000 0.998

0.989

0.998

0.985

0.993
0.994

0.998
1.000 1.000

F-Measure

141

According to the performance measure F-Measure it was found that the highest F-

Measure values were of the classifier Random Forest and Random Tree with value

1.000, followed by 0.998 value of Bayes Net, Logistic and MultiClass Classifier

respectively whereas the lowest F-Measure value was found to be of the classifier SMO

classifier with values 0.985. Overall, it can be interpreted the most appropriate

classifiers based on the performance measure F-Measure is found to be Random Forest

and Random Tree.

Figure 5.15: ROC Area (Cross Validation: 10-Folds – Low Traffic)

Based on the performance measure ROC it was found that the highest ROC Area value

was of the classifiers Bayes Net, Logistic, MultiClass Classifier, Random Forest and

Random Tree with value 1.000, followed by 0.997 and 0.988 of KStar and Navie Bayes

respectively whereas the lowest ROC Area value was found to be of the classifier SMO

with value 0.791 respectively. Overall, it can be interpreted the most appropriate

classifiers based on the performance measure ROC Area are found to be five

Algorithms.

In summary, performance measurements play a critical role in evaluating the

effectiveness of machine learning algorithms, providing insight into their ability to

make accurate predictions and transform appropriately to new, unseen data. Choosing

the most appropriate metric depends on the nature of your particular problem, the

characteristics of your data, and your analysis goals.

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

1.000 0.988 1.000

0.791

0.958 0.997 1.000 1.000 1.000

ROC Area

142

iii. Confusion Matrix Parameters – Heavy Traffic

Heavy Traffic generates huge amounts of data from the various IOT sensors. These data

sets can be used by Machine Learning Algorithms to develop prediction models. Table

5.3 shows the Confusion Matrix parameters obtained for Heavy Traffic conditions.

Table 5.3: Classifiers Performance Measure Class Label: Heavy Traffic

Cross Validation: 10-Folds

Classifier
TP

Rate
FP Rate Precision Recall

F-

Measure

ROC

Area

Bayes Net 0.940 0.000 1.000 0.940 0.969 1.000

Naïve Bayes 0.746 0.004 0.926 0.746 0.826 0.988

Logistic 0.970 0.001 0.985 0.970 0.977 1.000

SMO 0.582 0.000 1.000 0.582 0.736 0.791

IBk 0.925 0.009 0.886 0.925 0.905 0.958

KStar 0.925 0.008 0.899 0.925 0.912 0.997

MultiClass

Classifier
0.970 0.001 0.985 0.970 0.977 1.000

Random

Forest
1.000 0.000 1.000 1.000 1.000 1.000

RandomTree 1.000 0.000 1.000 1.000 1.000 1.000

Figure 5.16: TP Rate (Cross Validation: 10-Folds – Heavy Traffic)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000
0.940

0.746

0.970

0.582

0.925 0.925
0.970 1.000 1.000

TP Rate

143

According to the performance measure TP rate for class label: Heavy Traffic it was

found that the highest true positive rate was of the classifiers Random Forest and

Random Tree 1.000, followed by 0.970 of Logistic and MultiClass Classifier

respectively whereas the lowest TP rate was found to be of the classifiers SMO with

values 0.582. Overall, it can be interpreted the most appropriate classifier based on the

performance measure TP rate are Random Forest and Random Tree.

Figure 5.17: FP Rate (Cross Validation: 10-Folds – Heavy Traffic)

Based on the performance measure FP rate for class label: Heavy Traffic it was found

that the lowest false positive rate was of the classifiers Bayes Net, SMO, Random Forest

and Random Tree with value 0.00, followed by 0.001 of Logistic and MultiClass

Classifier, whereas the highest FP rate was found to be of the classifiers KStar and IBK

with values 0.008 and 0.009 respectively. Overall, it can be interpreted the most

appropriate classifier based on the performance measure FP rate are found to be four

Algorithms with lowest FP rate value 0.000.

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.000

0.004

0.001

0.000

0.009

0.008

0.001

0.000 0.000

FP Rate

144

Figure 5.18: Precision (Cross Validation: 10-Folds – Heavy Traffic)

According to the performance measure precision class label: Heavy Traffic it was found

that the highest precision value was of the classifiers Bayes Net, SMO, Random Forest

and Random Tree with value 1.000, followed by 0.985 and 0.926 of Logistic,

MultiClass Classifier and Naïve Bayes respectively whereas the lowest precision value

was found to be of the classifier IBK with values 0.886 respectively. Overall, it can be

interpreted that the most appropriate classifier based on the performance measure

precision is found to be Four Algorithms.

Figure 5.19: Recall (Cross Validation: 10-Folds – Heavy Traffic)

Based on the performance measure recall class label: Heavy Traffic it was found that

the highest recall value was of the classifiers Random Forest and Random Tree with

0.820
0.840
0.860
0.880
0.900
0.920
0.940
0.960
0.980
1.000

1.000

0.926

0.985
1.000

0.886
0.899

0.985
1.000 1.000

Precision

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

0.940

0.746

0.970

0.582

0.925 0.925 0.970 1.000 1.000

Recall

145

value 1.000, followed by 0.970 of Logistic and Multiclass Classifier respectively

whereas the lowest recall value was found to be of the classifiers SMO with value 0.582.

Overall, it can be interpreted the most appropriate classifier based on the performance

measure recall are found to be Random Forest and Random Tree.

Figure 5.20: F-Measure (Cross Validation: 10-Folds – Heavy Traffic)

According to the performance measure F-Measure class label: Heavy Traffic it was

found that the highest F-Measure value was of the classifiers Random Forest and

Random Tree with value 1.000, followed by 0.9777 of Logistic and Multiclass

Classifier respectively whereas the lowest F-Measure value was found to be of the

classifier SMO with value 0.736. Overall, it can be interpreted the most appropriate

classifiers based on the performance measure F-Measure is found to be Random Forest

and Random Tree.

Figure 5.21: ROC Area (Cross Validation: 10-Folds – Heavy Traffic)

0.000

0.200

0.400

0.600

0.800

1.000
0.969

0.826
0.977

0.736
0.905 0.912 0.977 1.000 1.000

F-Measure

0.000

0.200

0.400

0.600

0.800

1.000

1.000 0.988 1.000

0.791

0.958 0.997 1.000 1.000 1.000

ROC Area

146

Based on the performance measure ROC class label: Heavy Traffic it was found that

the highest ROC Area value was of the classifiers Bayes Net, Logistic, MultiClass

Classifier, Random Forest and Random Tree with value 1.00, followed by 0.988 of

Naive Bayes respectively whereas the lowest ROC Area value was found to be of the

classifier SMO with values 0.791 respectively. Overall, it can be interpreted that the

most appropriate classifiers based on the performance measure ROC Area are found to

be five Algorithms.

B. Error Measure Results

Table 5.4: Classifiers and Error Measures (Cross Validation: 10-Folds)

Classifier
Mean

absolute

error

Root mean

squared

error

Relative

absolute

error

Root relative

squared

error

Bayes Net 0.005 0.044 3.549% 17.692%

Naïve Bayes 0.026 0.136 20.501% 54.312%

Logistic 0.003 0.048 2.171% 19.311%

SMO 0.028 0.167 22.247% 66.924%

IBk 0.014 0.114 11.180% 45.553%

KStar 0.017 0.099 13.340% 39.526%

MultiClass

Classifier
0.003 0.048 2.171% 19.311%

Random

Forest
0.001 0.007 0.739% 2.762%

RandomTree 0.000 0.000 0.000% 0.000%

Figure 5.22: Mean Absolute Error (Cross-Validation: 10 Folds)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.005

0.026

0.003

0.028

0.014
0.017

0.003
0.001 0.000

Mean absolute error

147

The mean absolute error is found to be lowest in case of Random Tree with the value

0.000 Whereas the mean absolute error value of SMO is found to be highest with value

0 .028. So, it can be interpreted that based on the measure Mean absolute Error the most

appropriate algorithm is found to be Random Tree at configuration setting – 10-fold

cross validation.

Figure 5.23: Root Mean Squared Error (Cross-Validation: 10 Folds)

The root mean squared error value is found to be highest in case of SM0 with the value

of 0 .167 whereas the lowest value is found to be of Random Tree with value 0.000. So,

it can be interpreted that based on the measure RMSE the most appropriate algorithm

is found to be Random Tree at configuration setting – 10-fold cross validation.

Figure 5.24: Relative Absolute Error (Cross Validation: 10-Folds)

0.000
0.020
0.040
0.060
0.080
0.100
0.120
0.140
0.160
0.180

0.044

0.136

0.048

0.167

0.114
0.099

0.048

0.007 0.000

Root mean squared error

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

3.55%

20.50%

2.17%

22.25%

11.18%
13.34%

2.17%
0.74% 0.00%

Relative absolute error

148

Accordingly, the relative absolute error value is found to be lowest in case of Random

Tree classifier with 0.00% whereas the highest relative absolute error percentage value

is found to be in case of SMO with 22.25%. So, it can be suggested that based on the

measure Relative Absolute Error the most appropriate algorithm is found to be Random

Tree with lowest value when evaluated at configuration setting – 10-fold cross

validation.

Figure 5.25 : Root Relative Squared Error (Cross Validation: 10-Folds)

The root relative squared error value is found to be lowest in case of Random Tree

classifier with 0.00% whereas the root relative squared error percentage value is found

to be highest in case of SMO with percentage value of 66.92%. So, it can be interpreted

that based on the measure RRSE the most appropriate algorithm is found to be Random

Tree with lowest percentage value when evaluated at configuration setting – 10-fold

cross validation.

In summary, it is important to understand error measures in Machine learning for

assessing the performance of model properly and making informed decisions. The

choice of specific metrics depends on the nature of the problem, characteristics of the

dataset, and goals of the analysis.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

17.69%

54.31%

19.31%

66.92%

45.55%
39.53%

19.31%

2.76% 0.00%

Root relative squared error

149

C. Execution Time Results

The execution time of a machine learning algorithm refers to the time it takes for the

algorithm to process and analyse input data, train the model (if applicable), and produce

predictions or results. Execution time is an important factor when evaluating the

efficiency and scalability of machine learning algorithms, especially when dealing with

large data sets and real-time applications. The Average Execution Time of Nine

Classifier Algorithm is given below.

Table 5.5: Classifiers and Average Execution Time (Cross Validation: 10-Folds)

Classifier
Average

Execution Time

(Seconds)

Bayes Net 0.035

Naïve Bayes 0

Logistic 0.02

SMO 0

IBk 0

KStar 0

MultiClass

Classifier
0.03

Random

Forest
0.16

RandomTree 0

Figure 5.26 : Average Execution Time (Cross Validation: 10-Folds)

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

0.035

0
0.02

0 0 0

0.03

0.16

0

Average Execution Time (Seconds)

150

According to the performance measure average execution time it was found that the

lowest average execution time were of the classifiers Naïve Bayes, SMO, IBK, KStar

and Random Tree with values nearly 0 Seconds each whereas the highest average

execution time was found to be of the classifiers Random Tree classifier with values

0.16 respectively. Overall, it can be interpreted the most appropriate classifiers based

on the performance measure average execution time are found to be Naïve Bayes, SMO,

IBK, KStar and Random Tree.

There are Several factors like Algorithm complexity, Data Size, Model Training,

Hardware resources, Optimizations, Feature Engineering and Software implementation

etc. that can affect the execution time of a machine learning algorithm.

5.3.4 Cross-Validation Configuration Setting (25-Folds) Results

Cross-validation is a valuable technique in machine learning for assessing the

performance of predictive models. It involves splitting a dataset into multiple subsets

or "folds" to train and test the model on different portions of the data. The number of

folds, such as the "25-folds" configuration setting you mentioned, determines how

many times this process is repeated. The Weka tool was being used for the analysis of

various classification machine learning algorithms. K-folds Cross-Validation Approach

is used for evaluating the Performance of Machine learning Algorithms, where K value

is changed to study difference cases. In 25 folds Cross-Validation K value is 25 where

data set is divided into 25 parts, out of which 24 parts are used for training the Machine

learning Algorithm and only One part is used for testing the Algorithm. Twenty five

iterations are executed for 25-folds, In first iteration part one will be used for testing

and remaining Twenty four parts will be used for training. In second iteration part two

will be used for testing and remaining twenty four parts will be used for training. This

recursion will continue up to the last iteration to complete the Cross-Validation.

Following credentials are used for Data Analysis.

Dataset: Udaipur_Traffic Source: TOMTOM Server

Date: October 2023 Duration: One Month

Number of Instances: 1000

Number of Attributes (After Feature Extraction and Selection): 7

151

A. Performance Measures

i. Accuracy Measures

Table 5.6: Classifiers and Accuracy Measures (Cross-Validation: 25-Folds)

Classifier Accuracy
Incorrectly

Classified

Instances

Kappa

statistic

Bayes Net 99.60% 0.40% 0.967

Naïve Bayes 97.90% 2.10% 0.818

Logistic 99.10% 0.10% 0.992

SMO 97.20% 2.80% 0.722

IBk 98.80% 1.20% 0.905

KStar 98.70% 1.30% 0.897

MultiClass

Classifier
99.10% 0.10% 0.992

Random

Forest
100.00% 0.00% 1.000

RandomTree 100.00% 0.00% 1.000

Figure 5.27: Performance Measure Accuracy (Cross-Validation: 25 Folds)

Based on the performance measure accuracy it can be interpreted that Random Forest

and Random Tree classifiers were the most appropriate one as they were having the

highest accuracy value of 100% whereas classifier Naïve Bayes and SMO were having

the lowest value of accuracy 97.90% and 97.20% each.

95.50%
96.00%
96.50%
97.00%
97.50%
98.00%
98.50%
99.00%
99.50%

100.00% 99.60%

97.90%

99.10%

97.20%

98.80% 98.70%
99.10%

100.00% 100.00%

Accuracy

152

Figure 5.28: Incorrectly Classified Instances (Cross-Validation: 25 Folds)

According to the performance measure incorrectly classified instances it can be

interpreted that Random Forest and Random Tree classifiers were the most appropriate

one as these Algorithms were having the lowest number of incorrectly classifies

instances, whereas classifiers SMO was having the highest number of incorrectly

classified instances.

Figure 5.29: Kappa Statistic (Cross-Validation: 25 Folds)

The provided data consists of a set of Kappa statistic values, which are used to assess

the agreement or consistency between classifiers in different situations. These Kappa

values range from 0.722 to 1.000, indicating varying levels of agreement. The highest

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

0.40%

2.10%

0.10%

2.80%

1.20% 1.30%

0.10% 0.00% 0.00%

Incorrectly Classified Instances

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

0.967

0.818

0.992

0.722

0.905 0.897
0.992 1.000 1.000

Kappa statistic

153

Kappa value, 1.000, suggests a very good level of agreement between the classifiers in

that particular scenario, while the lowest value, 0.722, falls into the good to moderate

agreement range. Overall, the data suggests that there is a generally positive level of

agreement in the assessed situations, with some instances demonstrating higher

agreement than others.

In correctly classified instances and kappa statistics are performance metrics which are

important to explore to get more comprehensive insights to develop accurate machine

learning model.

ii. Confusion Matrix Parameters – Low Traffic

Table 5.7 shows confusion matrix parameters TP Rate, FP Rate, Precision, Recall, F-

Measure and ROC Area for Low Traffic case. Machine learning often requires a limited

amount of data when dealing with low-traffic scenarios. In such cases, the challenge is

to create a robust model despite data limitations. Data Augmentation techniques are

used to artificially increase the size of data set which can be helpful especially in low

traffic scenarios.

Table 5.7: Classifiers and Performance Measures Class Label: Low Traffic

 Cross Validation: 25-Folds

Classifier TP Rate FP Rate Precision Recall F-Measure ROC Area

Bayes Net 1.000 0.060 0.996 1.000 0.998 1.000

Naïve Bayes 0.995 0.239 0.983 0.995 0.989 0.990

Logistic 0.999 0.000 1.000 0.999 0.999 1.000

SMO 1.000 0.418 0.971 1.000 0.985 0.791

IBk 0.992 0.075 0.995 0.992 0.994 0.959

KStar 0.992 0.090 0.994 0.992 0.993 0.997

MultiClass

Classifier
0.999 0.000 1.000 0.999 0.999 1.000

Random

Forest
1.000 0.000 1.000 1.000 1.000 1.000

RandomTree 1.000 0.000 1.000 1.000 1.000 1.000

154

Figure 5.30 : TP Rate (Cross Validation: 25-Folds – Low Traffic)

According to the performance measure TP rate for class label: Low Traffic it was found

that the highest true positive rate was of the classifiers Bayes Net, SMO, Random Forest

and Random Tree with value 1.000, followed by 0.999 of Logistic and MultiClass

Classifier, The lowest TP rate was found to be of the classifiers IBK and KStar with

value 0.992 respectively.

Figure 5.31 : FP Rate (Cross Validation: 25-Folds – Low Traffic)

Based on the performance measure FP rate for class label: Low Traffic it was found

that the lowest false positive rate was of the classifiers Logistic, MultiClass Classifier,

Random Forest and Random Tree with value 0.000, followed by 0.060 of Bayes Net

whereas the highest FP rate was found to be of the classifier SMO with value 0.418.

0.988

0.990

0.992

0.994

0.996

0.998

1.000

1.000

0.995

0.999
1.000

0.992 0.992

0.999
1.000 1.000

TP Rate

0.000
0.050
0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.450

0.060

0.239

0.000

0.418

0.075 0.090

0.000 0.000 0.000

FP Rate

155

Figure 5.32: Precision (Cross Validation: 25-Folds – Low Traffic)

According to the performance measure precision for class label: Low Traffic it was

found that the highest precision value was of the classifiers Logistic, MultiClass

Classifier, Random Forest and Random Tree with value 1.000, followed by 0.996,

0.995 and 0.994 of Bayes Net, IBK and KStar respectively whereas the lowest precision

value was found to be of the classifier SMO with values 0.971 respectively. Overall, it

can be interpreted that the most appropriate classifiers based on the performance

measure precision are found to be four Algorithms.

Figure 5.33 : Recall (Cross Validation: 25-Folds – Low Traffic)

0.955
0.960
0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000 0.996

0.983

1.000

0.971

0.995 0.994

1.000 1.000 1.000

Precision

0.988

0.990

0.992

0.994

0.996

0.998

1.000

1.000

0.995

0.999
1.000

0.992 0.992

0.999
1.000 1.000

Recall

156

Based on the performance measure recall for class label: Low Traffic it was found that

the highest recall value was of the classifiers Bayes Net, SMO, Random Forest and

Random Tree with value 1.000, followed by 0.999 of Logistic and MultiClass

Classifier respectively whereas the lowest recall value was found to be of the classifiers

IBK and KStar with values 0.992 respectively. Overall, it can be interpreted that the

most appropriate classifier based on the performance measure recall are found to be

Bayes Net, SMO, Random Forest and Random Tree.

Figure 5.34 : F-Measure (Cross Validation: 25-Folds – Low Traffic)

According to the performance measure F-Measure for class label: Low Traffic it was

found that the highest F-Measure value was of the classifiers Random Forest and

Random Tree with value 1.000, followed by 0.999 and 0.998 of Logistic, MultiClass

Classifier and Bayes Net respectively whereas the lowest F-Measure value was found

to be of the classifiers SMO with value 0.985. Overall, it can be interpreted that the

most appropriate classifier based on the performance measure F-Measure are found to

be Random Forest and Random Tree.

0.975

0.980

0.985

0.990

0.995

1.000
0.998

0.989

0.999

0.985

0.994 0.993

0.999 1.000 1.000

F-Measure

157

Figure 5.35 : ROC Area (Cross Validation: 25-Folds – Low Traffic)

Based on the performance measure ROC for class label: Low Traffic it was found that

the highest ROC Area value was of the classifiers Bayes Net, Logistic, MultiClass

Classifier, Random Forest and Random Tree with value 1.000, followed by 0.997,

0.990 and 0.959 of KStar, Naïve Bayes and IBK respectively whereas the lowest ROC

Area value was found to be of the classifiers SMO with value 0.791 respectively.

In summary, performance measurements play a critical role in evaluating the

effectiveness of machine learning algorithms, providing insight into their ability to

make accurate predictions and transform appropriately to new, unseen data. Choosing

the most appropriate metric depends on the nature of your particular problem, the

characteristics of your data, and your analysis goals.

iii. Confusion Matrix Parameters – Heavy Traffic

Heavy Traffic generates huge amounts of data from the various IOT sensors. These data

sets can be used by Machine Learning Algorithms to develop prediction models. Table

5.8 shows the Confusion Matrix parameters TP Rate, FP Rate, Precision, Recall, F-

Measure and ROC Area obtained for Heavy Traffic conditions.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.000 0.990 1.000

0.791

0.959
0.997 1.000 1.000 1.000

ROC Area

158

Table 5.8: Classifiers Performance Measure Class Label: Heavy Traffic:

Cross Validation: 25-Folds

Classifier TP Rate FP Rate Precision Recall F-Measure ROC Area

Bayes Net 0.940 0.000 1.000 0.940 0.969 1.000

Naïve Bayes 0.761 0.005 0.911 0.761 0.829 0.990

Logistic 1.000 0.001 0.985 1.000 0.993 1.000

SMO 0.582 0.000 1.000 0.582 0.736 0.791

IBk 0.925 0.008 0.899 0.925 0.912 0.959

KStar 0.910 0.008 0.897 0.910 0.904 0.997

MultiClass

Classifier
1.000 0.001 0.985 1.000 0.993 1.000

Random

Forest
1.000 0.000 1.000 1.000 1.000 1.000

RandomTree 1.000 0.000 1.000 1.000 1.000 1.000

Figure 5.36 : TP Rate (Cross Validation: 25-Folds – Heavy Traffic)

According to the performance measure TP rate for class label: Heavy Traffic it was

found that the highest true positive rate was of the classifiers Logistic, MultiClass

Classifier, Random Forest and Random Tree with value 1.0, followed by 0.940, 0.925

and 0.910 of Bayes Net, IBK and KStar respectively whereas the lowest TP rate was

found to be of the SMO with value 0.582 respectively.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000
0.940

0.761

1.000

0.582

0.925 0.910
1.000 1.000 1.000

TP Rate

159

Figure 5.37 : FP Rate (Cross Validation: 25-Folds – Heavy Traffic)

Based on the performance measure FP rate for class label: Heavy Traffic it was found

that the lowest false positive rate were of the classifiers Bayes Net, SMO, Random

Forest and Random Tree with value 0.00, followed by 0.001 of Logistic and MultiClass

Classifier whereas the highest FP rate was found to be of the classifiers IBK and KStar

with value 0.008 respectively. Overall, it can be interpreted the most appropriate

classifier based on the performance measure FP rate is found to be Bayes Net, SMO,

Random Forest and Random Tree with lowest FP rate value.

Figure 5.38: Precision (Cross Validation: 25-Folds – Heavy Traffic)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.000

0.005

0.001

0.000

0.008 0.008

0.001

0.000 0.000

FP Rate

0.840

0.860

0.880

0.900

0.920

0.940

0.960

0.980

1.000

1.000

0.911

0.985
1.000

0.899 0.897

0.985
1.000 1.000

Precision

160

According to the performance measure precision class label: Heavy Traffic it was found

that the highest precision value was of the classifiers Bayes Net, SMO, Random Forest

and Random Tree with value 1.0, followed by 0.985 of Logistic and MultiClass

Classifier respectively whereas the lowest precision values were found to be of the

classifiers IBK and KStar with values 0.899 and 0.897 respectively.

Figure 5.39: Recall (Cross Validation: 25-Folds – Heavy Traffic)

Based on the performance measure recall class label: Heavy Traffic it was found that

the highest recall value was of the classifiers Logistic, MultiClass Classifier, Random

Forest and Random Tree with value 1.0, followed by 0.940 ,0.925 and 0.910 of Bayes

Net, IBK and KStar respectively whereas the lowest recall value was found to be of the

classifier SMO with value 0.582 respectively.

Figure 5.40: F-Measure (Cross Validation: 25-Folds – Heavy Traffic)

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

0.940

0.761

1.000

0.582

0.925 0.910
1.000 1.000 1.000

Recall

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

0.969

0.829

0.993

0.736

0.912 0.904
0.993 1.000 1.000

F-Measure

161

According to the performance measure F-Measure class label: Heavy Traffic it was

found that the highest F-Measure value was of the classifier Random Forest and

Random Tree with value 1.0, followed by 0.993 and 0.969 of Logistic, MultiClass

Classifier and Bayes Net respectively whereas the lowest F-Measure value was found

to be of the classifier SMO with value 0.736. Overall, it can be interpreted that the most

appropriate classifier based on the performance measure F-Measure is found to be

Random Forest and Random Tree.

Figure 5.41: ROC Area (Cross Validation: 25-Folds – Heavy Traffic)

Based on the performance measure ROC class label: Heavy Traffic it was found that

the highest ROC Area value was of the classifiers Bayes Net, Logistic, MultiClass

Classifier, Random Forest and Random Tree with value 1.0, followed by 0.997, 0.990

and 0.959 of KStar, Naïve Bayes and IBK respectively whereas the lowest ROC Area

value was found to be of the classifier SMO with value 0.791 respectively. Overall, it

can be interpreted the most appropriate classifiers based on the performance measure

ROC Area are found to be Five Algorithms.

In conclusion the 25 fold Cross validation not only increases the reliability of model

but also gives insights of model and explains how model behave under different

conditions. More number of folds trains model more accurately to face real life

applications and also diminishes the chances of overfitting and underfitting. More

number of folds also increases model effectiveness and gives superior model

performance, paving the way for more trustworthy and impactful model for real life

applications.

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

1.000 0.990 1.000

0.791

0.959 0.997 1.000 1.000 1.000

ROC Area

162

B. Error Measure Results

Table 5.9: Classifiers and Error Measures (Cross Validation: 25-Folds)

Classifier
Mean

absolute

error

Root

mean

squared

error

Relative

absolute

error

Root

relative

squared

error

Bayes Net 0.005 0.050 3.89% 20.08%

Naïve Bayes 0.026 0.134 20.28% 53.62%

Logistic 0.001 0.032 91.68% 12.75%

SMO 0.028 0.167 22.26% 66.92%

IBk 0.013 0.109 10.34% 43.77%

KStar 0.016 0.094 12.63% 37.59%

MultiClass

Classifier
0.001 0.032 0.92% 12.73%

Random Forest 0.001 0.008 0.77% 3.08%

RandomTree 0.000 0.000 0.00% 0.00%

Figure 5.42: Mean Absolute Error (Cross-Validation: 25 Folds)

The mean absolute error is found to be lowest in case of Random Tree with the value

0.000 Whereas the mean absolute error value of SMO is found to be highest with value

0 .028. So, it can be interpreted that based on the measure Mean absolute Error the most

appropriate algorithm is found to be Random Tree at configuration setting – 25-fold

cross validation.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.005

0.026

0.001

0.028

0.013
0.016

0.001 0.001 0.000

Mean absolute error

163

Figure 5.43: Root Mean Squared Error (Cross-Validation: 25 Folds)

The root mean squared error value is found to be highest in case of SM0 with the value

of 0 .167 whereas the lowest value is found to be of Random Tree with value 0.000. So,

it can be interpreted that based on the measure RMSE the most appropriate algorithm

is found to be Random Tree at configuration setting – 25-fold cross validation.

Figure 5.44: Relative Absolute Error (Cross Validation: 25-Folds)

Accordingly, the relative absolute error value is found to be lowest in case of Random

Tree classifier with 0.00% whereas the highest relative absolute error percentage value

is found to be in case of Logistic with 91.68%. So, it can be suggested that based on the

measure Relative Absolute Error the most appropriate algorithm is found to be Random

Tree with lowest value when evaluated at configuration setting – 25-fold cross

validation.

0.000
0.020
0.040
0.060
0.080
0.100
0.120
0.140
0.160
0.180

0.050

0.134

0.032

0.167

0.109
0.094

0.032

0.008 0.000

Root mean squared error

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

3.89%

20.28%

91.68%

22.26%
10.34% 12.63%

0.92% 0.77% 0.00%

Relative absolute error

164

Figure 5.45: Root Relative Squared Error (Cross Validation: 25-Folds)

The root relative squared error value is found to be lowest in case of Random Tree

classifier with 0.00% whereas the root relative squared error percentage value is found

to be highest in case of SMO with percentage value of 66.92%. So, it can be interpreted

that based on the measure RRSE the most appropriate algorithm is found to be Random

Tree with lowest percentage value when evaluated at configuration setting – 25-fold

cross validation.

In summary, it is important to understand error measures in Machine learning for

assessing the performance of model properly and making informed decisions. The

choice of specific metrics depends on the nature of the problem, characteristics of the

dataset, and goals of the analysis.

C. Execution Time Results

The execution time of a machine learning algorithm refers to the time it takes for the

algorithm to process and analyse input data, train the model (if applicable), and produce

predictions or results. Execution time is an important factor when evaluating the

efficiency and scalability of machine learning algorithms, especially when dealing with

large data sets and real-time applications. The Average Execution Time of Nine

Classifier Algorithm for Cross Validation 25 fold is given below.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

20.08%

53.62%

12.75%

66.92%

43.77%
37.59%

12.73%

3.08% 0.00%

Root relative squared error

165

 Table 5.10: Classifiers and Average Execution Time (Cross Validation: 25-Folds)

Classifier
Average

Execution Time

(Seconds)

Bayes Net 0.03

Naïve Bayes 0.01

Logistic 0.04

SMO 0.09

IBk 0

KStar 0

MultiClass

Classifier
0

Random

Forest
0.04

RandomTree 0

Figure 5.46 : Average Execution Time (Cross Validation: 25-Folds)

According to the performance measure average execution time it was found that the

lowest average execution time were of the classifiers IBK, KStar, MultiClass Classifier

and Random Tree with values 0.0 each whereas the highest average execution time was

found to be of the classifier SMO with values 0.09 respectively. Overall, it can be

interpreted that the most appropriate classifiers based on the performance measure

average execution time are found to be IBK, KStar, MultiClass Classifier and Random

Tree.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.03

0.01

0.04

0.09

0 0 0

0.04

0

Average Execution Time (Seconds)

166

5.3.5 Cross-Validation: Configuration Setting (30% Split) Results

In the context of cross-validation, the "30% Split" configuration setting typically refers

to a technique called "holdout validation" or "simple validation." It involves splitting

the dataset into two portions: one for training the machine learning model and another

for testing its performance. Here 70% of Data set is used for training the machine

learning model and 30% is used for testing the Model. Testing is basically used to

evaluate the model based on various metrics. Confusion Matrix can be used to evaluate

the final performance of the Selected Machine learning models.

Figure 5.47 : Data Set Split

As shown in the Figure 5.47 the entire data set is randomly partitioned into Training set

and Testing set. Since The data set is split into only two set, therefore it is constructed

very fast on training data and executed for testing very fast. Following credentials are

used for Data Analysis.

Dataset: Udaipur_Traffic Source: TOMTOM Server

Date: October 2023 Duration: One Month

Number of Instances: 1000

Number of Attributes (After Feature Extraction and Selection): 7

 Training Testing

 70% of Data Set 30% of Data Set

167

A. Performance Measures

i. Accuracy Measures

Table 5.11: Classifiers and Accuracy Measures (Cross-Validation:30% Split)

Classifier Accuracy
Incorrectly

Classified

Instances

Kappa

Statistic

Bayes Net 100% 0.00% 0.010

Naïve Bayes 97.57% 2.43% 0.008

Logistic 98.71% 1.28% 0.009

SMO 96.71% 3.29% 0.707

IBk 98.43% 1.57% 0.881

KStar 97.57% 2.43% 0.797

MultiClass

Classifier
98.71% 1.29% 0.900

Random

Forest
100.00% 0.00% 1.000

RandomTree 99.14% 0.86% 0.935

Figure 5.48 : Performance Measure Accuracy (Cross-Validation: 30% Split)

Based on the performance measure accuracy it can be interpreted that Bayes Net and

Random Forest classifiers were the most appropriate one as they were having the

highest accuracy value of 100% whereas classifier SMO was having the lowest value

of accuracy 96.71% respectively.

95%
96%
96%
97%
97%
98%
98%
99%
99%

100%
100%

100%

97.57%

98.71%

96.71%

98.43%

97.57%

98.71%

100.00%

99.14%

Accuracy

168

Figure 5.49: Incorrectly Classified Instances (Cross-Validation: 30% Split)

According to the performance measure incorrectly classified instances it can be

interpreted that Bayes Net and Random Forest classifier were the most appropriate one

as they were having the lowest number of incorrectly classified instances accounting

for 0% whereas classifier SMO classifier was having the highest number of incorrectly

classifies instances accounting as 3.29% respectively.

Figure 5.50: Kappa Statistic (Cross-Validation: 30% Split)

The provided data consists of a set of Kappa statistic values, which are used to assess

the agreement or consistency between classifiers in different situations. These Kappa

values range from 0.008 to 1.000, indicating varying levels of agreement. The highest

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

0.00%

2.43%

1.28%

3.29%

1.57%

2.43%

1.29%

0.00%

0.86%

Incorrectly Classified Instances

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

0.010 0.008 0.009

0.707

0.881
0.797

0.900
1.000

0.935

Kappa statistic

169

Kappa value, 1.000, suggests a very good level of agreement between the classifiers in

that particular scenario, while the lowest value, 0.008, falls into the poor agreement

range.

ii. Confusion Matrix Parameters – Low Traffic

Machine learning often requires a limited amount of data when dealing with low-traffic

scenarios. In such cases, the challenge is to create a robust model despite data

limitations. Data Augmentation techniques are used to artificially increase the size of

data set which can be helpful especially in low traffic scenarios.

Table 5.12: Classifiers Performance Measures Class Label: Low Traffic:

Cross Validation: 30% Split

Classifier TP Rate FP Rate Precision Recall
F-

Measure

ROC

Area

Bayes Net 1.000 0.000 1.000 1.000 1.000 1.000

Naïve Bayes 0.997 0.283 0.977 0.997 0.987 0.990

Logistic 1.000 0.170 0.986 1.000 0.993 0.990

SMO 1.000 0.434 0.966 1.000 0.983 0.783

IBk 0.997 0.170 0.986 0.997 0.992 0.914

KStar 1.000 0.321 0.974 1.000 0.987 0.997

MultiClass

Classifier
1.000 0.170 0.986 1.000 0.993 0.990

Random

Forest
1.000 0.000 1.000 1.000 1.000 1.000

RandomTree 1.000 0.113 0.991 1.000 0.995 0.943

Figure 5.51: TP Rate (Cross-Validation: 30% Split)

0.996
0.996
0.997
0.997
0.998
0.998
0.999
0.999
1.000
1.000

1.000

0.997

1.000 1.000

0.997

1.000 1.000 1.000 1.000

TP Rate

170

According to the performance measure TP rate it was found that the highest true

positive rate was of the classifiers Bayes Net, Logistic, SMO, KStar, MultiClass

Classifier, Random Forest and Random Tree with value 1.0, whereas the lowest TP rate

was found to be of the classifiers Naïve Bayes and IBK with values 0.997 respectively.

Overall, it can be interpreted that the most appropriate classifier based on the

performance measure TP rate are seven Algorithms.

Figure 5.52: FP Rate (Cross-Validation: 30% Split)

Based on the performance measure FP rate it was found that the lowest false positive

rate was of the classifiers Bayes Net and Random Forest with value 0.000, whereas the

highest FP rate was found to be of the classifier SMO with value 0.434 respectively.

Overall, it can be interpreted that the most appropriate classifier based on the

performance measure FP rate is found to be Bayes Net and Random Forest with lowest

FP rate value.

Figure 5.53: Precision (Cross-Validation: 30% Split)

0.000
0.100
0.200
0.300
0.400
0.500

0.000

0.283

0.170

0.434

0.170

0.321

0.170

0.000

0.113

FP Rate

0.940

0.950

0.960

0.970

0.980

0.990

1.000

1.000

0.977
0.986

0.966

0.986

0.974

0.986

1.000
0.991

Precision

171

According to the performance measure precision it was found that the highest precision

value was of the classifier Bayes Net and Random Forest with value 1.0, followed by

0.991 of Random Tree respectively whereas the lowest precision value was found to be

of the classifiers SMO with values 0.966 respectively. Overall, it can be interpreted that

the most appropriate classifier based on the performance measure precision is found to

be the Bayes Net and Random Forest.

Figure 5.54: Recall (Cross-Validation: 30% Split)

Based on the performance measure recall it was found that the highest recall value was

of the classifiers Bayes Net, Logistic, SMO, KStar, MultiClass Classifier, Random

Forest and Random Tree with value 1.0, whereas the lowest recall value was found to

be of the classifiers Naïve Bayes and IBK with values 0.997 respectively. Overall, it

can be interpreted that the most appropriate classifier based on the performance

measure recall is found to be Seven Algorithms.

Figure 5.55: F-Measure (Cross-Validation: 30% Split)

0.996
0.996
0.997
0.997
0.998
0.998
0.999
0.999
1.000
1.000

1.000

0.997

1.000 1.000

0.997

1.000 1.000 1.000 1.000

Recall

0.970
0.975
0.980
0.985
0.990
0.995
1.000

1.000

0.987
0.993

0.983

0.992
0.987

0.993

1.000
0.995

F-Measure

172

According to the performance measure F-Measure it was found that the highest F-

Measure value was of the classifiers Bayes Net and Random Forest with value 1.00,

followed by 0.995 of Random Tree respectively whereas the lowest F-Measure value

was found to be of the classifiers SMO classifier with values 0.983 respectively.

Overall, it can be interpreted that the most appropriate classifier based on the

performance measure F-Measure is found to be Bayes Net and Random Forest.

Figure 5.56 : ROC Area (Cross-Validation: 30% Split)

Based on the performance measure ROC it was found that the highest ROC Area value

was of the classifiers Bayes Net and Random Forest with value 1.0, followed by 0.997

of KStar respectively whereas the lowest ROC Area value was found to be of the

classifiers SMO with values 0.783 respectively. Overall, it can be interpreted the most

appropriate classifier based on the performance measure ROC Area is found to be

Bayes Net and Random Forest.

In summary, performance measurements play a critical role in evaluating the

effectiveness of machine learning algorithms, providing insight into their ability to

make accurate predictions and transform appropriately to new, unseen data. Choosing

the most appropriate metric depends on the nature of your problem, the characteristics

of your data, and your analysis goals.

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

1.000 0.990 0.990

0.783

0.914
0.997 0.990 1.000

0.943

ROC Area

173

iii. Confusion Matrix Parameters – Heavy Traffic

Heavy Traffic generates huge amounts of data from the various IOT sensors. These data

sets can be used by Machine Learning Algorithms to develop prediction models. Table

5.13 shows the Confusion Matrix parameters TP Rate, FP Rate, Precision, Recall, F-

Measure and ROC Area obtained for Heavy Traffic conditions.

Table 5.13: Classifiers Performance Measure Class Label: Heavy Traffic:

Cross Validation: 30% Split

Classifier
TP

Rate

FP

Rate
Precision Recall

F-

Measure

ROC

Area

Bayes Net 1.000 0.000 1.000 1.000 1.000 1.000

Naïve Bayes 0.717 0.003 0.950 0.717 0.817 0.990

Logistic 0.830 0.000 1.000 0.830 0.907 0.999

SMO 0.566 0.000 1.000 0.566 0.723 0.783

IBk 0.830 0.003 0.957 0.830 0.889 0.914

KStar 0.679 0.000 1.000 0.679 0.809 0.097

MultiClass

Classifier
0.830 0.000 1.000 0.830 0.907 0.999

Random

Forest
1.000 0.000 1.000 1.000 1.000 1.000

RandomTree 0.887 0.000 1.000 0.887 0.940 0.943

Figure 5.57: TP Rate (Cross-Validation: 30% Split)

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

1.000

0.717

0.830

0.566

0.830

0.679

0.830

1.000

0.887

TP Rate

174

According to the performance measure TP rate for class label: Heavy Traffic it was

found that the highest true positive rates were of the classifier Bayes Net and Random

Forest with value 1.0, followed by 0.887 of Random Tree respectively whereas the

lowest TP rate was found to be of the classifiers SMO with value 0.566 respectively.

Overall, it can be interpreted that the most appropriate classifier based on the

performance measure TP rate is Bayes Net and Random Forest.

Figure 5.58: FP Rate (Cross-Validation: 30% Split)

Based on the performance measure FP rate for class label: Heavy Traffic it was found

that the lowest false positive rates were of the classifier Bayes Net, Logistic, SMO,

KStar, MultiClass Classifier, Random Forest, and Random Tree with value 0.00 each,

whereas the highest FP rate was found to be of the classifiers Naïve Bayes and IBK

with values 0.003.

Figure 5.59 : Precision (Cross-Validation: 30% Split)

0.000

0.001

0.001

0.002

0.002

0.003

0.003

0.000

0.003

0.000 0.000

0.003

0.000 0.000 0.000 0.000

FP Rate

0.920
0.930
0.940
0.950
0.960
0.970
0.980
0.990
1.000

1.000

0.950

1.000 1.000

0.957

1.000 1.000 1.000 1.000

Precision

175

According to the performance measure precision class label: Heavy Traffic it was found

that the highest precision value was of the classifiers Bayes Net, Logistic, SMO, KStar,

MultiClass Classifier, Random Forest, and Random Tree with value 1.0, whereas the

lowest precision value was found to be of the classifiers Naïve Bayes with value 0.950

respectively. Overall, it can be interpreted that the most appropriate classifier based on

the performance measure precision is found to be Seven Algorithms.

Figure 5.60: Recall (Cross-Validation: 30% Split)

Based on the performance measure recall class label: Heavy Traffic it was found that

the highest recall value was of the classifiers Bayes Net and Random Forest with value

1.0, followed by 0.887 of Random Tree respectively whereas the lowest recall value

was found to be of the classifiers SMO with value 0.566 respectively. Overall, it can be

interpreted that the most appropriate classifier based on the performance measure recall

is found to be Bayes Net and Random Forest.

Figure 5.61: F-Measure (Cross-Validation: 30% Split)

0.000

0.200

0.400

0.600

0.800

1.000

1.000

0.717
0.830

0.566

0.830
0.679

0.830

1.000
0.887

Recall

0.000

0.200

0.400

0.600

0.800

1.000

1.000

0.817
0.907

0.723
0.889

0.809
0.907

1.000 0.940

F-Measure

176

According to the performance measure F-Measure class label: Heavy Traffic it was

found that the highest F-Measure value was of the classifiers Bayes Net and Random

Forest with value 1.0, followed by 0.940 of Random Tree respectively whereas the

lowest F-Measure value was found to be of the classifier SMO classifier with value

0.723 respectively. Overall, it can be interpreted that the most appropriate classifier

based on the performance measure F-Measure is found to be Bayes Net and Random

Forest.

Figure 5.62: ROC Area (Cross-Validation: 30% Split)

Based on the performance measure ROC class label: Heavy Traffic it was found that

the highest ROC Area values were of the classifiers Bayes Net and Random Forest with

value 1.00, followed by 0.999 of Logistic and MultiClass Classifier respectively

whereas the lowest ROC Area value was found to be of the classifier KStar with value

0.097 respectively. Overall, it can be interpreted the most appropriate classifier based

on the performance measure ROC Area are found to be Bayes Net and Random Forest.

In conclusion the 30% split Cross validation not only increases the reliability of model

but also gives insights of model and explains how model behave under different

conditions. Sometimes 80:20 model is also used to face real life applications where

80% data is used for Training the model and 20% data is used for testing the model.

More percentage data for training also increases model effectiveness and gives superior

model performance, paving the way for more trustworthy and impactful model for real

life applications.

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

1.000 0.990 0.999

0.783

0.914

0.097

0.999 1.000
0.943

ROC Area

177

B. Error Measure Results

Table 5.14: Classifiers and Error Measures (Cross Validation: 30% Split)

Classifier
Mean

absolute

error

Root

mean

squared

error

Relative

absolute

error

Root

relative

squared

error

Bayes Net 0.008 0.054 7.50% 20.50%

Naïve Bayes 0.024 0.144 20.34% 54.31%

Logistic 0.013 0.113 10.86% 42.35%

SMO 0.033 0.181 27.88% 68.19%

IBk 0.019 0.125 16.05% 47.02%

KStar 0.025 0.131 21.48% 49.39%

MultiClass

Classifier
0.013 0.113 10.86% 42.35%

Random

Forest
0.005 0.025 4.30% 9.54%

RandomTree 0.009 0.093 7.27% 34.83%

Figure 5.63: Mean Absolute Error (Cross-Validation: 30% Split)

The mean absolute error is found to be lowest in the case of Random Forest with the

value 0.005 Whereas the mean absolute error value of SMO is found to be highest with

value 0.033.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.008

0.024

0.013

0.033

0.019

0.025

0.013

0.005
0.009

Mean absolute error

178

Figure 5.64: Root Mean Squared Error (Cross-Validation: 30% Split)

The root mean squared error value is found to be highest in case of SMO classifier with

the value of 0.181 respectively whereas the lowest value is found to be of Random

Forest with value 0.025. So, it can be interpreted that based on the measure RMSE the

most appropriate algorithm is found to be Random Forest at configuration setting –

30% Split Method.

Figure 5.65: Relative Absolute Error (Cross-Validation: 30% Split)

Accordingly, the relative absolute error value is found to be lowest in case of Random

Forest classifier with 4.30% whereas the highest relative absolute error percentage

0.000
0.020
0.040
0.060
0.080
0.100
0.120
0.140
0.160
0.180
0.200

0.054

0.144

0.113

0.181

0.125 0.131
0.113

0.025

0.093

Root mean squared error

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

7.50%

20.34%

10.86%

27.88%

16.05%

21.48%

10.86%

4.30%
7.27%

Relative absolute error

179

value is found to be in case of SMO with percentage value 27.88% respectively. Based

on the measure RAE the most appropriate algorithm is found to be Random Forest.

Figure 5.66: Root Relative Square Error (Cross-Validation: 30% Split)

The root relative squared error value is found to be lowest in case of Random Forest

classifier with 9.54% whereas the root relative squared error percentage value is found

to be highest in case of SMO with percentage value of 68.19%. So, it can be interpreted

that based on the measure RRSE the most appropriate algorithm is found to be Random

Forest with lowest percentage value when evaluated at configuration setting – 30%

Split cross validation.

In summary, it is important to understand error measures in Machine learning for

assessing the performance of model properly and making informed decisions. The

choice of specific metrics depends on the nature of the problem, characteristics of the

dataset, and goals of the analysis.

C. Execution Time Results

The execution time of a machine learning algorithm refers to the time it takes for the

algorithm to process and analyse input data, train the model (if applicable), and produce

predictions or results. Execution time is an important factor when evaluating the

efficiency and scalability of machine learning algorithms, especially when dealing with

large data sets and real-time applications. The Average Execution Time of Nine

Classifier Algorithm for Cross Validation 30% split is given below.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

20.50%

54.31%

42.35%

68.19%

47.02% 49.39%
42.35%

9.54%

34.83%

Root relative squared error

180

Table 5.15: Classifiers and Average Execution Time (Cross Validation: 30% Split)

Classifier
Average

Execution Time

(Seconds)

Bayes Net 0.02

Naïve Bayes 0.02

Logistic 0

SMO 0

IBk 0.02

KStar 0.14

MultiClass

Classifier
0.02

Random Forest 0.01

Random Tree 0

Figure 5.67: Average Execution Time (Cross-Validation: 30% Split)

According to the performance measure average execution time it was found that the

lowest average execution time were of the classifiers Logistic, SMO and Random Tree

with values 0.00 each whereas the highest average execution time was found to be of

the classifier KStar classifier with value 0.14 respectively. Overall, it can be interpreted

that the most appropriate classifiers based on the performance measure average

execution time are found to be Logistic, SMO and Random Tree.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.02 0.02

0 0

0.02

0.14

0.02
0.01

0

Average Execution Time (Seconds)

181

5.3.6 Consolidated Result

Nine Machine Learning Algorithms are Analyzed using Cross – Validation of 10-Fold,

25-Fold and 30% split on various Performance Accuracy Measures, Confusion Matrix

Parameters and Error Measures in two different conditions “Low Traffic” and “Heavy

Traffic”. Summary of 10 – Fold, 25 – Fold and 30% split is shown below in 3D plots.

A. Performance Measures

i. Accuracy Measures

Figure 5.68: Accuracy (Cross-Validation: 10-Fold, 25-Fold and 30% Split)

From above three-Dimensional plot it is clear that the maximum average Accuracy

score for Random Forest is 100% therefore it is concluded that Random Forest is best

algorithms for getting best Accuracy using Cross – Validation of 10-Fold, 25-Fold and

30% Split.

Figure 5.69: Incorrectly Classified Instances (10-Fold, 25-Fold and 30% Split)

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 99.60% 97.90% 99.70% 97.20% 98.70% 98.80% 99.70% 100.00% 100.00%

25 Fold 99.60% 97.90% 99.10% 97.20% 98.80% 98.70% 99.10% 100.00% 100.00%

30% Split 100% 97.57% 98.71% 96.71% 98.43% 97.57% 98.71% 100.00% 99.14%

Accuracy

0.00%

1.00%

2.00%

3.00%

4.00%

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 0.40% 2.10% 0.30% 2.80% 1.30% 1.20% 0.30% 0.00% 0.00%

25 Fold 0.40% 2.10% 0.10% 2.80% 1.20% 1.30% 0.10% 0.00% 0.00%

30% Split 0.00% 2.43% 1.28% 3.29% 1.57% 2.43% 1.29% 0.00% 0.86%

Incorrectly Classified Instances

182

From above three-Dimensional plot it is clear that the minimum average incorrectly

Classified Instance score for Random Forest is 0% therefore it is concluded that

Random Forest is best algorithms for getting best Incorrectly Classified Instances using

Cross – Validation of 10-Fold, 25-Fold and 30% Split.

Figure 5.70: Kappa Statistics (Cross-Validation: 10-Fold, 25-Fold and 30% Split)

From above three-Dimensional plot it is clear that the maximum average Kappa

Statistics score for Random Forest is 1.0% therefore it is concluded that Random Forest

is best algorithms for getting best Kappa Statistics using Cross – Validation of 10-Fold,

25-Fold and 30% Split.

ii. Confusion Matrix Parameters – Low Traffic

Figure 5.71: TP Rate (Cross-Validation: 10-Fold, 25-Fold and 30% Split)

0.000

0.200

0.400

0.600

0.800

1.000

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 0.967 0.815 0.976 0.722 0.898 0.905 0.976 1.000 1.000

25 Fold 0.967 0.818 0.992 0.722 0.905 0.897 0.992 1.000 1.000

30% Split 0.010 0.008 0.009 0.707 0.881 0.797 0.900 1.000 0.935

Kappa Statistics

0.985

0.990

0.995

1.000

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Rando
m

Forest

Rando
m Tree

10 Fold 1.000 0.996 0.999 1.000 0.991 0.992 0.999 1.000 1.000

25 Fold 1.000 0.995 0.999 1.000 0.992 0.992 0.999 1.000 1.000

30% Split 1.000 0.997 1.000 1.000 0.997 1.000 1.000 1.000 1.000

TP Rate

183

From above three-Dimensional plot it is clear that the maximum average score for

Bayes Net, SMO, Random Forest and Random Tree is 1.0 therefore it is concluded that

Bayes Net, SMO, Random Forest and Random Tree are best algorithms for getting best

True Positive Rate using Cross – Validation of 10-Fold, 25-Fold and 30% Split in Low

Traffic Conditions.

Figure 5.72: FP Rate (Cross-Validation: 10-Fold, 25-Fold and 30% Split)

From above three-Dimensional plot it is clear that the minimum average score for

Random Forest and Random Tree is 0.0, therefore it is concluded that Random Forest

and Random Tree are the best algorithms for getting best False Positive Rate using

Cross – Validation of 10-Fold, 25-Fold and 30% Split in Low Traffic Conditions.

Figure 5.73: Precision (Cross-Validation: 10-Fold, 25-Fold and 30% Split)

0.000

0.100

0.200

0.300

0.400

0.500

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 0.060 0.254 0.03 0.418 0.075 0.075 0.030 0.000 0.000

25 Fold 0.060 0.239 0.000 0.418 0.075 0.090 0.000 0.000 0.000

30% Split 0.000 0.003 0.000 0.000 0.003 0.000 0.000 0.000 0.000

FP Rate

0.920

0.940

0.960

0.980

1.000

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 0.996 0.982 0.998 0.971 0.995 0.995 0.998 1.000 1.000

25 Fold 0.996 0.983 1.000 0.971 0.995 0.994 1.000 1.000 1.000

30% Split 1.000 0.950 1.000 1.000 0.957 1.000 1.000 1.000 1.000

Precision

184

From above three Dimensional plot it is clear that the maximum average score for

Random Forest and Random Tree is 1.0, therefore it is concluded that Random Forest

and Random Tree are the best algorithms for getting best Precision using Cross –

Validation of 10-Fold, 25-Fold and 30% Split in Low Traffic Conditions.

Figure 5.74: Recall (Cross-Validation: 10-Fold, 25-Fold and 30% Split)

From above three-Dimensional plot it is clear that the maximum average score for

Bayes Net and Random Forest is 1.0 therefore it is concluded that Bayes Net and

Random Forest are the best algorithms for getting best Recall using Cross – Validation

of 10-Fold, 25-Fold and 30% Split in Low Traffic Conditions.

Figure 5.75: F Measure (Cross-Validation: 10-Fold, 25-Fold and 30% Split)

0.000

0.200

0.400

0.600

0.800

1.000

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 1.000 0.996 0.999 1.000 0.991 0.992 0.999 1.000 1.000

25 Fold 1.000 0.995 0.999 1.000 0.992 0.992 0.999 1.000 1.000

30% Split 1.000 0.717 0.830 0.566 0.830 0.679 0.830 1.000 0.887

Recall

0.000

0.200

0.400

0.600

0.800

1.000

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 0.998 0.989 0.998 0.985 0.993 0.994 0.998 1.000 1.000

25 Fold 0.998 0.989 0.999 0.985 0.994 0.993 0.999 1.000 1.000

30% Split 1.000 0.817 0.907 0.723 0.889 0.809 0.907 1.000 0.940

F Measure

185

From above three Dimensional plot it is clear that the maximum average score for

Random Forest is 1.0, therefore it is concluded that Random Forest is the best

algorithms for getting best F Measure using Cross – Validation of 10-Fold, 25-Fold and

30% Split

Figure 5.76: ROC Area (Cross-Validation: 10-Fold, 25-Fold and 30% Split)

From above three-Dimensional plot it is clear that the maximum average score for

Bayes Net and Random Forest is 1.0 therefore it is concluded that Bayes Net and

Random Forest are the best algorithms for getting best ROC Area using Cross –

Validation of 10-Fold, 25-Fold and 30% Split in Low Traffic Conditions.

iii. Confusion Matrix Parameters – Heavy Traffic

Figure 5.77: TP Rate (Cross-Validation: 10-Fold, 25-Fold and 30% Split)

0.000

0.200

0.400

0.600

0.800

1.000

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 0.940 0.746 0.970 0.582 0.925 0.925 0.970 1.000 1.000

25 Fold 0.940 0.761 1.000 0.582 0.925 0.910 1.000 1.000 1.000

30% Split 1.000 0.717 0.830 0.566 0.830 0.679 0.830 1.000 0.887

TP Rate

0.000

0.200

0.400

0.600

0.800

1.000

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 1.000 0.988 1.000 0.791 0.958 0.997 1.000 1.000 1.000

25 Fold 1.000 0.990 1.000 0.791 0.959 0.997 1.000 1.000 1.000

30% Split 1.000 0.990 0.999 0.783 0.914 0.097 0.999 1.000 0.943

ROC Area

186

From above three Dimensional plot it is clear that the maximum average TP Rate score

for Random Forest is 1.0, therefore it is concluded that Random Forest is the best

algorithms for getting best TP Rate using Cross – Validation of 10-Fold, 25-Fold and

30% Split in heavy traffic conditions.

Figure 5.78: FP Rate (Cross-Validation: 10-Fold, 25-Fold and 30% Split)

From above three-Dimensional plot it is clear that the minimum average FP Rate score

for Bayes Net, SMO, Random Forest and Random Tree is 0.0, therefore it is concluded

that Bayes Net, SMO, Random Forest and Random Tree are the best algorithms for

getting best False Positive Rate using Cross – Validation of 10-Fold, 25-Fold and 30%

Split in Heavy Traffic Conditions.

Figure 5.79: Precision (Cross-Validation: 10-Fold, 25-Fold and 30% Split)

0.800

0.850

0.900

0.950

1.000

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 1.000 0.926 0.985 1.000 0.886 0.899 0.985 1.000 1.000

25 Fold 1.000 0.911 0.985 1.000 0.899 0.897 0.985 1.000 1.000

30% Split 1.000 0.950 1.000 1.000 0.957 1.000 1.000 1.000 1.000

Precision

0.000

0.002

0.004

0.006

0.008

0.010

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 0.000 0.004 0.001 0.000 0.009 0.008 0.001 0.000 0.000

25 Fold 0.000 0.005 0.001 0.000 0.008 0.008 0.001 0.000 0.000

30% Split 0.000 0.003 0.000 0.000 0.003 0.000 0.000 0.000 0.000

FP Rate

187

From above three-Dimensional plot it is clear that the maximum average Precision

score for Bayes Net, SMO, Random Forest and Random Tree is 1.0, therefore it is

concluded that Bayes Net, SMO, Random Forest and Random Tree are the best

algorithms for getting best Precision using Cross – Validation of 10-Fold, 25-Fold and

30% Split in Heavy Traffic Conditions.

Figure 5.80: Recall (Cross-Validation: 10-Fold, 25-Fold and 30% Split)

From above three-Dimensional plot the maximum average Recall score for Random

Forest is 1.0, therefore it is concluded that Random Forest is the best algorithm for

getting best Recall using Cross – Validation of 10-Fold, 25-Fold and 30% Split in

Heavy Traffic Conditions.

Figure 5.81: F Measure (Cross-Validation: 10-Fold, 25-Fold and 30% Split)

0.000

0.200

0.400

0.600

0.800

1.000

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 0.940 0.746 0.970 0.582 0.925 0.925 0.970 1.000 1.000

25 Fold 0.940 0.761 1.000 0.582 0.925 0.910 1.000 1.000 1.000

30% Split 1.000 0.717 0.830 0.566 0.830 0.679 0.830 1.000 0.887

Recall

0.000

0.200

0.400

0.600

0.800

1.000

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 0.969 0.826 0.977 0.736 0.905 0.912 0.977 1.000 1.000

25 Fold 0.969 0.829 0.993 0.736 0.912 0.904 0.993 1.000 1.000

30% Split 1.000 0.817 0.907 0.723 0.889 0.809 0.907 1.000 0.940

F Measure

188

From above three Dimensional plot it is clear that the maximum average F Measure

score for Random Forest is 1.0, therefore it is concluded that Random Forest is the best

algorithms for getting best F Measure using Cross – Validation of 10-Fold, 25-Fold and

30% Split in Heavy Traffic Conditions.

Figure 5.82: ROC Area (Cross-Validation: 10-Fold, 25-Fold and 30% Split)

From above three Dimensional plot it is clear that the maximum average ROC Area

score for Bayes Net and Random Forest is 1.0 therefore it is concluded that Bayes Net

and Random Forest are the best algorithms for getting best ROC Area using Cross –

Validation of 10-Fold, 25-Fold and 30% Split in Heavy Traffic Conditions.

B. Error Measure

Figure 5.83: Mean Absolute Error (Cross-Validation: 10-Fold, 25-Fold and 30% Split)

0.000

0.200

0.400

0.600

0.800

1.000

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 1.000 0.988 1.000 0.791 0.958 0.997 1.000 1.000 1.000

25 Fold 1.000 0.990 1.000 0.791 0.959 0.997 1.000 1.000 1.000

30% Split 1.000 0.990 0.999 0.783 0.914 0.097 0.999 1.000 0.943

ROC Area

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 0.005 0.026 0.003 0.028 0.014 0.017 0.003 0.001 0.000

25 Fold 0.005 0.026 0.001 0.028 0.013 0.016 0.001 0.001 0.000

30% Split 0.008 0.024 0.013 0.033 0.019 0.025 0.013 0.005 0.009

Mean Absolute Error

189

From above three Dimensional plot it is clear that the average Mean Absolute Error

score for Random Forest is minimum and it’s value is 0.002 therefore it is concluded

that Random Forest is the best algorithms for getting Minimum Mean Absolute error

using Cross – Validation of 10-Fold, 25-Fold and 30% Split.

Figure 5.84: Root Mean Squared Error (10-Fold, 25-Fold and 30% Split)

From above three Dimensional plot it is clear that the average Root Mean Squared Error

score for Random Forest is minimum and it’s value is 0.013, therefore it is concluded

that Random Forest is the best algorithms for getting Minimum Root Mean Squared

Error using Cross – Validation of 10-Fold, 25-Fold and 30% Split.

Figure 5.85: Relative Absolute Error(Cross-Validation:10-Fold,25-Fold & 30% Split)

0.000

0.050

0.100

0.150

0.200

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 0.044 0.136 0.048 0.167 0.114 0.099 0.048 0.007 0.000

25 Fold 0.050 0.134 0.032 0.167 0.109 0.094 0.032 0.008 0.000

30% Split 0.054 0.144 0.113 0.181 0.125 0.131 0.113 0.025 0.093

Root Mean Squared Error

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 3.55% 20.50% 2.17% 22.25% 11.18% 13.34% 2.17% 0.74% 0.00%

25 Fold 3.89% 20.28% 91.68% 22.26% 10.34% 12.63% 0.92% 0.77% 0.00%

30% Split 7.50% 20.34% 10.86% 27.88% 16.05% 21.48% 10.86% 4.30% 7.27%

Relative Absolute Error

190

From above three Dimensional plot it is clear that the average Relative Absolute Error

score for Random Forest is minimum and it’s value is 1.94%, therefore it is concluded

that Random Forest is the best algorithms for getting Minimum Relative Absolute Error

using Cross – Validation of 10-Fold, 25-Fold and 30% Split.

Figure 5.86: Root Relative Squared Error (10-Fold, 25-Fold and 30% Split)

From above three Dimensional plot it is clear that the average Root Relative Squared

Error score for Random Forest is minimum and it’s value is 5.13%, therefore it is

concluded that Random Forest is the best algorithms for getting Minimum Root

Relative Squared Error using Cross – Validation of 10-Fold, 25-Fold and 30% Split.

C. Execution Time

Execution Time is one of the important parameter which decides the speed at which

algorithm can evaluate and test data sets. It is very important parameter specially when

data sets are too large, which is the prime requirement of any machine learning

algorithm. If the machine learning algorithm is slow and efficient in all other aspects

then cloud computing is the remedy for that. Multitasking in Cloud computing is the

solution for slow Machine learning algorithms. The figure 5.87 shown below compares

the execution time in seconds of Nine machine learning algorithms.

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 17.69% 54.31% 19.31% 66.92% 45.55% 39.53% 19.31% 2.76% 0.00%

25 Fold 20.08% 53.62% 12.75% 66.92% 43.77% 37.59% 12.73% 3.08% 0.00%

30% Split 20.50% 54.31% 42.35% 68.19% 47.02% 49.39% 42.35% 9.54% 34.83%

Root Relative Squared Error

191

Figure 5.87: Execution Time (Cross-Validation: 10-Fold, 25-Fold and 30% Split)

The above figure indicates that Random forest Algorithm Average execution time is

maximum with average value of 0.07seconds. Random forest algorithm excels in all

other parameters except execution time. This drawbacks can be nullified using cloud

computing and parallel computing. The Random Tree is the most efficient and fast

algorithm with average execution time in nano seconds or nearly zero.

5.3.7 Dominance Chart

Table 5.16 shows the Machine learning Algorithm Dominance chart For 10-fold, 25-

fold and 30% split Performance measures. This chart indicates the highest average

marks obtained by the machine learning algorithms. One mark is allotted to the machine

learning algorithm which got highest score in three categories 10-fold, 25-fold and 30%

split. Dominance chart includes twenty parameters from Performance measure,

Confusion matrix (Low Traffic and Heavy Traffic), Error measures and Execution

time in seconds for finding out Total score. The selected algorithm should have highest

marks out of twenty to be the best Machine Learning Algorithm.

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 0.035 0 0.02 0 0 0 0.03 0.16 0

25 Fold 0.03 0.01 0.04 0.09 0 0 0 0.04 0

30% Split 0.02 0.02 0 0 0.02 0.14 0.02 0.01 0

Execution Time

192

Table 5.16 : Machine Learning Algorithms Dominance Chart

Dominance Chart (Cross -Validation 10 Fold, 25 Fold and 30% Split)

Classifiers

Performance Measure
Confusion Matrix Parameters

Low Traffic

Confusion Matrix Parameters

Heavy Traffic

Error Measures

Execution

Time

Total

Score

Accuracy

Incorrectly
Classified
Instances

Kappa
statistic

TP

Rate

FP

Rate
Precision Recall

F-

Measure

ROC

Area

TP

Rate

FP

Rate
Precision Recall

F-

Measure

ROC

Area

Mean
absolute

error

Root
mean

squared
error

Relative
absolute

error

Root
relative
squared

error

Bayes Net 1 1 1 1 1 1 6

Naïve Bayes

Logistic

SMO 1 1 1 3

IBK

K Star

Multi Class

Random

Forest
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19

Random

Tree
 1 1 1 1 1 1 6

193

It is clear from the Table 5.16 that the highest score is obtained by Random Forest

algorithm with total score of 19, followed by Random Tree and Bayes Net with six

marks each. Thus considering Performance measures, Confusion matrix parameters,

Error Measure and Execution Time, it is concluded that the Random Forest is the best

Algorithm for forecasting the traffic flow conditions in smart city.

5.3.8 Weighted Sum Model Analysis Using Python

The Weighted Sum Model is a decision-making approach used to evaluate and rank a

set of alternatives based on multiple criteria. It involves assigning weights to each

criterion and then calculating a weighted sum of the normalized values of each criterion

for each alternative. The alternative with the highest weighted sum is considered the

best choice. The procedure for Weighted Sum Model is listed below.

1. Classifier and Metric Definitions: Begin by defining the list of classifiers or

alternatives you want to evaluate. Each classifier is associated with a set of

metrics (criteria) that measure its performance.

2. Metrics and Weights: Assign weights to each metric (criterion) based on its

importance. These weights reflect the relative significance of each criterion in

the decision-making process. The sum of weights should add up to 1 or 100%

to ensure a meaningful comparison.

3. Normalization: Normalize the metric values for each classifier to a common

scale, often within the range of 0 to 1. This step ensures that metrics with

different units and scales can be compared effectively.

4. Weighted Sum Calculation: For each classifier, calculate the weighted sum of

its normalized metric values. This is done by multiplying each normalized

metric value by its corresponding weight, and then summing up these weighted

values.

5. Best Alternative: Identify the alternative with the highest calculated weighted

sum. This alternative is considered the best choice according to the chosen

criteria and their assigned weights.

6. Decision: The alternative with the highest weighted sum is selected as the best

choice based on the defined criteria and their weights.

194

The Weighted Sum Model is widely used in decision analysis when there are multiple

factors to consider, and each factor carries a different level of importance. It's important

to note that the success of the model heavily depends on the accuracy of the assigned

weights and the relevance of the chosen metrics.

Python Pseudocode:

// Define classifier names

classifiers = ["Classifier 1", "Classifier 2", ...]

// Provided metrics (Replace with your actual metrics)

metrics = [

 [metric_value_1_classifier_1, metric_value_2_classifier_1, ...],

 [metric_value_1_classifier_2, metric_value_2_classifier_2, ...],

 ...

]

// Define weights for each metric (customize these weights)

metric_weights = [weight_metric_1, weight_metric_2, ...]

// Function to normalize metrics to [0, 1] range

function NormalizeMetrics(metrics):

 normalized_metrics = EmptyMatrix()

 for each classifier_metrics in metrics:

 normalized_classifier_metrics = Normalize(classifier_metrics)

 AddToMatrix(normalized_metrics, normalized_classifier_metrics)

 return normalized_metrics

// Function to calculate the weighted sum for each classifier

function CalculateWeightedSums(normalized_metrics, metric_weights):

 weighted_sums = EmptyList()

 for each classifier_metrics in normalized_metrics:

 weighted_sum = CalculateDotProduct(classifier_metrics, metric_weights)

 AppendToList(weighted_sums, weighted_sum)

 return weighted_sums

195

// Function to find the best alternative (index)

function FindBestAlternative(weighted_sums):

 best_alternative_index = IndexOfMax(weighted_sums)

 return best_alternative_index

// Function to print weighted sums

function PrintWeightedSums(classifiers, weighted_sums):

 for i from 0 to length(classifiers) - 1:

 Print(classifiers[i], " - Weighted Sum:", weighted_sums[i])

// Function to print the best alternative

function PrintBestAlternative(best_alternative):

 Print("The best alternative is:", best_alternative)

// Main program

function Main():

 normalized_metrics = NormalizeMetrics(metrics)

 weighted_sums = CalculateWeightedSums(normalized_metrics, metric_weights)

 best_alternative_index = FindBestAlternative(weighted_sums)

 best_alternative = classifiers[best_alternative_index]

 PrintWeightedSums(classifiers, weighted_sums)

 PrintBestAlternative(best_alternative)

// Call the main program

Main()

5.3.8.1 Multi-Criteria Decision Making - Weighted Sum Method

The Weighted Sum Method, a fundamental technique in Multi-Criteria Decision

Making, facilitates decision-makers in evaluating and ranking alternatives by

considering multiple criteria. This approach involves identifying relevant decision

criteria, assigning weights to signify their importance, evaluating each alternative's

performance on these criteria, normalizing scores to ensure comparability, and

calculating a weighted sum for each alternative. The resulting scores enable a

systematic ranking of alternatives, aiding decision-makers in selecting the most suitable

196

option that aligns with their preferences and objectives. This method serves as a

valuable decision support tool across various domains.

i. Evaluation with Cross Validation-10 Folds

Table 5.17 presents a range of classification models assessed by their "Score (Weighted

Sum)," with higher scores indicating superior performance.

Table 5.17: Weighted Sum Score (Cross Validation-10 Folds)

S.No. Classification

Models

Score

(Weighted Sum)

1 Bayes Net 0.801

2 Naïve Bayes 0.722

3 Logistic 0.807

4 SMO 0.660

5 IBk 0.767

6 KStar 0.773

7 MultiClass

Classifier
0.807

8 Random Forest 0.820

9 Random Tree 0.820

The weighed sum-based score suggests that Random Forest and Random Tree has the

highest score of 0.820 followed by Logistic and Multiclass classifier with core 0.807

and Bayes Net with score 0.801. The lowest scores being obtained by the classifiers

KStar, IBK, Naïve Bayes and SMO with values 0.773,0.767,0.722 and 0.660

respectively. Further Rank and Percentile analysis would be executed to obtain the final

rankings.

Figure 5.88: Running MCDM Method in Python Environment

197

5.3.9 Rank and Percentile Method:

Ranking and percentile methods can be applied to arrange classification algorithms in

machine learning based on their performance metrics. Here's how you can use these

methods:

Ranking Method Algorithm:

1. Collect Performance Metrics: Gather performance metrics (e.g., accuracy,

precision, recall, F1 score, ROC AUC) for each classification algorithm. These

metrics are typically computed using cross-validation or other evaluation

techniques.

2. Calculate Ranks: Calculate ranks for each algorithm based on each

performance metric. Assign a rank of 1 to the algorithm with the highest score

for a metric, 2 to the second highest, and so on. In the case of ties, you can use

methods like averaging ranks.

3. Calculate Average Rank: After ranking algorithms for each metric, calculate

the average rank for each algorithm across all the metrics. This average rank

represents the overall ranking for each algorithm.

4. Sort and Present Results: Sort the algorithms based on their average ranks in

ascending order. The algorithm with the lowest average rank is considered the

top performer, while the one with the highest average rank is considered the

lowest performer. You can present these rankings in a table or report.

Percentile Method Algorithm:

1. Collect Performance Metrics: Similar to the ranking method, gather

performance metrics for each classification algorithm.

2. Calculate Percentiles: For each performance metric, calculate the percentile

rank of each algorithm. Percentile rank indicates the percentage of algorithms

that performed worse than a particular algorithm for a given metric.

3. Calculate Average Percentile Rank: After calculating percentiles for each

metric, compute the average percentile rank for each algorithm across all the

metrics. This average percentile rank represents the overall ranking for each

algorithm.

198

4. Sort and Present Results: Sort the algorithms based on their average percentile

ranks in ascending order. Lower average percentile rank indicates better

performance across multiple metrics.

Python Pseudocode : Rank_Classification_Algorithm

Input:

- List of classification algorithms (Algorithms)

- List of performance metrics (Metrics)

- Dictionary of algorithm performance data (AlgorithmMetrics)

Output:

- Sorted list of algorithms based on average rank (RankedAlgorithms)

Begin:

 // Initialize an empty dictionary to store ranks for each algorithm

 Initialize an empty dictionary AlgorithmRanks

 // Step 1: Calculate ranks for each algorithm and metric

 For each Algorithm in Algorithms:

 // Initialize a list to store ranks for each metric

 Initialize an empty list MetricRanks

 For each Metric in Metrics:

 // Calculate the rank for the Algorithm based on the Metric

 Rank = CalculateRank(AlgorithmMetrics[Algorithm][Metric])

 // Append the rank to the MetricRanks list

 Append Rank to MetricRanks

 End For

 // Calculate the average rank for the Algorithm

 AverageRank = CalculateAverageRank(MetricRanks)

 // Store the average rank in the AlgorithmRanks dictionary

 AlgorithmRanks[Algorithm] = AverageRank

 End For

 // Step 2: Sort algorithms based on average rank

 SortedAlgorithms = SortAlgorithmsByRank(AlgorithmRanks)

 // Step 3: Output the sorted list of algorithms

 Return SortedAlgorithms

End

199

Function: CalculateRank

Input:

- List of performance scores (Scores)

Output:

- Rank for the algorithm based on the scores (Rank)

Begin:

 // Sort the scores in descending order

 SortedScores = SortScoresDescending(Scores)

 // Initialize the rank as 1

 Rank = 1

 For each Score in SortedScores:

 // Assign the current rank to the Score

 Set Rank for Score = Rank

 // Increment the rank for the next Score if it has the same value

 If NextScoreExists() AND NextScore() = Score Then

 Increment Rank

 End If

 End For

 Return Rank

End

Function: CalculateAverageRank

Input:

- List of ranks (Ranks)

Output:

- Average rank (AverageRank)

Begin:

 // Calculate the mean (average) of the ranks

 AverageRank = Mean(Ranks)

 Return AverageRank

End

Function: SortAlgorithmsByRank

Input:

- Dictionary of algorithm ranks (AlgorithmRanks)

Output:

- Sorted list of algorithms based on rank (SortedAlgorithms)

200

Begin:

 // Sort the algorithms based on their average ranks

 SortedAlgorithms = Sort(Algorithms, AlgorithmRanks[Algorithm])

 Return SortedAlgorithms

End

The outcomes shows the ranking given to various classification algorithm (applied at

cross validation- 10 folds) using the rank and percentile method. The results in the table

below shows the classification model (evaluated at cross validation 10-folds), point

(classifier ID), Rank and Percentage.

Table 5.18: Classification Models and Ranks (Cross Validation-10 Folds)

Classification

Models

Point

(Classifier

ID)

Score

(Weighted

Sum)

Rank Percentile

Random

Forest
8 0.820 1 100.00%

Random Tree 9 0.820 1 100.00%

Logistic 3 0.807 3 62.50%

MultiClass

Classifier
7 0.807 3 62.50%

Bayes Net 1 0.801 5 50.00%

KStar 6 0.773 6 37.50%

IBK 5 0.767 7 25.00%

Naïve Bayes 2 0.722 8 12.50%

SMO 4 0.660 9 0%

It was found that based on configuration setting: cross validation – 10 folds Random

Forest and Random Tree are the best and most appropriate classifier for traffic

congestion control and traffic flow as both are having the highest score of 0.820 with

percentile 100%. Logistic and MultiClass Classifier are the second most appropriate

algorithms having total score of 0.807, rank 3 and percentile of 62.50%. The third best

classifier being identified is Bayes net with a total score of 0.801 and percentile of

50.00%. For predicting the Udaipur traffic flow Random Forest and Random Tree are

the most appropriate algorithms.

201

ii. Evaluation with Cross Validation-25 Folds

Table 5.19 shows the ranking given to various classification algorithms (applied at cross

validation- 25 folds) using the rank and percentile method.

Table 5.19: Weighted Sum Score (Cross Validation-25 Folds)

S. No. Classification

Models

Score (Weighted

Sum)

1 Bayes Net 0.801

2 Naïve Bayes 0.724

3 Logistic 0.815

4 SMO 0.660

5 IBk 0.770

6 KStar 0.769

7 MultiClass Classifier 0.815

8 Random Forest 0.820

9 RandomTree 0.820

The weighed sum-based score suggests that Random Forest and Random Tree has the

highest score of 0.820 followed by Logistic and MultiClass Classifier with score 0.815.

The results in Table 5.20 show the classification model (evaluated at cross validation

25-folds), point (classifier ID), Weighted Sum, Rank and Percentage.

Table 5.20: Classification Models and Ranks (Cross Validation-25 Folds)

Classification

Models

Point

(Classifier

ID)

Score

(Weighted

Sum)

Rank Percent

Random

Forest
8 0.820 1 100.00%

Random Tree 9 0.820 1 100.00%

Logistic 3 0.815 3 62.50%

MultiClass

Classifier
7 0.815 3 62.50%

Bayes Net 1 0.801 5 50.00%

IBK 5 0.770 6 37.50%

KStar 6 0.769 7 25.00%

Naïve Bayes 2 0.724 8 12.50%

SMO 4 0.660 9 0.00%

It was found that based on configuration setting: cross validation – 25 folds Random

Forest and Random Tree are the best and most appropriate classifier for traffic

202

congestion control and traffic flow as it has the highest score of 0.820 with percentile

100%. Logistic and MultiClass Classifier are the second most appropriate algorithm

having a total score of 0.815, rank 3 and percentile of 62.50%. The third best classifier

being identified is Bayes Net with a total score of 0.801 and percentile of 50.00%. For

predicting the Udaipur traffic flow Random Forest is the most appropriate algorithm.

iii. Evaluation with Cross Validation-Split: 30%

Table 5.21 shows the ranking given to various classification algorithms (applied at cross

validation- 30% Split) using the rank and percentile method. The weighed sum-based

score suggests that Random forest has the highest score of 0.820 followed by Random

Tree with score 0.779 and MultiClass Classifier with score 0.765.

Table 5.21: Weighted Sum Score (Cross Validation-30% Split)

S. No. Classification

Models

Score

(Weighted

Sum)

1 Bayes Net 0.658

2 Naïve Bayes 0.585

3 Logistic 0.619

4 SMO 0.652

5 IBk 0.749

6 KStar 0.638

7 MultiClass

Classifier
0.765

8 Random Forest 0.820

9 RandomTree 0.779

The result in the table below shows the classification model ,point (classifier ID), Rank

and Percentage evaluated at cross validation 30%-Split.

203

Table 5.22: Classification Models and Ranks (Cross Validation-30% Split)

Classification

Models

Point

(Classifier

ID)

Score

(Weighted

Sum)

Rank Percent

Random

Forest
8 0.820 1 100.00%

Random Tree 9 0.779 2 87.50%

Multi Class

Classifier
7 0.765 3 75.00%

IBK 5 0.749 4 62.50%

Bayes Net 1 0.658 5 50.00%

SMO 4 0.652 6 37.50%

KStar 6 0.638 7 25.00%

Logistic 3 0.619 8 12.50%

Naïve Bayes 2 0.585 9 0.00%

It was found that based on configuration setting: cross validation – 30% Split Random

forest is the best and most appropriate classifier for traffic congestion control and traffic

flow as it has the highest score of 0.820 with percentile 100%. Random Tree is the

second most appropriate algorithm having a total score of 0.779, rank 2 and percentile

of 87.50%. The third best classifier being identified is Multi Class Classifier with a total

score of 0.765 and percentile of 75%. For predicting the Udaipur traffic flow Random

forest is the most appropriate algorithm while considering configuration setting cross

validation – 30%.

Finally, a Random Forest-based predictive model's high ranking in a cross-validation

setting, whether it's 10-fold, 25-fold or 30% split indicates its robustness and

effectiveness in handling the complexities of traffic management. Its ability to capture

non-linear patterns, handle real-time data, and provide insights into important features

makes it a valuable tool for improving traffic flow, reducing congestion, and enhancing

overall transportation efficiency.

204

5.4 Hypothesis Testing Results

Hypothesis is nothing but a tentative statement or proposed explanation made based on

limited evidence as a starting point for further investigation. The following two

hypothesis are being tested for proposed research work.

Hypothesis 1:

The main objective of my research is to solve commuting problems in smart cities using

Artificial Intelligence, IoT and Machine Learning technologies. To reach meaningful

conclusion of my research I am interested in finding whether there is significant

difference between the type of smart technologies used in smart cities. To examine the

difference between different categorial variables Chi-Square test is applied after doing

survey from different age group participants from different cities. The Hypothesis

statements are:

Ho1: There is no significant difference between technologies used for enhancing

 the transportation system in smart cities.

The related alternative hypothesis is as follows.

Ha1: There is a significant difference between technologies used for enhancing the

 transportation system in smart cities.

Test Applied: To test the hypothesis Ho1 the Chi-Square Test was being used. The

outcomes of the Chi-Square test are shown below in the table.

Table 5.23: Type of Technology and Level of Enhancement

Type of Technology and Level of Enhancement in Smart Transportation

System: Crosstabulation

Count

Enhancement in Smart

Transportation System Total

High Low

Type of

Technology

AI Based 12 0 12

Fog Computing 7 0 7

IoT-Based Traffic

Prediction Models
7 6 13

Machine Learning-

Based Traffic

Prediction Models
14 4 18

Total 40 10 50

205

Table 5.24: Chi-Square Test Results

Chi-Square Test

Value df

Asymptotic

Significance

(2-sided)

Pearson Chi-

Square

10.363a 3 .016

Likelihood Ratio 13.026 3 .005

N of Valid Cases 50

a. 4 cells (50.0%) have expected count less than 5. The

minimum expected count is 1.40.

Table 5.25: Calculation of Expected Frequency

Calculation of Expected Frequency

Total of Technology

Total of Enhancement in

Smart Transportation

System

Expected

Frequency
EF

12 40 12*40/50 9.6

7 40 7*40 /50 5.6

13 40 13*40 /50 10.4

18 40 18*40 /50 14.4

12 10 12*10 /50 2.4

7 10 7*10 /50 1.4

13 10 13*10 /50 2.6

18 10 18*10 /50 3.6

Table 5.26: Observed and Expected Frequency calculations.

Observed and Expected Frequency for the calculation of X2

Observed Frequency

(OF)

Expected Frequency

(EF)
(OF - EF)2 (OF - EF)2 / EF

12 9.6 5.76 0.6

7 5.6 1.96 0.35

7 10.4 11.56 1.11

14 14.4 0.16 0.01

0 2.4 5.76 2.4

0 1.4 1.96 1.4

6 2.6 11.56 4.45

4 3.6 0.16 0.04

 Total (å) 10.36

Degree of Freedom =(r-1) (c-1)

= (4-1) *(2-1) =3

Table value @5% level of significance = 7.815

Calculated Value of Chi-Square = 10.36

206

Result: The Chi-Square test results confirm that as the Pearson Chi-Square value was

found to be 10.36 at degree of freedom 3 and the corresponding p-value is found to be

0.016 which is lesser than the standard alpha value of 0.05 this interpret that the null

hypothesis Ho1is rejected and alternate hypothesis Ha1 is being accepted and it can be

concluded that there is significant difference between technologies used for enhancing

the transportation system for smart cities.

Figure 5.89: Right Tailed Chi-Square curve

Source: Chi-Square Distribution Calculator With Graph Generator [28]

From above figure Right Tailed Chi-Square curve it is clear that Calculated Chi-Square

value lies in the rejection region therefore Ho1 is rejected and Ha1 is accepted. This

indicates that there is a significant difference between the listed technologies like AI

based, Fog Computing based, IoT based and Machine learning based traffic prediction

models in solving traffic congestion problems in smart cities.

Hypothesis 2:

The weighted sum method algorithm for traffic prediction model generates different

performance scores for 10-fold, 25-fold and 30% split case with different weights to

each criterion. We are interested to know whether all machine learning algorithms

average performance score is more than 75%. Following are the Hypothesis statements.

207

Ho2: The Machine learning-based traffic prediction models have average

performance scores of greater than or equal to 75%.

The related alternative hypothesis is as follows.

Ha2: The Machine learning-based traffic prediction models have average

performance scores of less than 75%.

 Ho: µ ≥ 0.75

 Ha: µ < 0.75

Test Applied: As Sample mean is known and number of samples are less than 30,

therefore One-Sample lower tail t-test is applied to test the hypothesis Ho2. Calculations

of t-test are shown in the table shown below.

Table 5.27: T-test calculation

Classifier

WSM average

Performance

Score Values

Bayes Net 0.75

Naïve Bayes 0.68

Logistic 0.75

SMO 0.66

IBk 0.76

KStar 0.73

MultiClass Classifier 0.80

Random Forest 0.82

RandomTree 0.81

Sample Mean (X̄) 0.751

Standard

Deviation(S) 0.055

Number of

Samples(n) 9

Claim (μ) 0.75

√n 3

S/√n 0.018

 One Sample T-Test: T = (X̄ – μ) / S/√n = 0.060

 Degree of Freedom: 8

208

Figure 5.90: T-Test Python Program Output

Result: Table value @ 5% level of significance is -1.860 and the calculated T-statistics

value is 0.060 which is larger than the critical T-value of -1.860, Also the p-value found

to be 0.476 which is greater than the standard alpha value of 0.05 therefore null

hypothesis is failed to be rejected. Therefore, we can say that the Machine learning-

based traffic prediction models have average performance score more than or equal to

75%.

Figure 5.91: Left Tailed T-test curve

Source: T-test Distribution Calculator With Graph Generator [29]

209

From above figure Left Tailed T-test curve it is clear that calculated T-statistic value

lies in the acceptance region therefore Ho2 is failed to reject and Ha2 is rejected. This

indicates machine learning algorithms are useful in solving traffic congestion problems

and generates average performance score of more than 75%.

5.5 Summary

In a comparative analysis of nine machine learning algorithms conducted utilizing the

Weka tool, Random Forest and Random Tree emerged as the foremost viable classifiers

for anticipating traffic congestion. Bayes Net moreover illustrated solid performance,

ranking second respectively.

The investigation included assessing different performance parameters and error

measures to evaluate the adequacy of each calculation. Among these measurements,

Random Forest and Random Tree reliably beat other classifiers over multiple criteria.

Furthermore, two hypotheses were tried during the analysis. The first hypothesis looked

for to investigate the differences between Artificial Intelligence, Fog-based, IoT-based

technologies, and Machine Learning approaches in traffic forecast models. This

hypothesis was rejected and alternate hypothesis was accepted, recommending that

there is significant differences between these technologies in terms of their

effectiveness for traffic forecast. The second hypothesis aimed to determine if the

average performance score of the classifiers surpassed 75%. This hypothesis failed to

be rejected, demonstrating that the classifiers achieved satisfactory performance levels

more than 75%.

Overall, the discoveries recommend that Random Forest and Random Tree classifiers

are well-suited for traffic congestion forecast, with Bayes Net also offering strong

performance. Furthermore, the analysis demonstrates that the choice between AI, Fog-

based, IoT-based advances, and Machine Learning approaches may essentially affect

the effectiveness of traffic prediction models.

