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Smart Transportation Systems are increasingly integrating Machine Learning and 

Artificial Intelligence AI to revolutionize transportation networks. Machine Learning 

algorithms optimize traffic management by predicting congestion and adapting traffic 

signals in real time. Predictive maintenance powered by Machine Learning prevents 

infrastructure failures, saving costs and enhancing safety. AI-driven public 

transportation planning improves routes and schedules based on dynamic factors. Ride-

sharing and mobility services use ML to match riders, optimize routes, and adjust 

prices, reducing congestion and enhancing user experiences. Autonomous vehicles rely 

on AI for navigation and obstacle avoidance. Traffic predictions and alerts from ML 

models aid drivers in choosing optimal routes. AI-driven parking management systems 

guide drivers to available spaces, reducing congestion. These applications collectively 

enhance transportation efficiency, safety, and sustainability in smart cities. 

6.1   Summary of Findings 

Nine machine learning algorithms were analyzed on various performance measures and 

error measures to predict traffic congestion in smart cities. following seven 

features/attributes were extracted and selected from twenty one features/attributes for 

analysis. 

1. SPEED 

2. NUM_READS 

3. HOUR 

4. ZIP CODES 

5. REGION 

6. BUS_COUNT 

7. CLASS LABEL 

Performance measure parameters like Accuracy, incorrectly classified instances and 

kappa statistics were used to set up benchmark to compare various machine learning 

algorithms and to select best algorithm. To gain deeper insights and weaknesses of 

classification models  under consideration, confusion matrix parameters like TP rate, 

FP rate, precision, recall, F-measure and ROC Area were used for analysis. All these 

performance measures helped us in selecting the most suitable and accurate prediction 

model for predicting the traffic congestion in smart cities.  
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To optimize and tune machine learning models various error measures like mean 

absolute error, root mean squared error, relative absolute error, root relative absolute 

error were used for analysis. Error measures gave us quantitative assessment of how 

well our machine learning model has performed in predicting traffic congestion in smart 

cities. K-folds and split method Cross-Validation approach is used for evaluating the 

performance of nine Machine learning Algorithms, where K value is changed to study 

different cases.  

After Cross-Validation approach Machine Learning Algorithms are analysed by vector 

of features. These features could be measurable characteristics of data. For each feature, 

a weight is assigned according to the relevance and importance, to understand the 

significance of that feature and the behaviour of overall outcome on prediction. The 

Multi-Criteria Decision Making - Weighted Sum Method is used to generate 

performance score for each machine learning algorithm. The weights assigned to 

different parameters is shown below. 

1. Accuracy =  0.3 

2. Kappa = 0.2 

3. TP Rate = 0.1 

4. Precision = 0.1 

5. Recall = 0.1 

6. F Measure = 0.1 

7. ROC Area = 0.1 

Ranking and percentile methods was applied to arrange classification algorithms in 

machine learning based on their performance metrics. The major findings related to the 

comparative analysis of nine machine learning predictive algorithm models is discussed 

below with different configuration settings. 
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6.1.1   Configuration Setting: Cross Validation – 10 folds 

 

➢ Random Forest and Random Tree are the best and most appropriate classifier 

for traffic congestion control and traffic flow as both are having the highest 

accuracy of 100% and performance score of 0.820 with percentile 100%. 

 

➢ Logistic Regression and MultiClass are the second most appropriate algorithms 

having accuracy of 99.7% and performance score of 0.807 with percentile of 

62.50%. 

 

➢ The third best classifier being identified is Bayes Net with accuracy of 99.6% 

and performance score of 0.801 with percentile of 50%.  
 

 

Figure 6.1: Cross Validation 10 – Fold Findings 
 

 

 

 

 

 

 

 

 

 

 

 

Considering all the factors in Cross Validation – 25 folds, for predicting the Udaipur 

traffic flow Random Forest is the most appropriate algorithm. 

 

6.1.2   Configuration Setting: Cross Validation – 25 folds 

 

➢ Random Forest and Random Tree are the best and most appropriate classifier 

for traffic congestion control and traffic flow as both are having the highest 

accuracy of 100% and performance score of 0.820 with percentile 100%. 

 

➢ Logistic Regression and MultiClass are the second most appropriate algorithms 

having accuracy of 99.1% and performance score of 0.815 with percentile of 

62.50%. 

 

➢ The third best classifier being identified is Bayes Net with accuracy of 99.6% 

and performance score of 0.801 with percentile of 50%.  
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Figure 6.2: Cross Validation 25 – Fold Findings 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Considering all the factors in Cross Validation – 25 folds, for predicting the Udaipur 

traffic flow Random Forest is the most appropriate algorithm. 

 

6.1.3   Configuration setting: Cross validation – 30% Split 

➢ Random Forest is the best and most appropriate classifier for traffic congestion 

control and traffic flow as it is having the highest score of 0.820 with percentile 

100%.  

 

➢ Random Tree is the second most appropriate algorithm having total 

performance score of 0.779, rank 2 and percentile of 87.50%. 

 

➢ The third best classifier being identified is Multi Class with total score of 0.765 

and percentile of 75%.  

Figure 6.3: Cross Validation 30% – Split Findings 

 

 

 

 

 

 

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Random
Forest

Random
Tree

Logistic Multi
Class

Bayes
Net

IBK Kstar Naïve
Bayes

SMO

Accuracy Performance Score Percentile

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Random
Forest

Random
Tree

Multi
Class

IBK Bayes
Net

SMO Kstar Logistic Naïve
Bayes

Accuracy Performance Score Percentile



214 
 

Considering all the factors in Cross Validation – 30% Split, for predicting the Udaipur 

traffic flow Random Forest is the most appropriate algorithm. 

By conducting comparative analysis of Cross Validation – 10 folds, Cross Validation – 

25 folds and 30% split, it can be concluded that the Random Forest is the best and most 

appropriate classifier for traffic congestion control and traffic flow and second most 

appropriate classifier is Random Tree.  

6.2   Hypotheses Based Findings 

6.2.1   Hypotheses 1 

The main objective of Hypothesis 1 is to find out whether technologies like AI, ML, 

IoT and fog computing can increase the efficiency of transportation system in smart 

cities. The acceptance of the alternate hypothesis (Ha1) indicates a significant difference 

between technologies used for enhancing transportation systems in smart cities. 

Following points can be concluded: 

• The choice of technology has a discernible impact on the overall performance 

of transportation systems in smart cities. 

 

• Different technologies like AI, IoT, Fog Computing and ML contribute to 

diverse approaches in addressing transportation challenges within smart city 

frameworks. 

 

• The accepted alternate hypothesis suggests that certain technologies are more 

effective than others in enhancing the efficiency of transportation systems in 

smart cities. 

 

• Policymakers and urban planners should make strategic decisions regarding 

technology selection to optimize the functionality and effectiveness of smart 

city transportation. 

 

• Efficient allocation of resources should consider the technologies that have 

demonstrated significant differences in enhancing transportation within the 

smart city context. 

 

• Ongoing evaluation of emerging technologies is crucial to adapt and integrate 

the most effective solutions for smart city transportation. 

 

• The technology chosen significantly influences the experience of end-users, 

emphasizing the importance of user-centric design in smart city transportation 

systems. 
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• Given the varied impact of technologies, collaboration between technology 

developers, urban planners, and policymakers is vital to holistically address 

transportation challenges in smart cities. 

 

• The type of technology used likely has implications for the environmental 

sustainability of smart city transportation systems, affecting factors such as 

emissions, energy consumption, and ecological impact. 

 

The acceptance of the alternate hypothesis highlights the need for long-term planning 

that considers the evolving landscape of transportation technologies within the context 

of smart cities. The fundamental importance of IoT, Artificial Intelligence, and 

Machine Learning in addressing commuting challenges within smart cities is 

underscored. Through the utilization of AI and ML algorithms, these technologies play 

a crucial role in optimizing resource allocation and effectively managing congestion. 

This highlights their essential contribution to enhancing the overall efficiency of 

transportation infrastructure in smart cities. In summary, the transformative impact of 

IoT, AI, and ML on smart city commuting systems is emphasized, emphasizing their 

crucial role in creating adaptive, user-friendly, and seamless transportation networks 

that significantly contribute to overcoming the challenges associated with urban 

commuting. 

6.2.2   Hypotheses 2 

The main objective of Hypothesis 2 is to know whether all machine learning algorithms 

average performance score is more than 75%. The acceptance of hypothesis (H02) 

implies that there is significant evidence to suggest that average performance score of 

machine learning algorithms is very good in predicting traffic congestion in smart cities 

with fair amount of agreement between them. Following points can be concluded: 

• The existing Machine learning based traffic prediction models and traffic 

control systems exhibit significant differences in terms of their effectiveness. 

Certain models may outperform others in accurately predicting and managing 

traffic conditions. 

 

• There is a notable divergence in the technological approaches employed by 

traffic prediction models and traffic control systems within the smart city 

infrastructure. This implies that varied technologies are being utilized to address 

traffic-related challenges. 
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• The acceptance of the null hypothesis implies an opportunity for using Machine 

learning based prediction models for optimized performance of traffic flow. 

Policymakers and technology developers may need to consider improvements 

or adjustments to enhance the overall efficiency of traffic prediction and control 

in smart cities. 

 

• Highlights potential challenges in seamlessly integrating Machine learning 

based traffic prediction models with traffic control systems. It emphasizes the 

need for careful consideration of compatibility and interoperability to ensure a 

cohesive and effective smart city traffic management infrastructure. 

 

• Machine learning predictive models in smart transportation systems exhibit 

sensitivity to different performance metrics. Certain models may excel in 

specific measures, such as accuracy, precision, recall, or F1 score, suggesting a 

need for tailored evaluation criteria. 

 

• The diversity in performance measures suggests that the definition of an optimal 

machine learning predictive model may vary based on the specific goals and 

priorities of the smart transportation system. Decision-makers should carefully 

consider the most relevant metrics for their intended outcomes. 

 

• Decision-makers may need to prioritize specific metrics based on the objectives 

and constraints of the smart transportation system, acknowledging that 

improvements in one area may come at the expense of another. 

 

• As different performance measures influence the assessment of machine 

learning models, ongoing evaluation and adaptation become crucial. Smart 

transportation systems should embrace a dynamic approach to model 

assessment, adjusting strategies based on evolving performance requirements. 

 

• Adopting multi-criteria optimization strategies that consider various 

performance measures simultaneously can help identify models that strike a 

balance across different evaluation criteria. 

 

• In reality, Machine learning contribute to user-centric approaches in smart city 

transportation. Through personalized recommendations, adaptive routing, and 

responsive services, commuters are likely to experience a more tailored and 

hassle-free journey. 

 

In Summary The acceptance of Hypothesis 2 validates the prediction of performance 

score of all machine learning algorithm more than 75%. It not only validates the 

effectiveness of all machine learning algorithms but also suggests that the research 

implementation is proved in getting successful desired outcomes. 
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6.3   Challenges in Smart Transportation 

Overloaded Wireless Networks: Increased device usage for traffic monitoring strains 

wireless networks, necessitating adaptive routing and data management solutions. 

V2V Communication Concerns: Ensuring privacy and security in vehicle-to-vehicle 

communication requires robust certificate management systems to prevent intrusion 

and accidents. 

Data Collection Complexity: Integrating various sensors in vehicles and transmitting 

data to network access points poses data collection challenges, requiring clear sensor 

descriptions and setups. 

Data Privacy and Security: Smart transportation systems gather vast amounts of data, 

including personal information, making data privacy and security critical to prevent 

hacking and potential harm. 

Interoperability Issues: Different technologies using distinct data formats and 

protocols hinder interoperability, especially in communities lacking the necessary 

technological expertise. 

Costly Implementation: High hardware, software, and infrastructure expenses pose 

adoption challenges, particularly in smaller cities and villages. 

Complex Systems: Smart transportation systems demand expertise in data analytics, 

artificial intelligence, and IoT technology, making them complex to implement and 

maintain. 

Connectivity Dependence: Reliable data and communication networks are crucial for 

smart transportation; disruptions can lead to traffic congestion, delays, and safety risks. 

Machine Learning Model Implementation: Implementing machine learning models 

presents several key challenges. Ensuring high data quality and quantity is paramount, 

as insufficient or low-quality data can lead to inaccurate models. Data privacy and 

security are significant concerns, especially when handling sensitive information. 

Model selection requires choosing the most suitable algorithm for a specific problem, 

and feature engineering involves identifying relevant data attributes. Balancing model 

complexity to prevent overfitting or underfitting is crucial, as is addressing scalability 
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for large datasets and computational demands. Making complex models interpretable 

and explainable remains a challenge, as does transitioning from development to 

production environments seamlessly. Model maintenance must ensure continued 

accuracy as data evolves, while managing computational resources efficiently is 

essential. Addressing bias and ensuring fairness, regulatory compliance, user 

acceptance, cost management, ethical considerations, fostering a data-driven culture, 

and addressing the shortage of skilled talent all contribute to the multifaceted landscape 

of implementing machine learning models. 

6.4   Future Directions in Smart Transportation 

Data Access and Standardization: Research should focus on improving access to 

standardized data for government agencies, businesses, and academics, enhancing 

integration and resilience through backup systems. 

Security and Privacy: Addressing cyber threats on transportation infrastructure is 

vital, with research exploring data security, encryption, access control, and intrusion 

detection methods. 

Autonomous Vehicle Impact: Investigate the effectiveness of autonomous vehicles in 

reducing traffic congestion, enhancing road safety, and their influence on transportation 

demand and environmental impact. 

Blockchain Technology Integration: Explore the potential of blockchain technology 

in enhancing transportation security, efficiency, and reliability, creating new 

applications and use cases. 

Accessibility for Disadvantaged Groups: Examine how smart transportation can 

improve accessibility and mobility for underserved populations like the elderly, 

disabled, and low-income individuals. 

Promoting Green Transportation: Smart transportation systems can prioritize eco-

friendly modes such as public transport, cycling, and electric vehicles to reduce 

greenhouse gas emissions and enhance air quality in urban areas. 

 



219 
 

Automated Feature Engineering: The future of machine learning will see 

advancements in automated feature engineering techniques. These methods will 

streamline the process of identifying and selecting relevant data attributes, reducing the 

manual effort required for feature engineering and improving model performance. 

Explainable AI: As machine learning models become increasingly complex, there will 

be a growing emphasis on Explainable AI. Future developments will focus on creating 

more interpretable models and post-hoc explain ability techniques, allowing users to 

understand and trust AI-driven decisions. 

Edge Computing for ML: Edge computing will play a pivotal role in the future of 

machine learning. With the proliferation of IoT devices and the need for real-time 

processing, machine learning models will be deployed at the edge, enabling faster 

decision-making and reduced reliance on centralized data centers. 

AI Ethics and Responsible AI: Ethical AI frameworks and guidelines will gain 

prominence, addressing bias mitigation, fairness, transparency, and accountability. 

Future developments will prioritize responsible AI practices, ensuring AI systems 

benefit society without unintended consequences. 

Continuous Model Monitoring and Adaptation: To maintain model accuracy over 

time, continuous model monitoring and adaptation will become standard. This approach 

will involve real-time data analysis, retraining models as data evolves, and automatic 

deployment of updated models, ensuring sustained performance and relevance. 

Finally, Machine Learning has become instrumental in modern traffic management, 

revolutionizing urban transportation. ML models excel in predicting traffic patterns by 

analyzing historical data, real-time information, and weather conditions, enabling 

proactive congestion management and efficient route suggestions to drivers. Traffic 

lights are optimized dynamically using ML algorithms, reducing wait times and easing 

congestion. ML-driven navigation apps provide real-time route planning, considering 

accidents and closures, thus minimizing travel time and fuel consumption. 

Additionally, ML is used in parking systems to guide drivers to available spots, 

reducing search times and traffic congestion, while optimizing public transportation 

schedules for smoother commuting experiences.



 

 


