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Artificial Intelligence and Machine Learning prediction algorithms are revolutionizing 

industries and domains by harnessing data to make precise forecasts and informed 

decisions. In smart cities it can be used to solve traffic congestion problems, traffic 

prediction and vehicle maintenance insights, In healthcare, they aid in disease diagnosis 

and drug discovery, In finance it benefits from risk assessment and stock market 

predictions, e-commerce relies on recommendation systems and demand forecasting, 

manufacturing optimizes operations with predictive maintenance and quality control, 

Energy sector uses it for forecasting consumption and renewable energy utilization, 

Agriculture improves crop yields and pest detection, Customer service employs 

chatbots and sentiment analysis, Weather forecasting becomes more accurate, 

Education adopts personalized learning and student success prediction, all contributing 

to enhanced efficiency, cost reduction, and better decision-making across various 

sectors. 

5.1   Traffic Control Systems for Smart Cities 

Traffic prediction and control systems in smart cities are essential for managing urban 

congestion and improving overall transportation efficiency. Various machine learning 

and IoT-based models have been developed to address these challenges. Some of the 

existing approaches in this field are: 

Adaptive Traffic Signal Control: Using real-time traffic data collected from IoT 

sensors, adaptive traffic signal control systems can adjust signal timings based on 

current traffic conditions. These systems aim to minimize congestion and improve 

traffic flow efficiency.  

Intelligent Transportation Systems (ITS): ITS integrates various technologies, 

including IoT, machine learning, and data analytics, to manage traffic in real-time. It 

involves strategies such as dynamic route guidance, incident detection, and congestion 

pricing to optimize traffic control in smart cities.  

Predictive Traffic Control: By combining machine learning-based traffic prediction 

models with control algorithms, predictive traffic control systems can anticipate traffic 

conditions and adjust signal timings proactively. These systems help prevent congestion 

before it occurs. 
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Figure 5.1: Vehicle Location Tracking Using IoT and Machine Learning 

 

 

 

 

 

 

 

The  Figure 5.1 shown above explains the vehicle tracking system using  IOT and 

Machine learning. Various IoT sensors, like Camera, GPS Probes, Motion Sensors etc. 

are used to collect raw traffic data, which is preprocessed for missing values and other 

non-linearities. Collected data is used for training the machine learning model, which 

will be used to forecast vehicle location on live data in future. 

5.1.1   IoT-Based Traffic Prediction Models  

Today traffic density is increasing in smart cities due to rise in population. This traffic 

rise results in time wastage, fuel wastage, environmental problems and casualties. Many 

solutions and methods are suggested in the past by many researchers but they lack in 

accuracy and reliability. IoT based traffic prediction models have shown us new ray of 

hope to overcome congestion problems in smart cities. Some of the IoT methods are 

described below.   

a. Sensor Networks: IoT devices and sensors deployed across road networks can 

collect real-time data on traffic flow, vehicle speeds, and occupancy. By analyzing this 

data, traffic prediction models can provide accurate and up-to-date traffic forecasts.  
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b. Vehicle-to-Infrastructure Communication: IoT-enabled vehicles can 

communicate with smart infrastructure systems, such as traffic lights and road sensors, 

to gather real-time data. This information can be used to predict traffic patterns and 

optimize traffic control strategies. 

These IoT models integrates data from different sources, including traffic cameras, GPS 

devices, and proximity sensors to predict and optimize vehicle density, traffic 

congestion, vehicle routing and improve the overall transportation experience. 

5.1.2   Machine Learning-Based Traffic Prediction Models  

In last one decade machine learning algorithms are increasingly becoming popular to 

solve traffic congestion problems due to static and error prone traditional statistical 

methods. Today’s ever increasing city limits and population growth, has made city 

traffic management very difficult and demanding. Improvement in Machine learning 

technology is a new ray of hope for us. Some of the machine learning technologies used 

are described below. 

a. Time-Series Forecasting Models: Models like ARIMA1 and SARIMA2  use 

historical traffic data to predict future traffic patterns. They consider factors like time 

of day, day of the week, and seasonality to forecast traffic conditions accurately.  

b. Artificial Neural Networks: ANNs, such as MLP3 and RNNs4 like Long Short-

Term Memory, are capable of learning complex patterns in traffic data. These models 

can capture temporal dependencies and perform well in long-term traffic prediction.  

c. Support Vector Machines: SVMs are used for both classification and regression 

tasks. They can be employed to predict traffic conditions based on historical data, 

considering features like weather, events, and road characteristics.  

 
1 Auto Regressive Integrated Moving Average 
2 Seasonal Auto Regressive Integrated Moving Average 
3 Multilayer Perceptron 
4 Recurrent Neural Networks 
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d. Random Forests: Random Forest models combine multiple decision trees to make 

predictions. They can handle both numerical and categorical features, making them 

suitable for traffic prediction tasks involving multiple input variables. 

In summary above set of algorithms have the capability to learn to perform tasks such 

as prediction and classification effectively using data. Learning is achieved using 

additional data and or additional models. A machine learning algorithm uses the 

following steps: 

1. Identify the problems. 

2. Identify sources of information / data. 

3. Pre-process the data for missing and incorrect data and transform the data if 

required. 

4. Divide the data into training and testing datasets. 

5. Build ML models and identify the best model performance in validation data. 

6. Implement solution / develop product. 

An algorithm can be called as learning algorithm when it improves on a performance 

metric while performing a task. 

5.2   Machine Learning Predictive Model for Smart Transportation  

A Machine Learning Predictive Model for a Smart Transportation System integrates 

data from diverse sources, including traffic cameras, GPS devices, and weather 

forecasts, to predict traffic congestion, optimize vehicle routing, enhance public 

transportation efficiency, and improve the overall transportation experience. By 

analyzing historical and real-time data, these models offer solutions such as rerouting 

traffic, suggesting efficient routes for logistics, predicting public transportation 

demand, enabling predictive maintenance, promoting sustainability, enhancing 

security, and informing government policies, ultimately revolutionizing the way 

transportation is managed and transforming urban mobility for the better. 
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Figure 5.2: Smart Transportation System 

 

The Smart Transportation System is being divided into three modules which includes 

ML applications, AI applications and IoT applications as shown in Figure 5.2. These 

modules are further being divided into submodules such as the ML application module 

includes traffic flow detection and travel time prediction, accident detection and 

prevention, smart city lights city, infrastructure and road anomaly detection. Similarly, 

the AI application is being subdivided into safety and emergency management, 

autonomous vehicles, smart parking management, incident detection and predictive 

models. The IoT applications include security surveillance, smart vehicle application 

and navigation. 
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5.3   Analysis of Machine Learning Models for Smart Transportation 

Machine Learning Predictive Models for Smart Transportation provide data-driven 

insights and solutions to address complex urban mobility challenges. These models 

harness vast datasets from traffic sensors, GPS devices, and various sources to forecast 

traffic patterns, optimize routes, and improve public transportation systems. By 

leveraging historical and real-time data, they enable more efficient traffic management, 

reduce congestion, enhance user experience, and promote sustainable transportation 

practices. Additionally, these predictive models have the potential to play a pivotal role 

in shaping future transportation policies and infrastructure development for smarter and 

more accessible cities. Various Algorithms were used for feature/attribute extraction 

and selection. Based on the results provided by Algorithms out of  twenty one attributes 

following seven attributes are selected for Machine Learning Algorithms. 

1. SPEED 

2. NUM_READS 

3. HOUR 

4. ZIP CODES 

5. REGION 

6. BUS_COUNT 

7. CLASS LABEL 

5.3.1   Performance Measure  

To analyze different prediction models, the performance measure like accuracy, 

incorrectly classified instances, Kappa statistic, precision, recall, F-measure , ROC 

Area ,TP Rate, FP Rate, precision and recall were being used, which are explained 

below. 

Accuracy: It is a commonly used metric to evaluate the performance of machine 

learning classification models. It measures the ratio of correctly predicted instances to 

the total number of instances in the dataset. The formula for precision is: 

                                     Accuracy =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡
                        [i] 
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Incorrectly Classified Instances: In machine learning, a misclassified instance is a 

data point or instance in a data set that is incorrectly predicted or labeled  by a machine 

learning model. These instances represent  errors that the model made in its predictions. 

There are two types of errors: 

➢ False Positive:  Negative Instances are predicted as Positive by Model. In  

                           terms of Traffic Congestion this can be low traffic is   

                           predicted as heavy traffic. 

 

➢ False Negative: Positive Instances are predicted as Negative by Model. In  

                            terms of Traffic Congestion this can be heavy traffic is  

                            predicted as low traffic. 

Kappa Statistics: The kappa statistic, also known as Cohen's kappa, is a measure of 

agreement or reliability between classification algorithms. It is often used to assess 

agreement between two classification algorithms. Kappa value ranges from -1 to +1. 

Positive 1 indicates perfect agreement and Negative 1 indicates worst agreement. The 

various agreement interpretations are given below. 

➢ Kappa > 0.8: Excellent Agreement 

➢ 0.6 < Kappa < 0.8: Good Agreement 

➢ 0.4 < Kappa < 0.6: Moderate Agreement 

➢ Kappa ≤ 0.4: Poor Agreement 

 

Confusion Matrix Parameters: Confusion matrix shows the different ways in which 

the classification model gets confused when making predictions. The predicted values 

are compared with Actual values to find out various performance parameters. The 

Parameter like TP Rate, FP Rate , Precision, Recall and ROC Area are derived from a 

confusion matrix. 
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Figure 5.3: Confusion Matrix 

 

 

 

 

 

 Source: Towards Data Science [23]  

TP5: It refers to the number of predictions where the classifier correctly predicts the 

positive class as positive. For example in terms of Traffic Congestion this can be heavy 

traffic is predicted as heavy traffic. 

TN6: It refers to the number of predictions where the classifier correctly predicts the 

negative class as negative. For example in terms of Traffic Congestion this can be low 

traffic is predicted as low traffic. 

FP7: It refers to the number of predictions where the classifier incorrectly predicts the 

negative class as positive. For example in terms of Traffic Congestion this can be low 

traffic is predicted as heavy traffic. 

FN8: It refers to the number of predictions where the classifier incorrectly predicts the 

positive class as negative. For example in terms of Traffic Congestion this can be heavy 

traffic is predicted as low traffic. 

Precision: It is the quality of a positive prediction made by the model. Precision refers 

to the number of True Positives divided by the total number of Positive predictions. 

                                     Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                               [ii] 

Recall: It is the measures of how well a machine learning model can detect positive 

instances. It is also called as Sensitivity. Sensitivity refers to the number of true 

 
5 True Positive 
6 True Negative 
7 False Positive 
8 False Negative 
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positives divided by the sum of True Positives and False Negatives. The model with 

high Sensitivity will have significantly fewer False Negatives. 

                                      Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
           [iii] 

 

F-Measure: It also known as F1-score, It is a  machine learning metric that combines 

precision and recall into one value. 

                                      F-Measure = 2 ×  
𝑃𝑟𝑒𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
          [iv] 

F-Measure value changes between 0 and 1, Where 1 indicates ideal Precision and Recall 

and 0 indicates poor performance.                             

ROC9: It is a graph showing the performance of a classification mode. This curve plots 

two parameters: TPR10 and  FPR11. TP Rate is used to measure the percentage of actual 

positives which are correctly identified by model . TPR is synonym for Recall. FP Rate 

also known as Type - I error  is used to measure the percentage of actual positives which 

are incorrectly identified by model.  

Figure 5.4: ROC Curve 

 

 

 

 

 

 

 

Source: Google developer site [27] 

 
9 Receiver Operating Characteristics 
10 True Positive Rate 
11 False Positive Rate 



132 
 

ROC Area: AUC12 measures the entire two-dimensional area underneath the entire 

ROC curve. AUC indicates how well predictions are ranked. AUC ranges in value from 

0 to 1. A model whose predictions are 100% wrong has an AUC of 0.0; one whose 

predictions are 100% correct has an AUC of 1.0. 

Figure 5.5: Area Under ROC Curve 

 

 

 

 

 

 

Source: Google developer site [27] 

In summary, performance measurements play a critical role in evaluating the 

effectiveness of machine learning algorithms, providing insight into their ability to 

make accurate predictions and transform appropriately to new, unseen data. Choosing 

the most appropriate metric depends on the nature of your particular problem, the 

characteristics of your data, and your analysis goals. 

 

5.3.2.   Error Measures 

Machine learning uses various error measures  to evaluate the performance of 

algorithms and models. These measurements help quantify the difference between 

predicted and actual values and provide insight into model performance. Common error 

remedies includes: 

Mean Absolute Error: it is Average of absolute differences between Actual values and 

Predicted values. Lower the value of Mean Absolute Error, better the Prediction 

Algorithm. 

 
12 Area Under ROC Curve 
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                                 Mean Absolute Error = 
1

𝑛
∑ |𝑦𝑎𝑖

− 𝑦𝑝𝑖
|𝑛

𝑖=1                                      [v]                     

                        Where 

➢ 𝑦𝑎 =  Actual Output Value 

➢ 𝑦𝑝 =  Predicted Output Value 

Root Mean Square Error: It is the root of mean square error. It considers the effect 

of negative as well positive errors in considerations. 

                                 Root Mean Square Error = √
1

𝑛
∑ (𝑦𝑎𝑖

− 𝑦𝑝𝑖
)2𝑛

𝑖=1                              [vi] 

Relative Absolute Error: It is used to measure accuracy of  predictions. It compares 

the distance of actual values from predicted values with distance of actual values from 

average values. Its value lie between 0 to positive infinite. A lower Relative Absolute 

Error indicates better performance. 

                                 Relative Absolute Error =   
∑ |𝑦𝑎𝑖

−𝑦𝑝𝑖
|𝑛

𝑖=1

∑ |𝑦𝑎𝑖
−𝑦̅|𝑛

𝑖=1

                                   [vii] 

   Where 

                                     𝑦̅ =  Mean of Actual Values 

Root Relative Square Error: It is the root of relative square error. The relative square 

error is the ratio of total square error to average of actual values. Relative square error 

normalizes total square error.  

                                 Relative Square Error = 
∑ (𝑦𝑎𝑖

−𝑦𝑝𝑖
)2𝑛

𝑖=1

𝑦̅
                                  [viii] 

By Taking root of Relative Square Error we are reducing the normalize square error 

value and bringing it closer to predicted value. 

                                 Root Relative Square Error = √𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜               [ix] 

                                 Root Relative Square Error = √
∑ (𝑦𝑎𝑖

−𝑦𝑝𝑖
)

2𝑛
𝑖=1

𝑦̅
                      [x] 
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Lower the value of Root Relative Square Error, better the performance of Machine 

Learning prediction model. The choice of error measure depends on the nature of the 

problem and the specific objectives of the analysis. When choosing an appropriate error 

measure, it is important to consider the characteristics of the data and the objectives of 

the modeling task.  

In summary, understanding and effectively using error counter measures is a 

fundamental aspect of creating and improving machine learning algorithms. Error 

measurements provide a quantitative means of assessing model accuracy and 

performance, allowing practitioners to make informed decisions, compare different 

algorithms, and optimize predictive capabilities.                     

5.3.3   Cross-Validation Configuration Setting (10-folds) Results 

The Weka tool was being used for the analysis of various classification machine 

learning algorithms. K-folds Cross-Validation Approach is used for evaluating the 

Performance of Machine learning Algorithms, where K value is changed to study 

different cases. For example in 4 folds Cross-Validation K value is 4 where data set is 

divided into 4 parts, out of which 3 parts are used for training the Machine learning 

Algorithm and only One part is used for testing the Algorithm. 

Figure 5.6: 4-fold Cross-Validation Example 

 

                                            

       Iteration – (i)                  Iteration – (ii)                  Iteration – (iii)               Iteration – (iv)                 

As shown in above figure 5.6, four iterations are executed for 4-folds, In first iteration 

part one will be used for testing and remaining three parts will be used for training. In 

second iteration part two will be used for testing and remaining three parts will be used 

for training. This recursion will continue up to the last iteration to complete the Cross-

Validation. For 10-fold Cross-Validation K value is 10 and data set will be divided into 

10 parts, Nine parts for Training the algorithm and One part for testing the algorithm. 

Data Set Data Set Data Set Data Set

Training 

Training Training 

Testing Training 

Training 

Training 

Testing 

Training Training 

Training Testing Training 

Training Testing 

Training 
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Similarly for 25-fold Cross-Validation K value is 25 and data set will be divided into 

25 parts, Twenty four parts for Training the algorithm and One part for testing the 

algorithm. 

Data Analysis Credentials: 

Dataset: Udaipur_Traffic   Source: TOMTOM Server 

Date: October 2023    Duration: One Month 

Number of Instances: 1000 

Number of Attributes (After Feature Extraction and Selection): 7 

A.   Performance Measures 

i. Accuracy Measures  

Table 5.1: Classifiers and Accuracy Measures (Cross Validation: 10-Folds) 

Classifier Accuracy 
Incorrectly 

Classified 

Instances 

Kappa 

statistic 

Bayes Net 99.6% 0.4% 0.967 

Naïve Bayes 97.9% 2.1% 0.815 

Logistic 99.7% 0.3% 0.976 

SMO 97.2% 2.8% 0.722 

IBk 98.7% 1.3% 0.898 

KStar 98.8% 1.2% 0.905 

MultiClass 

Classifier 
99.7% 0.3% 0.976 

Random 

Forest 
100.0% 0.0% 1.000 

RandomTree 100.0% 0.0% 1.000 

 

Figure 5.7: Performance Measure Accuracy (Cross-Validation: 10 Folds) 
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Based on the performance measure accuracy it can be interpreted that Random Forest 

classifier was the most appropriate one as it was having the highest accuracy value of 

100% whereas SMO and Naïve Bayes were having the lowest value of accuracy 97.2% 

and 97.9%. 

Figure 5.8: Incorrectly Classified Instances (Cross-Validation: 10 Folds) 

 

 

 

 

 

 

According to the performance measure incorrectly classified instances it can be 

interpreted that Random Forest and Random Tree classifiers were the most appropriate 

one as these were having the lowest number of incorrectly classifies instances 

accounting for 0% each whereas SMO and Naïve Bayes  classifiers were having the 

highest number of incorrectly classifies instances accounting for 2.8% and 2.1% 

respectively. 

 

Figure 5.9: Kappa Statistic Values (Cross-Validation: 10 Folds) 
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The provided data consists of a set of Kappa statistic values, which are used to assess 

the agreement or consistency between classifiers in different situations. These Kappa 

values range from 0.722 to 1.000, indicating varying levels of agreement. The highest 

Kappa value, 1.000, suggests a very good level of agreement between the classifiers in 

that particular scenario, while the lowest value, 0.722, falls into the good to moderate 

agreement range. Overall, the data suggests that there is a generally positive level of 

agreement in the assessed situations, with some instances demonstrating higher 

agreement than others. 

In correctly classified instances and kappa statistics are performance metrics which are 

important to explore to get more comprehensive insights to develop accurate machine 

learning model. 

ii. Confusion Matrix Parameters – Low Traffic 

Table 5.2 shows confusion matrix parameters TP Rate, FP Rate, Precision, Recall, F-

Measure and ROC Area for Low Traffic case. Machine learning often requires a limited 

amount of data when dealing with low-traffic scenarios. In such cases, the challenge is 

to create a robust model despite data limitations. Data Augmentation techniques are 

used to artificially increase the size of  data set which can be helpful especially in low 

traffic scenarios.  

Table 5.2: Classifiers and Performance Measures Class Label: Low Traffic 

 Cross Validation: 10-Folds 

Classifier 
TP 

Rate 
FP Rate Precision Recall 

F-

Measure 

ROC 

Area 

Bayes Net 1.000 0.060 0.996 1.000 0.998 1.000 

Naïve Bayes 0.996 0.254 0.982 0.996 0.989 0.988 

Logistic 0.999 0.03 0.998 0.999 0.998 1.000 

SMO 1.000 0.418 0.971 1.000 0.985 0.791 

IBk 0.991 0.075 0.995 0.991 0.993 0.958 

KStar 0.992 0.075 0.995 0.992 0.994 0.997 

MultiClass 

Classifier 
0.999 0.030 0.998 0.999 0.998 1.000 

Random 

Forest 
1.000 0.000 1.000 1.000 1.000 1.000 

RandomTree 1.000 0.000 1.000 1.000 1.000 1.000 
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Figure 5.10: TP Rate (Cross Validation: 10-Folds – Low Traffic) 

 

 

 

 

 

 

 

 

According to the performance measure TP rate it was found that the highest true 

positive rate was of the classifiers Bayes Net, Random Forest and Random Tree with 

value 1.000, followed by 0.999 and 0.999 of Logistic and MultiClass Classifier 

respectively whereas the lowest TP rate was found to be of the classifiers IBK with 

value 0.991. Overall it can be interpreted that there are three  most appropriate 

classifiers based on the performance measure TP rate with the value of 1.000. 

Figure 5.11: FP Rate (Cross Validation: 10-Folds – Low Traffic) 

 

 

 

 

 

 

 

 

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

1.000

0.996

0.999
1.000

0.991
0.992

0.999
1.000 1.000

TP Rate

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.060

0.254

0.030

0.418

0.075 0.075

0.030
0.000 0.000

FP Rate



139 
 

Based on the performance measure FP rate it was found that the lowest false positive 

rate was of the classifiers Random Forest and Random Tree with value 0.000, followed 

by 0.030 of Logistic and MultiClass Classifier whereas the highest FP rate was found 

to be of the classifiers SMO with value 0.418. Overall, it can be interpreted the most 

appropriate classifier based on the performance measure FP rate is found to be Random 

Forest and Random Tree with lowest FP rate value.  

Figure 5.12: Precision (Cross Validation: 10-Folds – Low Traffic) 

 

 

 

 

 

 

 

 

According to the performance measure precision it was found that the highest precision 

value was of the classifier Random Forest and Random Tree with value 1.000, followed 

by 0.998 of Logistic and MultiClass Classifier respectively whereas the lowest 

precision value was found to be of the classifier SMO with value 0.971. Overall, it can 

be interpreted the most appropriate classifiers based on the performance measure 

precision are found to be Random Forest and Random Tree. 
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Figure 5.13: Recall (Cross Validation: 10-Folds – Low Traffic) 

 

 

 

 

 

 

 

 

 

 

 

Based on the performance measure recall it was found that the highest recall value was 

of the classifiers Bayes Net, SMO, Random Forest and Random Tree with value 1.000, 

followed by 0.999 of Logistic and MultiClass Classifier respectively whereas the lowest 

recall value was found to be of the classifier IBK with value 0.991. Overall, it can be 

interpreted the most appropriate classifier based on the performance measure recall is 

found to be four algorithms Bayes Net, SMO, Random Forest and Random Tree. 

Figure 5.14: F-Measure (Cross Validation: 10-Folds – Low Traffic) 
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According to the performance measure F-Measure it was found that the highest F-

Measure values were of the classifier Random Forest and Random Tree with value 

1.000, followed by 0.998 value of Bayes Net, Logistic and MultiClass Classifier 

respectively whereas the lowest F-Measure value was found to be of the classifier SMO 

classifier with values 0.985. Overall, it can be interpreted the most appropriate 

classifiers based on the performance measure F-Measure is found to be Random Forest 

and Random Tree.  

Figure 5.15: ROC Area (Cross Validation: 10-Folds – Low Traffic) 

 

 

 

 

 

 

 

Based on the performance measure ROC it was found that the highest ROC Area value 

was of the classifiers Bayes Net, Logistic, MultiClass Classifier, Random Forest and 

Random Tree with value 1.000, followed by 0.997 and 0.988 of KStar and Navie Bayes 

respectively whereas the lowest ROC Area value was found to be of the classifier SMO 

with value 0.791 respectively. Overall, it can be interpreted the most appropriate 

classifiers based on the performance measure ROC Area are found to be five 

Algorithms.  

In summary, performance measurements play a critical role in evaluating the 

effectiveness of machine learning algorithms, providing insight into their ability to 

make accurate predictions and transform appropriately to new, unseen data. Choosing 

the most appropriate metric depends on the nature of your particular problem, the 

characteristics of your data, and your analysis goals. 
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iii.  Confusion Matrix Parameters – Heavy Traffic 

Heavy Traffic generates huge amounts of data from the various IOT sensors. These data 

sets can be used by Machine Learning Algorithms to develop prediction models. Table 

5.3 shows the Confusion Matrix parameters obtained for Heavy Traffic conditions. 

   

Table 5.3: Classifiers Performance Measure Class Label: Heavy Traffic  

Cross Validation: 10-Folds 

Classifier 
TP 

Rate 
FP Rate Precision Recall 

F-

Measure 

ROC 

Area 

Bayes Net 0.940 0.000 1.000 0.940 0.969 1.000 

Naïve Bayes 0.746 0.004 0.926 0.746 0.826 0.988 

Logistic 0.970 0.001 0.985 0.970 0.977 1.000 

SMO 0.582 0.000 1.000 0.582 0.736 0.791 

IBk 0.925 0.009 0.886 0.925 0.905 0.958 

KStar 0.925 0.008 0.899 0.925 0.912 0.997 

MultiClass 

Classifier 
0.970 0.001 0.985 0.970 0.977 1.000 

Random 

Forest 
1.000 0.000 1.000 1.000 1.000 1.000 

RandomTree 1.000 0.000 1.000 1.000 1.000 1.000 

 

Figure 5.16: TP Rate (Cross Validation: 10-Folds – Heavy Traffic) 
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According to the performance measure TP rate for class label: Heavy Traffic it was 

found that the highest true positive rate was of the classifiers Random Forest and 

Random Tree 1.000, followed by 0.970 of Logistic and MultiClass Classifier 

respectively whereas the lowest TP rate was found to be of the classifiers SMO with 

values 0.582. Overall, it can be interpreted the most appropriate classifier based on the 

performance measure TP rate are Random Forest and Random Tree. 

Figure 5.17: FP Rate (Cross Validation: 10-Folds – Heavy Traffic) 

 

 

 

 

 

 

 

Based on the performance measure FP rate for class label: Heavy Traffic it was found 

that the lowest false positive rate was of the classifiers Bayes Net, SMO, Random Forest 

and Random Tree with value 0.00, followed by 0.001 of Logistic and MultiClass 

Classifier, whereas the highest FP rate was found to be of the classifiers KStar and IBK 

with values 0.008 and 0.009 respectively. Overall, it can be interpreted the most 

appropriate classifier based on the performance measure FP rate are found to be four 

Algorithms with lowest FP rate value 0.000.  
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Figure 5.18: Precision (Cross Validation: 10-Folds – Heavy Traffic) 

 

 

 

 

 

 

 

According to the performance measure precision class label: Heavy Traffic it was found 

that the highest precision value was of the classifiers Bayes Net, SMO, Random Forest 

and Random Tree with value 1.000, followed by 0.985 and 0.926 of Logistic, 

MultiClass Classifier and Naïve Bayes respectively whereas the lowest precision value 

was found to be of the classifier IBK with values 0.886 respectively. Overall, it can be 

interpreted that the most appropriate classifier based on the performance measure 

precision is found to be Four Algorithms. 

Figure 5.19: Recall (Cross Validation: 10-Folds – Heavy Traffic) 

 

 

 

 

 

 

 

 

Based on the performance measure recall class label: Heavy Traffic it was found that 
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value 1.000, followed by 0.970 of Logistic and Multiclass Classifier respectively 

whereas the lowest recall value was found to be of the classifiers SMO with value 0.582. 

Overall, it can be interpreted the most appropriate classifier based on the performance 

measure recall are found to be Random Forest and Random Tree.  

Figure 5.20: F-Measure (Cross Validation: 10-Folds – Heavy Traffic) 

 

 

 

 

 

 

According to the performance measure F-Measure class label: Heavy Traffic it was 

found that the highest F-Measure value was of the classifiers Random Forest and 

Random Tree with value 1.000, followed by 0.9777 of Logistic and Multiclass 

Classifier respectively whereas the lowest F-Measure value was found to be of the 

classifier SMO with value 0.736. Overall, it can be interpreted the most appropriate 

classifiers based on the performance measure F-Measure is found to be Random Forest 

and Random Tree.  

Figure 5.21:  ROC Area (Cross Validation: 10-Folds – Heavy Traffic) 
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Based on the performance measure ROC class label: Heavy Traffic it was found that 

the highest ROC Area value was of the classifiers Bayes Net, Logistic, MultiClass 

Classifier, Random Forest and Random Tree with value 1.00, followed by 0.988 of 

Naive Bayes  respectively whereas the lowest ROC Area value was found to be of the 

classifier SMO with values 0.791 respectively. Overall, it can be interpreted that the 

most appropriate classifiers based on the performance measure ROC Area are found to 

be five Algorithms.  

B.   Error Measure Results 

Table 5.4: Classifiers and Error Measures (Cross Validation: 10-Folds) 

Classifier 
Mean 

absolute 

error 

Root mean 

squared 

error 

Relative 

absolute 

error 

Root relative 

squared 

error 

Bayes Net 0.005 0.044 3.549% 17.692% 

Naïve Bayes 0.026 0.136 20.501% 54.312% 

Logistic 0.003 0.048 2.171% 19.311% 

SMO 0.028 0.167 22.247% 66.924% 

IBk 0.014 0.114 11.180% 45.553% 

KStar 0.017 0.099 13.340% 39.526% 

MultiClass 

Classifier 
0.003 0.048 2.171% 19.311% 

Random 

Forest 
0.001 0.007 0.739% 2.762% 

RandomTree 0.000 0.000 0.000% 0.000% 

Figure 5.22: Mean Absolute Error (Cross-Validation: 10 Folds)  
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The mean absolute error is found to be lowest in case of Random Tree with the value 

0.000 Whereas the mean absolute error value of SMO is found to be highest with value 

0 .028. So, it can be interpreted that based on the measure Mean absolute Error the most 

appropriate algorithm is found to be Random Tree at configuration setting – 10-fold 

cross validation. 

Figure 5.23: Root Mean Squared Error (Cross-Validation: 10 Folds) 

 

 

 

 

 

 

 

The root mean squared error value is found to be highest in case of SM0 with the value 

of 0 .167 whereas the lowest value is found to be of Random Tree with value 0.000. So, 

it can be interpreted that based on the measure RMSE the most appropriate algorithm 

is found to be Random Tree at configuration setting – 10-fold cross validation. 

Figure 5.24: Relative Absolute Error (Cross Validation: 10-Folds) 
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Accordingly, the relative absolute error value is found to be lowest in case of  Random 

Tree classifier with 0.00%  whereas the highest relative absolute error percentage value 

is found to be in case of SMO with 22.25%. So, it can be suggested that based on the 

measure Relative Absolute Error the most appropriate algorithm is found to be Random 

Tree with lowest value when evaluated at configuration setting – 10-fold cross 

validation. 

Figure 5.25 : Root Relative Squared Error (Cross Validation: 10-Folds) 

 

 

 

 

 

 

 

The root relative squared error value is found to be lowest in case of Random Tree 

classifier with 0.00% whereas the root relative squared error percentage value is found 

to be highest in case of SMO with percentage value of 66.92%. So, it can be interpreted 

that based on the measure RRSE the most appropriate algorithm is found to be Random 

Tree with lowest percentage value when evaluated at configuration setting – 10-fold 

cross validation. 

In summary, it is important to understand error measures in Machine learning for 

assessing the performance of model properly and making informed decisions. The 

choice of  specific metrics depends on the nature of the problem,  characteristics of the 

dataset, and  goals of the analysis. 
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C.   Execution Time Results 

The execution time of a machine learning algorithm refers to the  time it takes for the 

algorithm to process and analyse  input data, train the model (if applicable), and produce 

predictions or results.  Execution time is an important factor when evaluating the 

efficiency and scalability of  machine learning algorithms, especially when dealing with 

large data sets and real-time applications. The Average Execution Time of Nine 

Classifier Algorithm is given below. 

Table 5.5: Classifiers and Average Execution Time (Cross Validation: 10-Folds) 

Classifier 
Average 

Execution Time 

(Seconds) 

Bayes Net 0.035 

Naïve Bayes 0 

Logistic 0.02 

SMO 0 

IBk 0 

KStar 0 

MultiClass 

Classifier 
0.03 

Random 

Forest 
0.16 

RandomTree 0 

Figure 5.26 : Average Execution Time (Cross Validation: 10-Folds) 
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According to the performance measure average execution time it was found that the 

lowest average execution time were of the classifiers Naïve Bayes, SMO, IBK, KStar 

and Random Tree with values nearly 0 Seconds each whereas the highest average 

execution time was found to be of the classifiers Random Tree classifier with values 

0.16 respectively. Overall, it can be interpreted the most appropriate classifiers based 

on the performance measure average execution time are found to be Naïve Bayes, SMO, 

IBK, KStar and Random Tree. 

There are Several factors like Algorithm complexity, Data Size, Model Training, 

Hardware resources, Optimizations, Feature Engineering and Software implementation 

etc. that can affect the execution time of a machine learning algorithm.  

5.3.4   Cross-Validation Configuration Setting (25-Folds) Results 

Cross-validation is a valuable technique in machine learning for assessing the 

performance of predictive models. It involves splitting a dataset into multiple subsets 

or "folds" to train and test the model on different portions of the data. The number of 

folds, such as the "25-folds" configuration setting you mentioned, determines how 

many times this process is repeated. The Weka tool was being used for the analysis of 

various classification machine learning algorithms. K-folds Cross-Validation Approach 

is used for evaluating the Performance of Machine learning Algorithms, where K value 

is changed to study difference cases. In 25 folds Cross-Validation K value is 25 where 

data set is divided into 25 parts, out of which 24 parts are used for training the Machine 

learning Algorithm and only One part is used for testing the Algorithm. Twenty five 

iterations are executed for 25-folds, In first iteration part one will be used for testing 

and remaining Twenty four parts will be used for training. In second iteration part two 

will be used for testing and remaining twenty four parts will be used for training. This 

recursion will continue up to the last iteration to complete the Cross-Validation. 

Following credentials are used for Data Analysis. 

Dataset: Udaipur_Traffic   Source: TOMTOM Server 

Date: October 2023    Duration: One Month 

Number of Instances: 1000 

Number of Attributes (After Feature Extraction and Selection): 7 
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A.   Performance Measures 

i. Accuracy Measures  

Table 5.6: Classifiers and Accuracy Measures (Cross-Validation: 25-Folds)  

Classifier Accuracy 
Incorrectly 

Classified 

Instances 

Kappa 

statistic 

Bayes Net 99.60% 0.40% 0.967 

Naïve Bayes 97.90% 2.10% 0.818 

Logistic 99.10% 0.10% 0.992 

SMO 97.20% 2.80% 0.722 

IBk 98.80% 1.20% 0.905 

KStar 98.70% 1.30% 0.897 

MultiClass 

Classifier 
99.10% 0.10% 0.992 

Random 

Forest 
100.00% 0.00% 1.000 

RandomTree 100.00% 0.00% 1.000 

 

Figure 5.27:  Performance Measure Accuracy (Cross-Validation: 25 Folds) 

 

 

 

 

 

 

 

 

 

 

 

Based on the performance measure accuracy it can be interpreted that Random Forest 

and Random Tree classifiers were the most appropriate one as they were having the 

highest accuracy value of 100% whereas classifier Naïve Bayes and SMO were having 

the lowest value of accuracy 97.90% and 97.20% each. 
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Figure 5.28: Incorrectly Classified Instances (Cross-Validation: 25 Folds) 

 

 

 

 

 

 

 

According to the performance measure incorrectly classified instances it can be 

interpreted that Random Forest and Random Tree classifiers were the most appropriate 

one as these Algorithms were having the lowest number of incorrectly classifies 

instances, whereas classifiers SMO  was having the highest number of incorrectly 

classified instances. 

Figure 5.29: Kappa Statistic (Cross-Validation: 25 Folds) 
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Kappa value, 1.000, suggests a very good level of agreement between the classifiers in 

that particular scenario, while the lowest value, 0.722, falls into the good to moderate 

agreement range. Overall, the data suggests that there is a generally positive level of 

agreement in the assessed situations, with some instances demonstrating higher 

agreement than others. 

In correctly classified instances and kappa statistics are performance metrics which are 

important to explore to get more comprehensive insights to develop accurate machine 

learning model. 

ii. Confusion Matrix Parameters – Low Traffic 

Table 5.7 shows confusion matrix parameters TP Rate, FP Rate, Precision, Recall, F-

Measure and ROC Area for Low Traffic case. Machine learning often requires a limited 

amount of data when dealing with low-traffic scenarios. In such cases, the challenge is 

to create a robust model despite data limitations. Data Augmentation techniques are 

used to artificially increase the size of  data set which can be helpful especially in low 

traffic scenarios.  

Table 5.7: Classifiers and Performance Measures Class Label: Low Traffic 

 Cross Validation: 25-Folds 

Classifier TP Rate  FP Rate Precision Recall F-Measure ROC Area 

Bayes Net 1.000 0.060 0.996 1.000 0.998 1.000 

Naïve Bayes 0.995 0.239 0.983 0.995 0.989 0.990 

Logistic 0.999 0.000 1.000 0.999 0.999 1.000 

SMO 1.000 0.418 0.971 1.000 0.985 0.791 

IBk 0.992 0.075 0.995 0.992 0.994 0.959 

KStar 0.992 0.090 0.994 0.992 0.993 0.997 

MultiClass 

Classifier 
0.999 0.000 1.000 0.999 0.999 1.000 

Random 

Forest 
1.000 0.000 1.000 1.000 1.000 1.000 

RandomTree 1.000 0.000 1.000 1.000 1.000 1.000 
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Figure 5.30 : TP Rate (Cross Validation: 25-Folds – Low Traffic) 

 

 

 

 

 

 

 

According to the performance measure TP rate for class label: Low Traffic it was found 

that the highest true positive rate was of the classifiers Bayes Net, SMO, Random Forest 

and Random Tree with value 1.000, followed by 0.999 of Logistic and MultiClass 

Classifier, The lowest TP rate was found to be of the classifiers IBK and KStar with 

value 0.992 respectively.  

Figure 5.31 : FP Rate (Cross Validation: 25-Folds – Low Traffic) 

 

 

 

 

 

 

 

Based on the performance measure FP rate for class label: Low Traffic it was found 

that the lowest false positive rate was of the classifiers Logistic, MultiClass Classifier, 

Random Forest and Random Tree with value 0.000, followed by 0.060 of Bayes Net 

whereas the highest FP rate was found to be of the classifier SMO with value 0.418.  
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Figure 5.32: Precision (Cross Validation: 25-Folds – Low Traffic) 

 

 

 

 

 

 

 

According to the performance measure precision for class label: Low Traffic it was 

found that the highest precision value was of the classifiers Logistic, MultiClass 

Classifier, Random Forest and Random Tree with value 1.000, followed by 0.996, 

0.995 and 0.994 of Bayes Net, IBK and KStar respectively whereas the lowest precision 

value was found to be of the classifier SMO with values 0.971 respectively. Overall, it 

can be interpreted that the most appropriate classifiers based on the performance 

measure precision are found to be four Algorithms.  

Figure 5.33 : Recall (Cross Validation: 25-Folds – Low Traffic) 
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Based on the performance measure recall for class label: Low Traffic it was found that 

the highest recall value was of the classifiers Bayes Net, SMO, Random Forest and 

Random Tree with value 1.000, followed by 0.999 of  Logistic and MultiClass 

Classifier respectively whereas the lowest recall value was found to be of the classifiers 

IBK and KStar with values 0.992 respectively. Overall, it can be interpreted that the 

most appropriate classifier based on the performance measure recall are found to be 

Bayes Net, SMO, Random Forest and Random Tree.  

Figure 5.34 : F-Measure (Cross Validation: 25-Folds – Low Traffic) 

 

 

 

 

 

 

 

According to the performance measure F-Measure for class label: Low Traffic it was 

found that the highest F-Measure value was of the classifiers Random Forest and 

Random Tree with value 1.000, followed by 0.999 and 0.998 of Logistic, MultiClass 

Classifier and Bayes Net respectively whereas the lowest F-Measure value was found 

to be of the classifiers SMO with value 0.985. Overall, it can be interpreted that the 

most appropriate classifier based on the performance measure F-Measure are found to 

be Random Forest and Random Tree.  
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Figure 5.35 : ROC Area (Cross Validation: 25-Folds – Low Traffic) 

 

 

 

 

 

 

 

 

Based on the performance measure ROC for class label: Low Traffic it was found that 

the highest ROC Area value was of the classifiers Bayes Net, Logistic, MultiClass 

Classifier, Random Forest and Random Tree with value 1.000, followed by 0.997, 

0.990 and 0.959 of KStar, Naïve Bayes and IBK respectively whereas the lowest ROC 

Area value was found to be of the classifiers SMO with value 0.791 respectively. 

In summary, performance measurements play a critical role in evaluating the 

effectiveness of machine learning algorithms, providing insight into their ability to 

make accurate predictions and transform appropriately to new, unseen data. Choosing 

the most appropriate metric depends on the nature of your particular problem, the 

characteristics of your data, and your analysis goals. 

 

iii. Confusion Matrix Parameters – Heavy Traffic 

Heavy Traffic generates huge amounts of data from the various IOT sensors. These data 

sets can be used by Machine Learning Algorithms to develop prediction models. Table 

5.8 shows the Confusion Matrix parameters TP Rate, FP Rate, Precision, Recall, F-

Measure and ROC Area obtained for Heavy Traffic conditions. 
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Table 5.8: Classifiers Performance Measure Class Label: Heavy Traffic:  

Cross Validation: 25-Folds 

Classifier TP Rate FP Rate Precision Recall F-Measure ROC Area 

Bayes Net 0.940 0.000 1.000 0.940 0.969 1.000 

Naïve Bayes 0.761 0.005 0.911 0.761 0.829 0.990 

Logistic 1.000 0.001 0.985 1.000 0.993 1.000 

SMO 0.582 0.000 1.000 0.582 0.736 0.791 

IBk 0.925 0.008 0.899 0.925 0.912 0.959 

KStar 0.910 0.008 0.897 0.910 0.904 0.997 

MultiClass 

Classifier 
1.000 0.001 0.985 1.000 0.993 1.000 

Random 

Forest 
1.000 0.000 1.000 1.000 1.000 1.000 

RandomTree 1.000 0.000 1.000 1.000 1.000 1.000 

Figure 5.36 : TP Rate (Cross Validation: 25-Folds – Heavy Traffic) 

 

 

 

 

 

 

 

According to the performance measure TP rate for class label: Heavy Traffic it was 

found that the highest true positive rate was of the classifiers Logistic, MultiClass 

Classifier, Random Forest and Random Tree with value 1.0, followed by 0.940, 0.925 

and 0.910 of Bayes Net, IBK and KStar respectively whereas the lowest TP rate was 

found to be of the SMO with value 0.582 respectively.  
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Figure 5.37 : FP Rate (Cross Validation: 25-Folds – Heavy Traffic) 

 

 

 

 

 

 

 

Based on the performance measure FP rate for class label: Heavy Traffic it was found 

that the lowest false positive rate were of the classifiers Bayes Net, SMO, Random 

Forest and Random Tree with value 0.00, followed by 0.001 of Logistic and MultiClass 

Classifier whereas the highest FP rate was found to be of the classifiers IBK and KStar 

with value 0.008 respectively. Overall, it can be interpreted the most appropriate 

classifier based on the performance measure FP rate is found to be Bayes Net, SMO, 

Random Forest and Random Tree with lowest FP rate value.  

Figure 5.38: Precision (Cross Validation: 25-Folds – Heavy Traffic) 
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According to the performance measure precision class label: Heavy Traffic it was found 

that the highest precision value was of the classifiers Bayes Net, SMO, Random Forest 

and Random Tree with value 1.0, followed by 0.985 of Logistic and MultiClass 

Classifier respectively whereas the lowest precision values were found to be of the 

classifiers IBK and KStar with values 0.899 and 0.897 respectively.  

Figure 5.39: Recall (Cross Validation: 25-Folds – Heavy Traffic) 

 

 

 

 

 

 

Based on the performance measure recall class label: Heavy Traffic it was found that 

the highest recall value was of the classifiers Logistic, MultiClass Classifier, Random 

Forest and Random Tree with value 1.0, followed by 0.940 ,0.925 and 0.910 of Bayes 

Net, IBK and KStar respectively whereas the lowest recall value was found to be of the 

classifier SMO with value 0.582 respectively.  

Figure 5.40: F-Measure (Cross Validation: 25-Folds – Heavy Traffic) 
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According to the performance measure F-Measure class label: Heavy Traffic it was 

found that the highest F-Measure value was of the classifier Random Forest and 

Random Tree with value 1.0, followed by 0.993 and 0.969 of  Logistic, MultiClass 

Classifier and Bayes Net respectively whereas the lowest F-Measure value was found 

to be of the classifier SMO with value 0.736. Overall, it can be interpreted that the most 

appropriate classifier based on the performance measure F-Measure is found to be 

Random Forest and Random Tree.  

Figure 5.41:  ROC Area (Cross Validation: 25-Folds – Heavy Traffic) 

 

 

 

 

 

 

Based on the performance measure ROC class label: Heavy Traffic it was found that 

the highest ROC Area value was of the classifiers Bayes Net, Logistic, MultiClass 

Classifier, Random Forest and Random Tree with value 1.0, followed by 0.997, 0.990 

and 0.959 of KStar, Naïve Bayes and IBK respectively whereas the lowest ROC Area 

value was found to be of the classifier SMO with value 0.791 respectively. Overall, it 

can be interpreted the most appropriate classifiers based on the performance measure 

ROC Area are found to be Five Algorithms. 

In conclusion the 25 fold Cross validation not only increases the reliability of model 

but also gives insights of model and explains how model behave under different 

conditions. More number of folds trains model more accurately to face real life 

applications and also diminishes the chances of overfitting and underfitting. More 

number of folds also increases model effectiveness and gives superior model 

performance, paving the way for more trustworthy and impactful model for real life 

applications. 
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B.   Error Measure Results 

Table 5.9: Classifiers and Error Measures (Cross Validation: 25-Folds) 

Classifier 
Mean 

absolute 

error 

Root 

mean 

squared 

error 

Relative 

absolute 

error 

Root 

relative 

squared 

error 

Bayes Net 0.005 0.050 3.89% 20.08% 

Naïve Bayes 0.026 0.134 20.28% 53.62% 

Logistic 0.001 0.032 91.68% 12.75% 

SMO 0.028 0.167 22.26% 66.92% 

IBk 0.013 0.109 10.34% 43.77% 

KStar 0.016 0.094 12.63% 37.59% 

MultiClass 

Classifier 
0.001 0.032 0.92% 12.73% 

Random Forest 0.001 0.008 0.77% 3.08% 

RandomTree 0.000 0.000 0.00% 0.00% 

Figure 5.42: Mean Absolute Error (Cross-Validation: 25 Folds)  

 

 

 

 

 

 

 

 

The mean absolute error is found to be lowest in case of Random Tree with the value 

0.000 Whereas the mean absolute error value of SMO is found to be highest with value 

0 .028. So, it can be interpreted that based on the measure Mean absolute Error the most 

appropriate algorithm is found to be Random Tree at configuration setting – 25-fold 

cross validation. 
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Figure 5.43: Root Mean Squared Error (Cross-Validation: 25 Folds) 

 

 

 

 

 

 

 

The root mean squared error value is found to be highest in case of SM0 with the value 

of 0 .167 whereas the lowest value is found to be of Random Tree with value 0.000. So, 

it can be interpreted that based on the measure RMSE the most appropriate algorithm 

is found to be Random Tree at configuration setting – 25-fold cross validation. 

Figure 5.44: Relative Absolute Error (Cross Validation: 25-Folds) 

 

 

 

 

 

 

Accordingly, the relative absolute error value is found to be lowest in case of  Random 

Tree classifier with 0.00%  whereas the highest relative absolute error percentage value 

is found to be in case of Logistic with 91.68%. So, it can be suggested that based on the 

measure Relative Absolute Error the most appropriate algorithm is found to be Random 

Tree with lowest value when evaluated at configuration setting – 25-fold cross 

validation. 
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Figure 5.45: Root Relative Squared Error (Cross Validation: 25-Folds) 

 

 

 

 

 

 

 

The root relative squared error value is found to be lowest in case of Random Tree 

classifier with 0.00% whereas the root relative squared error percentage value is found 

to be highest in case of SMO with percentage value of 66.92%. So, it can be interpreted 

that based on the measure RRSE the most appropriate algorithm is found to be Random 

Tree with lowest percentage value when evaluated at configuration setting – 25-fold 

cross validation. 

 

In summary, it is important to understand error measures in Machine learning for 

assessing the performance of model properly and making informed decisions. The 

choice of  specific metrics depends on the nature of the problem,  characteristics of the 

dataset, and  goals of the analysis. 

 

C.   Execution Time Results 

The execution time of a machine learning algorithm refers to the  time it takes for the 

algorithm to process and analyse  input data, train the model (if applicable), and produce 

predictions or results.  Execution time is an important factor when evaluating the 

efficiency and scalability of  machine learning algorithms, especially when dealing with 

large data sets and real-time applications. The Average Execution Time of Nine 

Classifier Algorithm for Cross Validation 25 fold is given below. 
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 Table 5.10: Classifiers and Average Execution Time (Cross Validation: 25-Folds) 

Classifier 
Average 

Execution Time 

(Seconds) 

Bayes Net 0.03 

Naïve Bayes 0.01 

Logistic 0.04 

SMO 0.09 

IBk 0 

KStar 0 

MultiClass 

Classifier 
0 

Random 

Forest 
0.04 

RandomTree 0 

Figure 5.46 : Average Execution Time (Cross Validation: 25-Folds) 

 

 

 

 

 

 

 

According to the performance measure average execution time it was found that the 

lowest average execution time were of the classifiers IBK, KStar, MultiClass Classifier 

and Random Tree with values 0.0 each whereas the highest average execution time was 

found to be of the classifier SMO with values 0.09 respectively. Overall, it can be 

interpreted that the most appropriate classifiers based on the performance measure 

average execution time are found to be IBK, KStar, MultiClass Classifier and Random 

Tree. 
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5.3.5 Cross-Validation: Configuration Setting (30% Split) Results 

In the context of cross-validation, the "30% Split" configuration setting typically refers 

to a technique called "holdout validation" or "simple validation." It involves splitting 

the dataset into two portions: one for training the machine learning model and another 

for testing its performance. Here 70% of Data set is used for training the machine 

learning model and 30% is used for testing the Model. Testing is basically used to 

evaluate the model based on  various metrics. Confusion Matrix can be used to evaluate 

the final performance of the Selected Machine learning models.  

Figure 5.47 : Data Set Split 

 

 

 

 

 

As shown in the Figure 5.47 the entire data set is randomly partitioned into Training set 

and Testing set.  Since The data set is split into only two set, therefore it is constructed 

very fast on training data and executed for testing very fast. Following credentials are 

used for Data Analysis. 

 

Dataset: Udaipur_Traffic   Source: TOMTOM Server 

Date: October 2023    Duration: One Month 

Number of Instances: 1000 

Number of Attributes (After Feature Extraction and Selection): 7 
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A.   Performance Measures 

i. Accuracy Measures  

Table 5.11: Classifiers and Accuracy Measures (Cross-Validation:30% Split)  

Classifier Accuracy 
Incorrectly 

Classified 

Instances 

Kappa 

Statistic 

Bayes Net 100% 0.00% 0.010 

Naïve Bayes 97.57% 2.43% 0.008 

Logistic 98.71% 1.28% 0.009 

SMO 96.71% 3.29% 0.707 

IBk 98.43% 1.57% 0.881 

KStar 97.57% 2.43% 0.797 

MultiClass 

Classifier 
98.71% 1.29% 0.900 

Random 

Forest 
100.00% 0.00% 1.000 

RandomTree 99.14% 0.86% 0.935 

Figure 5.48 : Performance Measure Accuracy (Cross-Validation: 30% Split) 

 

 

 

 

 

 

 

Based on the performance measure accuracy it can be interpreted that Bayes Net and 

Random Forest classifiers were the most appropriate one as they were having the 

highest accuracy value of 100% whereas classifier SMO was having the lowest value 

of accuracy 96.71% respectively. 
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Figure 5.49: Incorrectly Classified Instances (Cross-Validation: 30% Split) 

 

 

 

 

 

 

 

According to the performance measure incorrectly classified instances it can be 

interpreted that Bayes Net and Random Forest classifier were the most appropriate one 

as they were having the lowest number of incorrectly classified instances accounting 

for 0% whereas classifier SMO classifier was having the highest number of incorrectly 

classifies instances accounting as 3.29% respectively. 

Figure 5.50: Kappa Statistic (Cross-Validation: 30% Split) 
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Kappa value, 1.000, suggests a very good level of agreement between the classifiers in 

that particular scenario, while the lowest value, 0.008, falls into the poor agreement 

range.  

ii.  Confusion Matrix Parameters – Low Traffic 

Machine learning often requires a limited amount of data when dealing with low-traffic 

scenarios. In such cases, the challenge is to create a robust model despite data 

limitations. Data Augmentation techniques are used to artificially increase the size of 

data set which can be helpful especially in low traffic scenarios.   

Table 5.12: Classifiers Performance Measures Class Label: Low Traffic: 

Cross Validation: 30% Split 

Classifier TP Rate FP Rate Precision Recall 
F-

Measure 

ROC 

Area 

Bayes Net 1.000 0.000 1.000 1.000 1.000 1.000 

Naïve Bayes 0.997 0.283 0.977 0.997 0.987 0.990 

Logistic 1.000 0.170 0.986 1.000 0.993 0.990 

SMO 1.000 0.434 0.966 1.000 0.983 0.783 

IBk 0.997 0.170 0.986 0.997 0.992 0.914 

KStar 1.000 0.321 0.974 1.000 0.987 0.997 

MultiClass 

Classifier 
1.000 0.170 0.986 1.000 0.993 0.990 

Random 

Forest 
1.000 0.000 1.000 1.000 1.000 1.000 

RandomTree 1.000 0.113 0.991 1.000 0.995 0.943 

Figure 5.51: TP Rate (Cross-Validation: 30% Split) 
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According to the performance measure TP rate it was found that the highest true 

positive rate was of the classifiers Bayes Net, Logistic, SMO, KStar, MultiClass 

Classifier, Random Forest and Random Tree with value 1.0, whereas the lowest TP rate 

was found to be of the classifiers Naïve Bayes and IBK with values 0.997 respectively. 

Overall, it can be interpreted that the most appropriate classifier based on the 

performance measure TP rate are seven Algorithms. 

Figure 5.52: FP Rate (Cross-Validation: 30% Split) 

 

 

 

 

 

 

Based on the performance measure FP rate it was found that the lowest false positive 

rate was of the classifiers Bayes Net and Random Forest with value 0.000, whereas the 

highest FP rate was found to be of the classifier SMO with value 0.434 respectively. 

Overall, it can be interpreted that the most appropriate classifier based on the 

performance measure FP rate is found to be Bayes Net and Random Forest with lowest 

FP rate value.  

Figure 5.53: Precision (Cross-Validation: 30% Split) 
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According to the performance measure precision it was found that the highest precision 

value was of the classifier Bayes Net and Random Forest with value 1.0, followed by 

0.991 of Random Tree respectively whereas the lowest precision value was found to be 

of the classifiers SMO with values 0.966 respectively. Overall, it can be interpreted that 

the most appropriate classifier based on the performance measure precision is found to 

be the Bayes Net and Random Forest. 

Figure 5.54: Recall (Cross-Validation: 30% Split) 

 

 

 

 

 

 

Based on the performance measure recall it was found that the highest recall value was 

of the classifiers Bayes Net, Logistic, SMO, KStar, MultiClass Classifier, Random 

Forest and Random Tree with value 1.0, whereas the lowest recall value was found to 

be of the classifiers Naïve Bayes and IBK with values 0.997 respectively. Overall, it 

can be interpreted that the most appropriate classifier based on the performance 

measure recall is found to be Seven Algorithms. 

Figure 5.55: F-Measure (Cross-Validation: 30% Split) 
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According to the performance measure F-Measure it was found that the highest F-

Measure value was of the classifiers Bayes Net and Random Forest with value 1.00, 

followed by 0.995 of Random Tree respectively whereas the lowest F-Measure value 

was found to be of the classifiers SMO classifier with values 0.983 respectively. 

Overall, it can be interpreted that the most appropriate classifier based on the 

performance measure F-Measure is found to be Bayes Net and Random Forest.  

Figure 5.56 : ROC Area (Cross-Validation: 30% Split) 

 

 

 

 

 

 

 

Based on the performance measure ROC it was found that the highest ROC Area value 

was of the classifiers Bayes Net and Random Forest with value 1.0, followed by 0.997 

of KStar respectively whereas the lowest ROC Area value was found to be of the 

classifiers SMO with values 0.783 respectively. Overall, it can be interpreted the most 

appropriate classifier based on the performance measure ROC Area is found to be 

Bayes Net and Random Forest.  

In summary, performance measurements play a critical role in evaluating the 

effectiveness of machine learning algorithms, providing insight into their ability to 

make accurate predictions and transform appropriately to new, unseen data. Choosing 

the most appropriate metric depends on the nature of your problem, the characteristics 

of your data, and your analysis goals. 
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iii. Confusion Matrix Parameters – Heavy Traffic 

Heavy Traffic generates huge amounts of data from the various IOT sensors. These data 

sets can be used by Machine Learning Algorithms to develop prediction models. Table 

5.13 shows the Confusion Matrix parameters TP Rate, FP Rate, Precision, Recall, F-

Measure and ROC Area obtained for Heavy Traffic conditions. 

Table 5.13: Classifiers Performance Measure Class Label: Heavy Traffic:  

Cross Validation: 30% Split 

Classifier 
TP 

Rate  

FP 

Rate 
Precision Recall 

F-

Measure 

ROC 

Area 

Bayes Net 1.000 0.000 1.000 1.000 1.000 1.000 

Naïve Bayes 0.717 0.003 0.950 0.717 0.817 0.990 

Logistic 0.830 0.000 1.000 0.830 0.907 0.999 

SMO 0.566 0.000 1.000 0.566 0.723 0.783 

IBk 0.830 0.003 0.957 0.830 0.889 0.914 

KStar 0.679 0.000 1.000 0.679 0.809 0.097 

MultiClass 

Classifier 
0.830 0.000 1.000 0.830 0.907 0.999 

Random 

Forest 
1.000 0.000 1.000 1.000 1.000 1.000 

RandomTree 0.887 0.000 1.000 0.887 0.940 0.943 

 

Figure 5.57: TP Rate (Cross-Validation: 30% Split) 
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According to the performance measure TP rate for class label: Heavy Traffic it was 

found that the highest true positive rates were of the classifier Bayes Net and Random 

Forest with value 1.0, followed by 0.887 of Random Tree respectively whereas the 

lowest TP rate was found to be of the classifiers SMO with value 0.566 respectively. 

Overall, it can be interpreted that the most appropriate classifier based on the 

performance measure TP rate is Bayes Net and Random Forest. 

Figure 5.58: FP Rate (Cross-Validation: 30% Split) 

 

 

 

 

 

 

Based on the performance measure FP rate for class label: Heavy Traffic it was found 

that the lowest false positive rates were of the classifier Bayes Net, Logistic, SMO, 

KStar, MultiClass Classifier, Random Forest, and Random Tree with value 0.00 each, 

whereas the highest FP rate was found to be of the classifiers Naïve Bayes and IBK 

with values 0.003.  

Figure 5.59 : Precision (Cross-Validation: 30% Split) 
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According to the performance measure precision class label: Heavy Traffic it was found 

that the highest precision value was of the classifiers Bayes Net, Logistic, SMO, KStar, 

MultiClass Classifier, Random Forest, and Random Tree with value 1.0, whereas the 

lowest precision value was found to be of the classifiers Naïve Bayes with value 0.950 

respectively. Overall, it can be interpreted that the most appropriate classifier based on 

the performance measure precision is found to be Seven Algorithms. 

Figure 5.60: Recall (Cross-Validation: 30% Split) 

 

 

 

 

 

 

Based on the performance measure recall class label: Heavy Traffic it was found that 

the highest recall value was of the classifiers Bayes Net and Random Forest with value 

1.0, followed by 0.887 of Random Tree respectively whereas the lowest recall value 

was found to be of the classifiers SMO with value 0.566 respectively. Overall, it can be 

interpreted that the most appropriate classifier based on the performance measure recall 

is found to be Bayes Net and Random Forest. 

Figure 5.61: F-Measure (Cross-Validation: 30% Split) 
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According to the performance measure F-Measure class label: Heavy Traffic it was 

found that the highest F-Measure value was of the classifiers Bayes Net and Random 

Forest with value 1.0, followed by 0.940 of Random Tree respectively whereas the 

lowest F-Measure value was found to be of the classifier SMO classifier with value 

0.723 respectively. Overall, it can be interpreted that the most appropriate classifier 

based on the performance measure F-Measure is found to be Bayes Net and Random 

Forest.  

Figure 5.62: ROC Area (Cross-Validation: 30% Split) 

 

 

 

 

 

 

 

Based on the performance measure ROC class label: Heavy Traffic it was found that 

the highest ROC Area values were of the classifiers Bayes Net and Random Forest with 

value 1.00, followed by 0.999 of Logistic and MultiClass Classifier respectively 

whereas the lowest ROC Area value was found to be of the classifier KStar with value 

0.097 respectively. Overall, it can be interpreted the most appropriate classifier based 

on the performance measure ROC Area are found to be Bayes Net and Random Forest.  

In conclusion the 30% split Cross validation not only increases the reliability of model 

but also gives insights of model and explains how model behave under different 

conditions. Sometimes 80:20 model is also used to face real life applications where 

80% data is used for Training the model and 20% data is used for testing the model. 

More percentage data for training also increases model effectiveness and gives superior 

model performance, paving the way for more trustworthy and impactful model for real 

life applications. 
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B.   Error Measure Results 

Table 5.14: Classifiers and Error Measures (Cross Validation: 30% Split)  

Classifier 
Mean 

absolute 

error 

Root 

mean 

squared 

error 

Relative 

absolute 

error 

Root 

relative 

squared 

error 

Bayes Net 0.008 0.054 7.50% 20.50% 

Naïve Bayes 0.024 0.144 20.34% 54.31% 

Logistic 0.013 0.113 10.86% 42.35% 

SMO 0.033 0.181 27.88% 68.19% 

IBk 0.019 0.125 16.05% 47.02% 

KStar 0.025 0.131 21.48% 49.39% 

MultiClass 

Classifier 
0.013 0.113 10.86% 42.35% 

Random 

Forest 
0.005 0.025 4.30% 9.54% 

RandomTree 0.009 0.093 7.27% 34.83% 

Figure 5.63: Mean Absolute Error (Cross-Validation: 30% Split) 
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Figure 5.64: Root Mean Squared Error (Cross-Validation: 30% Split) 

 

 

 

 

 

 

 

The root mean squared error value is found to be highest in case of SMO classifier with 

the value of 0.181 respectively whereas the lowest value is found to be of Random 

Forest with value 0.025. So, it can be interpreted that based on the measure RMSE the 

most appropriate algorithm is found to be Random Forest at configuration setting – 

30% Split Method. 

Figure 5.65: Relative Absolute Error (Cross-Validation: 30% Split) 
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value is found to be in case of SMO with percentage value 27.88% respectively. Based 

on the measure RAE the most appropriate algorithm is found to be Random Forest. 

Figure 5.66: Root Relative Square Error (Cross-Validation: 30% Split) 

 

 

 

 

 

 

The root relative squared error value is found to be lowest in case of Random Forest 

classifier with 9.54% whereas the root relative squared error percentage value is found 

to be highest in case of SMO with percentage value of 68.19%. So, it can be interpreted 

that based on the measure RRSE the most appropriate algorithm is found to be Random 

Forest with lowest percentage value when evaluated at configuration setting – 30% 

Split cross validation. 

 

In summary, it is important to understand error measures in Machine learning for 

assessing the performance of model properly and making informed decisions. The 

choice of specific metrics depends on the nature of the problem,  characteristics of the 

dataset, and  goals of the analysis. 

C.   Execution Time Results 

The execution time of a machine learning algorithm refers to the time it takes for the 

algorithm to process and analyse  input data, train the model (if applicable), and produce 

predictions or results.  Execution time is an important factor when evaluating the 

efficiency and scalability of machine learning algorithms, especially when dealing with 

large data sets and real-time applications. The Average Execution Time of Nine 

Classifier Algorithm for Cross Validation 30% split is given below. 
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Table 5.15: Classifiers and Average Execution Time (Cross Validation: 30% Split) 

Classifier 
Average 

Execution Time 

(Seconds) 

Bayes Net 0.02 

Naïve Bayes 0.02 

Logistic 0 

SMO 0 

IBk 0.02 

KStar 0.14 

MultiClass 

Classifier 
0.02 

Random Forest 0.01 

Random Tree 0 

Figure 5.67: Average Execution Time (Cross-Validation: 30% Split) 

 

 

 

 

 

 

 

According to the performance measure average execution time it was found that the 

lowest average execution time were of the classifiers Logistic, SMO and Random Tree 

with values 0.00 each whereas the highest average execution time was found to be of 

the classifier KStar classifier with value 0.14 respectively. Overall, it can be interpreted 

that the most appropriate classifiers based on the performance measure average 

execution time are found to be Logistic, SMO and Random Tree. 
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5.3.6   Consolidated Result 

Nine Machine Learning Algorithms are Analyzed using Cross – Validation of 10-Fold, 

25-Fold and 30% split on various Performance Accuracy Measures, Confusion Matrix 

Parameters and Error Measures in two different conditions “Low Traffic” and “Heavy 

Traffic”. Summary of 10 – Fold, 25 – Fold and 30% split is shown below in 3D plots. 

A.   Performance Measures 

i. Accuracy Measures 

Figure 5.68:  Accuracy (Cross-Validation: 10-Fold, 25-Fold and 30% Split) 

 

 

 

 

 

 

From above three-Dimensional plot it is clear that the maximum average Accuracy 

score for Random Forest is 100% therefore it is concluded that Random Forest is best 

algorithms for getting best Accuracy using Cross – Validation of 10-Fold, 25-Fold and 

30% Split. 

Figure 5.69: Incorrectly Classified Instances ( 10-Fold, 25-Fold and 30% Split) 
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From above three-Dimensional plot it is clear that the minimum average incorrectly 

Classified Instance score for Random Forest is 0% therefore it is concluded that 

Random Forest is best algorithms for getting best Incorrectly Classified Instances using 

Cross – Validation of 10-Fold, 25-Fold and 30% Split. 

Figure 5.70: Kappa Statistics (Cross-Validation: 10-Fold, 25-Fold and 30% Split) 

 

 

 

 

 

 

 

 

From above three-Dimensional plot it is clear that the maximum average Kappa 

Statistics score for Random Forest is 1.0% therefore it is concluded that Random Forest 

is best algorithms for getting best Kappa Statistics using Cross – Validation of 10-Fold, 

25-Fold and 30% Split. 

ii. Confusion Matrix Parameters – Low Traffic 

Figure 5.71:  TP Rate (Cross-Validation: 10-Fold, 25-Fold and 30% Split) 
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From above three-Dimensional plot it is clear that the maximum average score for 

Bayes Net, SMO, Random Forest and Random Tree is 1.0 therefore it is concluded that 

Bayes Net, SMO, Random Forest and Random Tree are best algorithms for getting best 

True Positive Rate using Cross – Validation of 10-Fold, 25-Fold and 30% Split in Low 

Traffic Conditions. 

Figure 5.72:  FP Rate (Cross-Validation: 10-Fold, 25-Fold and 30% Split) 

 

 

 

 

 

 

 

From above three-Dimensional plot it is clear that the minimum average score for 

Random Forest and Random Tree is 0.0, therefore it is concluded that Random Forest 

and Random Tree are the best algorithms for getting best False Positive Rate using 

Cross – Validation of 10-Fold, 25-Fold and 30% Split in Low Traffic Conditions. 

Figure 5.73:  Precision (Cross-Validation: 10-Fold, 25-Fold and 30% Split) 
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From above three Dimensional plot it is clear that the maximum average score for 

Random Forest and Random Tree is 1.0, therefore it is concluded that Random Forest 

and Random Tree are the best algorithms for getting best Precision using Cross – 

Validation of 10-Fold, 25-Fold and 30% Split in Low Traffic Conditions. 

Figure 5.74:  Recall (Cross-Validation: 10-Fold, 25-Fold and 30% Split) 

 

 

 

 

 

 

 

From above three-Dimensional plot it is clear that the maximum average score for 

Bayes Net and Random Forest is 1.0 therefore it is concluded that Bayes Net and 

Random Forest are the best algorithms for getting best Recall using Cross – Validation 

of 10-Fold, 25-Fold and 30% Split in Low Traffic Conditions. 

Figure 5.75:  F Measure (Cross-Validation: 10-Fold, 25-Fold and 30% Split) 
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From above three Dimensional plot it is clear that the maximum average score for 

Random Forest is 1.0, therefore it is concluded that Random Forest is the best 

algorithms for getting best F Measure using Cross – Validation of 10-Fold, 25-Fold and 

30% Split  

Figure 5.76:  ROC Area (Cross-Validation: 10-Fold, 25-Fold and 30% Split) 

 

 

 

 

 

 

 

From above three-Dimensional plot it is clear that the maximum average score for 

Bayes Net and Random Forest is 1.0 therefore it is concluded that Bayes Net and 

Random Forest are the best algorithms for getting best ROC Area using Cross – 

Validation of 10-Fold, 25-Fold and 30% Split in Low Traffic Conditions. 

iii. Confusion Matrix Parameters – Heavy Traffic 

Figure 5.77:  TP Rate (Cross-Validation: 10-Fold, 25-Fold and 30% Split) 
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From above three Dimensional plot it is clear that the maximum average TP Rate score 

for Random Forest is 1.0, therefore it is concluded that Random Forest is the best 

algorithms for getting best TP Rate using Cross – Validation of 10-Fold, 25-Fold and 

30% Split in heavy traffic conditions. 

Figure 5.78:  FP Rate (Cross-Validation: 10-Fold, 25-Fold and 30% Split) 

 

 

 

 

 

 

 

From above three-Dimensional plot it is clear that the minimum average FP Rate score 

for Bayes Net, SMO, Random Forest and Random Tree is 0.0, therefore it is concluded 

that Bayes Net, SMO, Random Forest and Random Tree are the best algorithms for 

getting best False Positive Rate using Cross – Validation of 10-Fold, 25-Fold and 30% 

Split in Heavy Traffic Conditions. 

Figure 5.79: Precision (Cross-Validation: 10-Fold, 25-Fold and 30% Split) 
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From above three-Dimensional plot it is clear that the maximum average Precision 

score for Bayes Net, SMO, Random Forest and Random Tree is 1.0, therefore it is 

concluded that Bayes Net, SMO, Random Forest and Random Tree are the best 

algorithms for getting best Precision using Cross – Validation of 10-Fold, 25-Fold and 

30% Split in Heavy Traffic Conditions. 

Figure 5.80: Recall (Cross-Validation: 10-Fold, 25-Fold and 30% Split) 

 

 

 

 

 

 

 

From above three-Dimensional plot the maximum average Recall score for Random 

Forest is 1.0, therefore it is concluded that Random Forest is the best algorithm for 

getting best Recall using Cross – Validation of 10-Fold, 25-Fold and 30% Split in 

Heavy Traffic Conditions. 

Figure 5.81: F Measure (Cross-Validation: 10-Fold, 25-Fold and 30% Split) 
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From above three Dimensional plot it is clear that the maximum average F Measure 

score for Random Forest is 1.0, therefore it is concluded that Random Forest is the best 

algorithms for getting best F Measure using Cross – Validation of 10-Fold, 25-Fold and 

30% Split in Heavy Traffic Conditions.  

Figure 5.82: ROC Area (Cross-Validation: 10-Fold, 25-Fold and 30% Split) 

 

 

 

 

 

 

 

 

From above three Dimensional plot it is clear that the maximum average ROC Area 

score for Bayes Net and Random Forest is 1.0 therefore it is concluded that Bayes Net 

and Random Forest are the best algorithms for getting best ROC Area using Cross – 

Validation of 10-Fold, 25-Fold and 30% Split in Heavy Traffic Conditions. 

B.   Error Measure 

Figure 5.83: Mean Absolute Error (Cross-Validation: 10-Fold, 25-Fold and 30% Split) 
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From above three Dimensional plot it is clear that the average Mean Absolute Error 

score for Random Forest is minimum and it’s value is 0.002 therefore it is concluded 

that Random Forest is the best algorithms for getting Minimum Mean Absolute error 

using Cross – Validation of 10-Fold, 25-Fold and 30% Split. 

Figure 5.84: Root Mean Squared Error (10-Fold, 25-Fold and 30% Split) 

 

 

 

 

 

 

 

 

From above three Dimensional plot it is clear that the average Root Mean Squared Error 

score for Random Forest is minimum and it’s value is 0.013, therefore it is concluded 

that Random Forest is the best algorithms for getting Minimum Root Mean Squared 

Error using Cross – Validation of 10-Fold, 25-Fold and 30% Split. 

Figure 5.85: Relative Absolute Error(Cross-Validation:10-Fold,25-Fold & 30% Split) 
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From above three Dimensional plot it is clear that the average Relative Absolute Error 

score for Random Forest is minimum and it’s value is 1.94%, therefore it is concluded 

that Random Forest is the best algorithms for getting Minimum Relative Absolute Error 

using Cross – Validation of 10-Fold, 25-Fold and 30% Split. 

Figure 5.86: Root Relative Squared Error (10-Fold, 25-Fold and 30% Split) 

 

 

 

 

 

 

 

From above three Dimensional plot it is clear that the average Root Relative Squared 

Error score for Random Forest is minimum and it’s value is 5.13%, therefore it is 

concluded that Random Forest is the best algorithms for getting Minimum Root 

Relative Squared Error using Cross – Validation of 10-Fold, 25-Fold and 30% Split. 

C.   Execution Time 

Execution Time is one of the important parameter which decides the speed at which 

algorithm can evaluate and test data sets. It is very important parameter specially when 

data sets are too large, which is the prime requirement of any machine learning 

algorithm. If the machine learning algorithm is slow and efficient in all other aspects 

then cloud computing is the remedy for that. Multitasking in Cloud computing is the 

solution for slow Machine learning algorithms. The figure 5.87 shown below compares 

the execution time in seconds of Nine machine learning algorithms. 

 

 

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%

Bayes
Net

Naïve
Bayes

Logistic SMO IBk KStar Multi
Class

Random
Forest

Random
Tree

10 Fold 17.69% 54.31% 19.31% 66.92% 45.55% 39.53% 19.31% 2.76% 0.00%

25 Fold 20.08% 53.62% 12.75% 66.92% 43.77% 37.59% 12.73% 3.08% 0.00%

30% Split 20.50% 54.31% 42.35% 68.19% 47.02% 49.39% 42.35% 9.54% 34.83%

Root Relative Squared Error



191 
 

Figure 5.87: Execution Time (Cross-Validation: 10-Fold, 25-Fold and 30% Split) 

 

 

 

 

 

 

 

The above figure indicates that Random forest Algorithm Average execution time is 

maximum with average value of 0.07seconds. Random forest algorithm excels in all 

other parameters except execution time. This drawbacks can be nullified using cloud 

computing and parallel computing. The Random Tree is the most efficient and fast 

algorithm with average execution time in nano seconds or nearly zero. 

5.3.7    Dominance Chart 

Table 5.16 shows the Machine learning Algorithm Dominance chart For 10-fold, 25-

fold and 30% split Performance measures. This chart indicates the highest average 

marks obtained by the machine learning algorithms. One mark is allotted to the machine 

learning algorithm which got highest score in three categories 10-fold, 25-fold and 30% 

split. Dominance chart includes twenty parameters from Performance measure, 

Confusion matrix ( Low Traffic and Heavy Traffic ), Error measures and Execution 

time in seconds for finding out Total score. The selected algorithm should have highest 

marks out of twenty to be the best Machine Learning Algorithm. 
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Table 5.16 : Machine Learning Algorithms Dominance Chart 

Dominance Chart ( Cross -Validation 10 Fold, 25 Fold and 30% Split ) 

Classifiers 

Performance Measure 
Confusion Matrix Parameters                      

Low Traffic 

Confusion Matrix Parameters                

Heavy Traffic 

Error Measures 

 

Execution 

Time 

Total 

Score 

Accuracy 

Incorrectly 
Classified 
Instances 

 

Kappa 
statistic 

 

TP 

Rate 

FP 

Rate 
Precision Recall 

F-

Measure 

ROC 

Area 

TP 

Rate 

FP 

Rate 
Precision Recall 

F-

Measure 

ROC 

Area 

Mean 
absolute 

error 

Root 
mean 

squared 
error 

Relative 
absolute 

error 

Root 
relative 
squared 

error 

  

Bayes Net    1   1  1  1 1   1      6 

Naïve Bayes                      

Logistic                      

SMO    1       1 1         3 

IBK                      

K Star                      

Multi Class                      

Random 

Forest 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  19 

Random 

Tree 
   1 1 1     1 1        1 6 
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It is clear from the Table 5.16 that the highest score is obtained by Random Forest 

algorithm with total score of 19, followed by Random Tree and Bayes Net with six 

marks each. Thus considering Performance measures, Confusion matrix parameters, 

Error Measure and Execution Time, it is concluded that the Random Forest is the best 

Algorithm for forecasting the traffic flow conditions in smart city. 

5.3.8   Weighted Sum Model Analysis Using Python  

The Weighted Sum Model is a decision-making approach used to evaluate and rank a 

set of alternatives based on multiple criteria. It involves assigning weights to each 

criterion and then calculating a weighted sum of the normalized values of each criterion 

for each alternative. The alternative with the highest weighted sum is considered the 

best choice. The procedure for Weighted Sum Model is listed below. 

1. Classifier and Metric Definitions: Begin by defining the list of classifiers or 

alternatives you want to evaluate. Each classifier is associated with a set of 

metrics (criteria) that measure its performance. 

2. Metrics and Weights: Assign weights to each metric (criterion) based on its 

importance. These weights reflect the relative significance of each criterion in 

the decision-making process. The sum of weights should add up to 1 or 100% 

to ensure a meaningful comparison. 

3. Normalization: Normalize the metric values for each classifier to a common 

scale, often within the range of 0 to 1. This step ensures that metrics with 

different units and scales can be compared effectively. 

4. Weighted Sum Calculation: For each classifier, calculate the weighted sum of 

its normalized metric values. This is done by multiplying each normalized 

metric value by its corresponding weight, and then summing up these weighted 

values. 

5. Best Alternative: Identify the alternative with the highest calculated weighted 

sum. This alternative is considered the best choice according to the chosen 

criteria and their assigned weights. 

6. Decision: The alternative with the highest weighted sum is selected as the best 

choice based on the defined criteria and their weights. 
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The Weighted Sum Model is widely used in decision analysis when there are multiple 

factors to consider, and each factor carries a different level of importance. It's important 

to note that the success of the model heavily depends on the accuracy of the assigned 

weights and the relevance of the chosen metrics. 

Python Pseudocode: 

// Define classifier names 

classifiers = ["Classifier 1", "Classifier 2", ...] 

 

// Provided metrics (Replace with your actual metrics) 

metrics = [ 

    [metric_value_1_classifier_1, metric_value_2_classifier_1, ...], 

    [metric_value_1_classifier_2, metric_value_2_classifier_2, ...], 

    ... 

] 

 

// Define weights for each metric (customize these weights) 

metric_weights = [weight_metric_1, weight_metric_2, ...] 

 

// Function to normalize metrics to [0, 1] range 

function NormalizeMetrics(metrics): 

    normalized_metrics = EmptyMatrix() 

    for each classifier_metrics in metrics: 

        normalized_classifier_metrics = Normalize(classifier_metrics) 

        AddToMatrix(normalized_metrics, normalized_classifier_metrics) 

    return normalized_metrics 

 

// Function to calculate the weighted sum for each classifier 

function CalculateWeightedSums(normalized_metrics, metric_weights): 

    weighted_sums = EmptyList() 

    for each classifier_metrics in normalized_metrics: 

        weighted_sum = CalculateDotProduct(classifier_metrics, metric_weights) 

        AppendToList(weighted_sums, weighted_sum) 

    return weighted_sums 
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// Function to find the best alternative (index) 

function FindBestAlternative(weighted_sums): 

    best_alternative_index = IndexOfMax(weighted_sums) 

    return best_alternative_index 

// Function to print weighted sums 

function PrintWeightedSums(classifiers, weighted_sums): 

    for i from 0 to length(classifiers) - 1: 

        Print(classifiers[i], " - Weighted Sum:", weighted_sums[i]) 

// Function to print the best alternative 

function PrintBestAlternative(best_alternative): 

    Print("The best alternative is:", best_alternative) 

// Main program 

function Main(): 

    normalized_metrics = NormalizeMetrics(metrics) 

    weighted_sums = CalculateWeightedSums(normalized_metrics, metric_weights) 

    best_alternative_index = FindBestAlternative(weighted_sums) 

    best_alternative = classifiers[best_alternative_index] 

    PrintWeightedSums(classifiers, weighted_sums) 

    PrintBestAlternative(best_alternative) 

// Call the main program 

Main() 

 

5.3.8.1   Multi-Criteria Decision Making - Weighted Sum Method 

The Weighted Sum Method, a fundamental technique in Multi-Criteria Decision 

Making, facilitates decision-makers in evaluating and ranking alternatives by 

considering multiple criteria. This approach involves identifying relevant decision 

criteria, assigning weights to signify their importance, evaluating each alternative's 

performance on these criteria, normalizing scores to ensure comparability, and 

calculating a weighted sum for each alternative. The resulting scores enable a 

systematic ranking of alternatives, aiding decision-makers in selecting the most suitable 
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option that aligns with their preferences and objectives. This method serves as a 

valuable decision support tool across various domains. 

i. Evaluation with Cross Validation-10 Folds 

Table 5.17 presents a range of classification models assessed by their "Score (Weighted 

Sum)," with higher scores indicating superior performance.  

Table 5.17: Weighted Sum Score (Cross Validation-10 Folds) 

S.No. Classification 

Models 

Score              

(Weighted Sum) 

1 Bayes Net 0.801 

2 Naïve Bayes 0.722 

3 Logistic 0.807 

4 SMO 0.660 

5 IBk 0.767 

6 KStar 0.773 

7 MultiClass 

Classifier 
0.807 

8 Random Forest 0.820 

9 Random Tree 0.820 

The weighed sum-based score suggests that Random Forest and Random Tree has the 

highest score of 0.820 followed by Logistic and Multiclass classifier with core 0.807 

and Bayes Net with score 0.801. The lowest scores being obtained by the classifiers 

KStar, IBK, Naïve Bayes and SMO with values 0.773,0.767,0.722 and 0.660 

respectively. Further Rank and Percentile analysis would be executed to obtain the final 

rankings.  

Figure 5.88: Running MCDM Method in Python Environment 
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5.3.9    Rank and Percentile Method: 

Ranking and percentile methods can be applied to arrange classification algorithms in 

machine learning based on their performance metrics. Here's how you can use these 

methods: 

Ranking Method Algorithm: 

1. Collect Performance Metrics: Gather performance metrics (e.g., accuracy, 

precision, recall, F1 score, ROC AUC) for each classification algorithm. These 

metrics are typically computed using cross-validation or other evaluation 

techniques. 

2. Calculate Ranks: Calculate ranks for each algorithm based on each 

performance metric. Assign a rank of 1 to the algorithm with the highest score 

for a metric, 2 to the second highest, and so on. In the case of ties, you can use 

methods like averaging ranks. 

3. Calculate Average Rank: After ranking algorithms for each metric, calculate 

the average rank for each algorithm across all the metrics. This average rank 

represents the overall ranking for each algorithm. 

4. Sort and Present Results: Sort the algorithms based on their average ranks in 

ascending order. The algorithm with the lowest average rank is considered the 

top performer, while the one with the highest average rank is considered the 

lowest performer. You can present these rankings in a table or report. 

Percentile Method Algorithm: 

1. Collect Performance Metrics: Similar to the ranking method, gather 

performance metrics for each classification algorithm. 

2. Calculate Percentiles: For each performance metric, calculate the percentile 

rank of each algorithm. Percentile rank indicates the percentage of algorithms 

that performed worse than a particular algorithm for a given metric. 

3. Calculate Average Percentile Rank: After calculating percentiles for each 

metric, compute the average percentile rank for each algorithm across all the 

metrics. This average percentile rank represents the overall ranking for each 

algorithm. 
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4. Sort and Present Results: Sort the algorithms based on their average percentile 

ranks in ascending order. Lower average percentile rank indicates better 

performance across multiple metrics. 

Python Pseudocode : Rank_Classification_Algorithm 

 

Input: 

- List of classification algorithms (Algorithms) 

- List of performance metrics (Metrics) 

- Dictionary of algorithm performance data (AlgorithmMetrics) 

 

Output: 

- Sorted list of algorithms based on average rank (RankedAlgorithms) 

 

Begin: 

    // Initialize an empty dictionary to store ranks for each algorithm 

    Initialize an empty dictionary AlgorithmRanks 

     

    // Step 1: Calculate ranks for each algorithm and metric 

    For each Algorithm in Algorithms: 

        // Initialize a list to store ranks for each metric 

        Initialize an empty list MetricRanks 

         

        For each Metric in Metrics: 

            // Calculate the rank for the Algorithm based on the Metric 

            Rank = CalculateRank(AlgorithmMetrics[Algorithm][Metric]) 

             

            // Append the rank to the MetricRanks list 

            Append Rank to MetricRanks 

        End For 

         

        // Calculate the average rank for the Algorithm 

        AverageRank = CalculateAverageRank(MetricRanks) 

         

        // Store the average rank in the AlgorithmRanks dictionary 

        AlgorithmRanks[Algorithm] = AverageRank 

    End For 

     

    // Step 2: Sort algorithms based on average rank 

    SortedAlgorithms = SortAlgorithmsByRank(AlgorithmRanks) 

     

    // Step 3: Output the sorted list of algorithms 

    Return SortedAlgorithms 

 

End 
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Function: CalculateRank 

 

Input: 

- List of performance scores (Scores) 

 

Output: 

- Rank for the algorithm based on the scores (Rank) 

 

Begin: 

    // Sort the scores in descending order 

    SortedScores = SortScoresDescending(Scores) 

     

    // Initialize the rank as 1 

    Rank = 1 

     

    For each Score in SortedScores: 

        // Assign the current rank to the Score 

        Set Rank for Score = Rank 

         

        // Increment the rank for the next Score if it has the same value 

        If NextScoreExists() AND NextScore() = Score Then 

            Increment Rank 

        End If 

    End For 

     

    Return Rank 

End 

 

Function: CalculateAverageRank 

 

Input: 

- List of ranks (Ranks) 

 

Output: 

- Average rank (AverageRank) 

 

Begin: 

    // Calculate the mean (average) of the ranks 

    AverageRank = Mean(Ranks) 

     

    Return AverageRank 

End 

 

Function: SortAlgorithmsByRank 

 

Input: 

- Dictionary of algorithm ranks (AlgorithmRanks) 

 

Output: 

- Sorted list of algorithms based on rank (SortedAlgorithms) 
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Begin: 

    // Sort the algorithms based on their average ranks 

    SortedAlgorithms = Sort(Algorithms, AlgorithmRanks[Algorithm]) 

     

    Return SortedAlgorithms 

End 
 

The outcomes shows the ranking given to various classification algorithm (applied at 

cross validation- 10 folds) using the rank and percentile method. The results in the table 

below shows the classification model (evaluated at cross validation 10-folds), point 

(classifier ID), Rank and Percentage. 

Table 5.18: Classification Models and Ranks (Cross Validation-10 Folds) 

Classification 

Models 

Point 

(Classifier 

ID) 

Score 

(Weighted 

Sum) 

Rank Percentile 

Random 

Forest 
8 0.820 1 100.00% 

Random Tree 9 0.820 1 100.00% 

Logistic 3 0.807 3 62.50% 

MultiClass 

Classifier 
7 0.807 3 62.50% 

Bayes Net 1 0.801 5 50.00% 

KStar 6 0.773 6 37.50% 

IBK 5 0.767 7 25.00% 

Naïve Bayes 2 0.722 8 12.50% 

SMO 4 0.660 9 0% 
 

It was found that based on configuration setting: cross validation – 10 folds Random 

Forest and Random Tree are the best and most appropriate classifier for traffic 

congestion control and traffic flow as both are having the highest score of 0.820 with 

percentile 100%. Logistic and MultiClass Classifier are the second most appropriate 

algorithms having total score of 0.807, rank 3 and percentile of 62.50%. The third best 

classifier being identified is Bayes net with a total score of 0.801 and percentile of 

50.00%. For predicting the Udaipur traffic flow Random Forest and Random Tree are 

the most appropriate algorithms. 
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ii. Evaluation with Cross Validation-25 Folds 

Table 5.19 shows the ranking given to various classification algorithms (applied at cross 

validation- 25 folds) using the rank and percentile method.  

Table 5.19: Weighted Sum Score (Cross Validation-25 Folds) 

S. No. Classification 

Models 

Score (Weighted 

Sum) 

1 Bayes Net 0.801 

2 Naïve Bayes 0.724 

3 Logistic 0.815 

4 SMO 0.660 

5 IBk 0.770 

6 KStar 0.769 

7 MultiClass Classifier 0.815 

8 Random Forest 0.820 

9 RandomTree 0.820 

The weighed sum-based score suggests that Random Forest and Random Tree has the 

highest score of 0.820 followed by Logistic and MultiClass Classifier with score 0.815. 

The results in Table 5.20 show the classification model (evaluated at cross validation 

25-folds), point (classifier ID), Weighted Sum, Rank and Percentage. 

Table 5.20: Classification Models and Ranks (Cross Validation-25 Folds) 

Classification 

Models 

Point 

(Classifier 

ID) 

Score 

(Weighted 

Sum) 

Rank Percent 

Random 

Forest 
8 0.820 1 100.00% 

Random Tree 9 0.820 1 100.00% 

Logistic 3 0.815 3 62.50% 

MultiClass 

Classifier 
7 0.815 3 62.50% 

Bayes Net 1 0.801 5 50.00% 

IBK 5 0.770 6 37.50% 

KStar 6 0.769 7 25.00% 

Naïve Bayes 2 0.724 8 12.50% 

SMO 4 0.660 9 0.00% 

It was found that based on configuration setting: cross validation – 25 folds Random 

Forest and Random Tree are the best and most appropriate classifier for traffic 
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congestion control and traffic flow as it has the highest score of 0.820 with percentile 

100%. Logistic and MultiClass Classifier are the second most appropriate algorithm 

having a total score of 0.815, rank 3 and percentile of 62.50%. The third best classifier 

being identified is Bayes Net with a total score of 0.801 and percentile of 50.00%. For 

predicting the Udaipur traffic flow Random Forest is the most appropriate algorithm. 

iii. Evaluation with Cross Validation-Split: 30% 

Table 5.21 shows the ranking given to various classification algorithms (applied at cross 

validation- 30% Split) using the rank and percentile method. The weighed sum-based 

score suggests that Random forest has the highest score of 0.820 followed by Random 

Tree with score 0.779 and MultiClass Classifier with score 0.765. 

Table 5.21: Weighted Sum Score (Cross Validation-30% Split) 

S. No. Classification 

Models 

Score 

(Weighted 

Sum) 

1 Bayes Net 0.658 

2 Naïve Bayes 0.585 

3 Logistic 0.619 

4 SMO 0.652 

5 IBk 0.749 

6 KStar 0.638 

7 MultiClass 

Classifier 
0.765 

8 Random Forest 0.820 

9 RandomTree 0.779 

The result in the table below shows the classification model ,point (classifier ID), Rank 

and Percentage evaluated at cross validation 30%-Split. 
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Table 5.22: Classification Models and Ranks (Cross Validation-30% Split) 

Classification 

Models 

Point 

(Classifier 

ID) 

Score 

(Weighted 

Sum) 

Rank Percent 

Random 

Forest 
8 0.820 1 100.00% 

Random Tree 9 0.779 2 87.50% 

Multi Class 

Classifier 
7 0.765 3 75.00% 

IBK 5 0.749 4 62.50% 

Bayes Net 1 0.658 5 50.00% 

SMO 4 0.652 6 37.50% 

KStar 6 0.638 7 25.00% 

Logistic 3 0.619 8 12.50% 

Naïve Bayes 2 0.585 9 0.00% 

It was found that based on configuration setting: cross validation – 30% Split Random 

forest is the best and most appropriate classifier for traffic congestion control and traffic 

flow as it has the highest score of 0.820 with percentile 100%. Random Tree is the 

second most appropriate algorithm having a total score of 0.779, rank 2 and percentile 

of 87.50%. The third best classifier being identified is Multi Class Classifier with a total 

score of 0.765 and percentile of 75%. For predicting the Udaipur traffic flow Random 

forest is the most appropriate algorithm while considering configuration setting cross 

validation – 30%. 
 

Finally, a Random Forest-based predictive model's high ranking in a cross-validation 

setting, whether it's 10-fold, 25-fold or 30% split indicates its robustness and 

effectiveness in handling the complexities of traffic management. Its ability to capture 

non-linear patterns, handle real-time data, and provide insights into important features 

makes it a valuable tool for improving traffic flow, reducing congestion, and enhancing 

overall transportation efficiency. 
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5.4   Hypothesis Testing Results 

Hypothesis is nothing but a tentative statement or proposed explanation made based on 

limited evidence as a starting point for further investigation. The following two 

hypothesis are being tested for proposed research work. 

Hypothesis 1: 

The main objective of my research is to solve commuting problems in smart cities using 

Artificial Intelligence, IoT and Machine Learning technologies. To reach meaningful 

conclusion of my research I am interested in finding whether there is significant 

difference between the type of  smart technologies used in smart cities. To examine the 

difference between different categorial variables Chi-Square test is applied after doing 

survey from different age group participants from different cities. The Hypothesis 

statements are: 

Ho1: There is no significant difference between technologies used for enhancing    

         the transportation system in smart cities. 

The related alternative hypothesis is as follows. 

Ha1: There is a significant difference between technologies used for enhancing the     

         transportation system in smart cities. 

Test Applied: To test the hypothesis Ho1 the Chi-Square Test was being used. The 

outcomes of the Chi-Square test are shown below in the table. 

Table 5.23: Type of Technology and Level of Enhancement 

Type of Technology and Level of Enhancement in Smart Transportation 

System: Crosstabulation 

Count   

 

Enhancement in Smart 

Transportation System Total 

High Low 

Type of 

Technology 

AI Based 12 0 12 

Fog Computing 7 0 7 

IoT-Based Traffic 

Prediction Models 
7 6 13 

Machine Learning-

Based Traffic 

Prediction Models 
14 4 18 

Total 40 10 50 
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Table 5.24: Chi-Square Test Results 

Chi-Square Test 

 

Value df 

Asymptotic 

Significance 

(2-sided) 

Pearson Chi-

Square 

10.363a 3 .016 

Likelihood Ratio 13.026 3 .005 

N of Valid Cases 50   

a. 4 cells (50.0%) have expected count less than 5. The 

minimum expected count is 1.40. 

Table 5.25: Calculation of Expected Frequency 

Calculation of Expected Frequency  

Total of Technology 

Total of Enhancement in 

Smart Transportation 

System 

Expected 

Frequency  
EF 

12 40 12*40/50 9.6 

7 40 7*40 /50 5.6 

13 40 13*40 /50 10.4 

18 40 18*40 /50 14.4 

12 10 12*10 /50 2.4 

7 10 7*10 /50 1.4 

13 10 13*10 /50 2.6 

18 10 18*10 /50 3.6 

 

Table 5.26: Observed and Expected Frequency calculations. 

Observed and Expected Frequency for the calculation of X2 

Observed Frequency 

(OF) 

Expected Frequency 

(EF) 
(OF - EF)2 (OF - EF)2 / EF 

12 9.6 5.76 0.6 

7 5.6 1.96 0.35 

7 10.4 11.56 1.11 

14 14.4 0.16 0.01 

0 2.4 5.76 2.4 

0 1.4 1.96 1.4 

6 2.6 11.56 4.45 

4 3.6 0.16 0.04 

    Total (å) 10.36 

Degree of Freedom =(r-1) (c-1) 

= (4-1) *(2-1) =3 

Table value @5% level of significance = 7.815 

Calculated Value of Chi-Square = 10.36 
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Result: The Chi-Square test results confirm that as the Pearson Chi-Square value was 

found to be 10.36 at degree of freedom 3 and the corresponding p-value is found to be 

0.016 which is lesser than the standard alpha value of 0.05 this interpret that the null 

hypothesis Ho1is rejected and alternate hypothesis Ha1 is being accepted and it can be 

concluded that there is significant difference between technologies used for enhancing 

the transportation system for smart cities. 

Figure 5.89: Right Tailed Chi-Square curve 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Chi-Square Distribution Calculator With Graph Generator [28] 

From above figure Right Tailed Chi-Square curve it is clear that Calculated Chi-Square 

value lies in the rejection region therefore Ho1 is rejected and Ha1 is accepted. This 

indicates that there is a significant difference between the listed technologies like AI 

based, Fog Computing based, IoT based and Machine learning based traffic prediction 

models in solving traffic congestion problems in smart cities. 

 

Hypothesis 2: 

The weighted sum method algorithm for traffic prediction model generates different 

performance scores for 10-fold, 25-fold and 30% split case with different weights to 

each criterion. We are interested to know whether all machine learning algorithms 

average performance score is more than 75%. Following are the Hypothesis statements. 
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Ho2: The Machine learning-based traffic prediction models have average 

performance scores of greater than or equal to 75%. 

The related alternative hypothesis is as follows. 

Ha2: The Machine learning-based traffic prediction models have average 

performance scores of less than 75%.  

                 Ho:  µ ≥ 0.75 

                                         Ha:  µ < 0.75                                                      

Test Applied: As Sample mean is known and number of samples are less than 30, 

therefore One-Sample lower tail t-test is applied to test the hypothesis Ho2. Calculations 

of t-test are shown in the table shown below. 

Table 5.27: T-test calculation 

Classifier 

WSM average 

Performance 

Score Values 

Bayes Net 0.75 

Naïve Bayes 0.68 

Logistic 0.75 

SMO 0.66 

IBk 0.76 

KStar 0.73 

MultiClass Classifier 0.80 

Random Forest 0.82 

RandomTree 0.81 

Sample Mean (X̄) 0.751 

Standard 

Deviation(S) 0.055 

Number of 

Samples(n) 9 

Claim (μ) 0.75 

√n 3 

S/√n 0.018 
   

  One Sample T-Test:    T = (X̄ – μ) / S/√n   = 0.060 

  Degree of Freedom: 8 
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Figure 5.90: T-Test Python Program Output 

 

 

 

 

 

 

 

 

Result:  Table value @ 5% level of significance is -1.860 and the calculated T-statistics 

value is 0.060 which is larger than the critical T-value of -1.860, Also the p-value found 

to be 0.476 which is greater than the standard alpha value of 0.05 therefore null 

hypothesis is failed to be rejected. Therefore, we can say that the Machine learning-

based traffic prediction models have average performance score more than or equal to 

75%. 

Figure 5.91: Left Tailed T-test curve 

 

 

 

 

 

 

 

 

Source: T-test Distribution Calculator With Graph Generator [29] 
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From above figure Left Tailed T-test curve it is clear that calculated T-statistic value 

lies in the acceptance region therefore Ho2 is failed to reject and Ha2 is rejected. This 

indicates machine learning algorithms are useful in solving traffic congestion problems 

and generates average performance score of more than 75%. 

 

5.5   Summary 

In a comparative analysis of nine machine learning algorithms conducted utilizing the 

Weka tool, Random Forest and Random Tree emerged as the foremost viable classifiers 

for anticipating traffic congestion. Bayes Net moreover illustrated solid performance, 

ranking second respectively. 

 

The investigation included assessing different performance parameters and error 

measures to evaluate the adequacy of each calculation. Among these measurements, 

Random Forest and Random Tree reliably beat other classifiers over multiple criteria. 

Furthermore, two hypotheses were tried during the analysis. The first hypothesis looked 

for to investigate the differences between Artificial Intelligence, Fog-based, IoT-based 

technologies, and Machine Learning approaches in traffic forecast models. This 

hypothesis was rejected and alternate hypothesis was accepted, recommending that 

there is significant differences between these technologies in terms of their 

effectiveness for traffic forecast. The second hypothesis aimed to determine if the 

average performance score of the classifiers surpassed 75%. This hypothesis failed to 

be rejected, demonstrating that the classifiers achieved satisfactory performance levels 

more than 75%. 

 

Overall, the discoveries recommend that Random Forest and Random Tree classifiers 

are well-suited for traffic congestion forecast, with Bayes Net also offering strong 

performance. Furthermore, the analysis demonstrates that the choice between AI, Fog-

based, IoT-based advances, and Machine Learning approaches may essentially affect 

the effectiveness of traffic prediction models. 



 
 

 


