To Explore and Analyze the Role of IOT, Artificial Intelligence and Machine Learning in Solving the Commuting Problems of Smart Cities

स्मार्ट शहरों में आवागमन करने की समस्याओं को हल करने में आईओटी, आर्टिफिशियल इंटेलिजेंस और मशीन लर्निंग की भूमिका का अन्वेषण और विश्लेषण करना

A

Thesis

Submitted for the Award of the Ph.D. degree of PACIFIC ACADEMY OF HIGHER EDUCATION AND RESEARCH UNIVERSITY

By

AVINASH DANGWANI अविनाश डंगवानी Under the supervision of

Dr. ASHOK KUMAR JETAWAT

Professor, Pacific Academy of Higher Education, & Research University, Udaipur.

Dr. CHANDAN SINGH RAWAT

HOD, Department of Electronics & Telecommunication VESIT, Chembur Mumbai.

FACULTY OF COMPUTER ENGINEERING PACIFIC ACADEMY OF HIGHER EDUCATION AND RESEARCH UNIVERSITY, UDAIPUR

2024

DECLARATION

I, AVINASH DANGWANI S/O SHRI SUNDER DANGWANI resident Thane District Maharashtra, hereby declare that the research work incorporated in the present thesis entitled **"To Explore and Analyze the Role of IOT, Artificial Intelligence and Machine Learning in Solving the Commuting Problems of Smart Cities"** (स्मार्ट शहरों में आवागमन करने की समस्याओं को हल करने में आईओटी, आर्टिफिशियल इंटेलिजेंस और मशीन लर्निंग की भूमिका का अन्वेषण और विश्लेषण करना) is my original work. This work (in part or in full) has not been submitted to any University for the award or a Degree or a Diploma. I have properly acknowledged the material collected from secondary sources wherever required.

I solely own the responsibility for the originality of the entire content.

Signature of the Candidate

Date:

FACULTY OF ENGINEERING PACIFIC ACADEMY OF HIGHER EDUCATION AND RESEARCH UNIVERSITY, UDAIPUR

Dr. ASHOK KUMAR JETAWAT Professor

CERTIFICATE

It gives me immense pleasure in certifying that the thesis **"To Explore** and Analyze the Role of IOT, Artificial Intelligence and Machine Learning in Solving the Commuting Problems of Smart Cities" (स्मार्ट शहरों में आवागमन करने की समस्याओं को हल करने में आईओटी, आर्टिफिशियल इंटेलिजेंस और मशीन लर्निंग की भूमिका का अन्वेषण और विश्लेषण करना) and submitted by AVINASH DANGWANI is based on the research work carried out under my guidance. He / she has completed the following requirements as per Ph.D. regulations of the University;

- (i) Course work as per the University rules.
- (ii) Residential requirements of the University.
- (iii) Regularly presented Half Yearly Progress Report as prescribed by the University.
- (iv) Published / accepted minimum of two research paper in a refereed research journal.

I recommend the submission of thesis as prescribed/notified by the University.

Name and Designation of Supervisor

Dr. ASHOK KUMAR JETAWAT Professor, Pacific Academy of Higher

Date:

CERTIFICATE

It gives me an immense pleasure in certifying that the thesis **"To Explore** and Analyze the Role of IOT, Artificial Intelligence and Machine Learning in Solving the Commuting Problems of Smart Cities" (स्मार्ट शहरों में आवागमन करने की समस्याओं को हल करने में आईओटी, आर्टिफिशियल इंटेलिजेंस और मशीन लर्निंग की भूमिका का अन्वेषण और विश्लेषण करना) and submitted by AVINASH DANGWANI is based on the research work carried out under my guidance. He / she has completed the following requirements as per Ph.D. regulations of the University;

- (i) Course work as per the University rules.
- (ii) Residential requirements of the University.
- (iii) Regularly presented Half Yearly Progress Report as prescribed by the University.
- (iv) Published / accepted minimum of two research paper in a refereed research journal.

I recommend the submission of thesis as prescribed/notified by the University.

Name and Designation of Co-Supervisor

Dr. CHANDANSINGH RAWAT HOD Department of Electronics & Telecommunication, VESIT, Chembur Mumbai.

Date:

COPYRIGHT

I, AVINASH DANGWANI, hereby declare that the Pacific Academy of Higher Education and Research University, Udaipur, Rajasthan, shall have the rights to preserve, use and disseminate this dissertation entitled **"To Explore and Analyze the Role of IOT, Artificial Intelligence and Machine Learning in Solving the Commuting Problems of Smart Cities"** (स्मार्ट शहरों में आवागमन करने की समस्याओं को हल करने में आईओटी, आर्टिफिशियल इंटेलिजेंस और मशीन लर्निंग की भूमिका का अन्वेषण और विश्लेषण करना)in print or in electronic format for the academic research / purpose.

Date:

Signature of Candidate

Place:

ACKNOWLEDGEMENT

I do not find adequate words to express my deepest regard and gratitude to my eminent and esteemed supervisor **Dr. Ashok Kumar Jetawat**, Professor, Department of Computer Engineering, Pacific Academy of higher education and research centre Udaipur Rajasthan, for giving me inspiration, guidance, valuable suggestions, opinions and corrections for betterment of my research work. I will always be grateful to him. He was always available for help at any point of time. His knowledge and experience about smart cities had inspired me to take up this research project. I am fortunate to have an advisor and mentor who surpassed all expectations.

I am profoundly grateful to my co advisor **Dr. Chandan Singh Rawat**, Head of Department Electronics and Telecommunication Vivekanand Education society institute of Technology Chembur Mumbai for his unwavering support, which has played a pivotal role in shaping both my research endeavour's and my overall experience as a doctoral student. Working under his mentorship has been a privilege and a source of inspiration.

As I reflect on this milestone, I am reminded of the profound significance of the support network that surrounds us. To **Prof. Jayshree Jain madam**, I extend my deepest gratitude for her unwavering support and understanding throughout this journey. In this journey, I have witnessed the impact of her support, whether it was through guiding me at different stages of my research work or offering words of encouragement when the path seemed daunting. Her contribution, though perhaps less visible, has been just as vital in shaping my academic growth.

I express my special and sincere thanks to our honourable **Dr. Hemant Kothari**, Dean Pacific Academy of Higher Education and Research University, Udaipur, Rajasthan, and **Shri Ramesh Agarwal** who guided me at different stages of my research work. Without their precious support it would not be possible to conduct this research.

I would like to thank shri **P.S. TALESARA**, Director Pyrotech companies, for allowing me to understand their company operations and giving me invaluable suggesting on AI.

I am thankful to General manager **BEST Mumbai Mr. Shetty** and **Mr. Sunil Jadhav** Deputy Head Planning Department Wadala Mumbai for providing me required help and support.

I am grateful to express my thanks to **Dr. Kushal Tuckley (Ex. Prof IIT Mumbai)**, currently holding the post of Chairman and Director R&D in "**AGV Systems**" Pvt.Ltd Ambernath for giving me, opinion and invaluable suggestions to improve my research work in the smart cities.

I would like to thank **Ms. Meenakshi Tyagi**, Librarian Vivekanand Education Soceity's Institute of Technology Chembur, Mumbai and **Ms. Kusum** and **Dr. Surya** Pacific University Udaipur for helping me in creating Plagiarism reports.

I pay all my heartfelt gratitude to my friends **Dr. Prasad Kulkarni** and **Mr. Lal Gwalani** Sound Solutions Sion Mumbai for their unwavering support and all those, who have helped me directly or indirectly making this research work a success.

Special note of thanks to my father **Shri Sunder Dangwani**, my late mother **Smt. Leena Dangwani** whose blessings, love and support have always helped in my research work. My lovely wife **Smt. Mahima Dangwani**, my Son's **Mr. Mohit Dangwani** and **Mr. Arvin Dangwani** who stood by me always. I thank them for their encouragement, love and support.

I acknowledge my gratitude with sense of reverence to the "Almighty God" and those who have contributed directly or indirectly and spared time for the completion of my research work and making it successful.

Last but not the least, my distinctive thanks to **M/s Shorya Thesis Printing & Binding, Udaipur**, in shaping the matter, creative design work and bringing out this document meticulously, neatly and timely.

Thank you all for everything.

OM SAI RAM! Avinash Dangwani

PREFACE

The increase in the smart city initiatives in the past decades has made the world community appreciate the depth of the complicated problems of the urban settings and they appear to be in desperate need of the new ideas how to deal with them. It is undeniable that the world is getting more and more connected and the pace of urbanization is quickly increasing. This situation makes it much more promising that a variety of smart technologies and systems can be put into practice to effectively increase the efficiency and sustainability of urban systems and significantly enhance the quality of life for city inhabitants.

The given thesis represents the outcome of the thorough investigation and further studies which shows how machine learning algorithms may be used to solve major commuting issues in smart cities. By combining the cross-system perspective of computer science, urban planning, and data analytics, the study explores the complex dance between technological creativity and municipal management.

Such a trip is not about reaching the sizeable figure; rather, it is about the travel itself. It navigates the universe of machine learning methods, starting from the classical algorithms to the cutting-edge ones submitted to the differentiable nature of the challenges of smart cities, to determine which one offers the most suitable and effective solution to all these predicaments. Careful experimentation and comparative analysis of different machine learning approaches are the major pillars of this research. It refrains from settling on the side of the various algorithms and consensus is reached on their effectiveness in real world based on the findings.

I firmly hope that the claim presented herein contributes significantly to the ongoing discussion of the design, implementation, and another international level matter of smart cities governance. The proposed research is divided into six chapters, which gives complete roadmap of the research scope and implementation.

Chapter – 1 Introduction:

It emphasizes on the basic terminology of research topic, it creates awareness about requirement of smart transportation in smart city, merits and demerits of this terminology. This chapter highlights the critical transportation issues such as traffic congestion, seat availability, bus tracking system, lack of bus interval information, and the need for enhanced passenger communication tools such as public addressing system. It also discuss role of Internet of Things, Artificial Intelligence and Machine learning Algorithms in effectively addressing commuting issues in smart cities.

Chapter – 2 Literature Review:

It focuses on the groundwork done on smart transportation till date. Its manifest will be to denote gaps in research already done. It highlights the innovative work done or proposed by various Authors in the relevant fields.

Chapter – 3 Research Methodology:

This chapter signify the role of different research methodologies adopted to study a research problem, along with the underlying logic behind them. This chapter also include, Hypothesis to be tested, Scope of study, various IOT data collection methods, research design and different tools required for analysis of machine learning algorithms.

Chapter – 4 Feature Extraction and Data Processing using IoT:

This chapter focuses on features selection and data processing. Feature extraction aims to reduce the number of features in a dataset by selecting required features from the existing ones (and then discarding the redundant features). These new reduced set of features were being summarize most of the information contained in the original set of features. Out of twenty one features, only seven features were filtered using eight feature selection Machine learning algorithms.

Chapter – 5 Utilization of AI and ML Prediction Algorithms:

This chapter discuss how we can make use of Artificial Intelligence and Machine Learning algorithms for predicting Traffic congestion. Machine learns from experiences; Algorithms develop multiple models and each model is analogous to an experience. The main objective of Machine Learning algorithm is to improve prediction accuracy for Traffic congestion. This doctoral thesis embarks on a detailed exploration of nine prominent machine learning algorithms, evaluating their performance across a spectrum of critical performance metrics. The primary objective of this research is to conduct a rigorous comparative analysis of machine learning algorithms, shedding light on their strengths, weaknesses, and applicability in diverse scenarios. The evaluation

framework encompasses an array of performance parameters, including accuracy, incorrectly classified instances, kappa statistics, and various aspects of the confusion matrix such as true positives (TP), true negatives (TN), false positives (FP), false negatives (FN), precision, recall, and F-measure. The nine machine learning algorithms listed below are selected for this study represent a comprehensive spectrum of techniques commonly employed in real-world applications:

- 1. Bayes Net
- 2. Naïve Bayes
- 3. Logistic
- 4. SMO
- 5. IBk
- 6. KStar
- 7. MultiClass Classifier
- 8. Random Forest
- 9. RandomTree

This research contributes to the field of machine learning by offering a systematic comparative and in-depth analysis of nine prominent algorithms based on a set of performance parameters. Each algorithm is thoroughly analyzed and compared based on their performance using Udaipur traffic data set obtained from TOMTOM server. To assess the performance and ability of Machine learning models, K fold cross validation techniques and percentage split methods are used. K-Fold cross-validation involves splitting the dataset into K subsets (or folds) of approximately equal size. The model is trained K times, each time using K-1 folds as training data and the remaining fold as validation data. 10 fold, 25 fold and 30% split cases are analyzed for thesis.

Finally this doctoral thesis inquiries intellectual landscape through a focused hypothesis-driven study aimed at investigating usefulness of different technologies and different machine learning algorithms in solving commuting problems in smart cities.

Chapter – 6 Conclusion and Future Scope:

Last chapter put emphasis on the culmination of research on smart commuting and future improvisation that can be done, as learning is continuous process for any field of research and development. It also leave some open questions to be investigated in future for researchers.

LIST OF CONTENTS

Chapter – 1 INTRODUCTION

1.1	Smart City 1		1
1.2	Transp	oortation Problems in Smart Cities	5
	1.2.1	Traffic Congestion	5
	1.2.2	Bus Location	7
	1.2.3	Seat Availability	8
	1.2.4	Bus Interval Time	10
	1.2.5	Public Addressing System	11
1.3	Interne	et of Things	13
1.4	Role o	f Machine Learning	16
	1.4.1	Supervised	18
	1.4.2	Unsupervised	18
	1.4.3	Semi Supervised	18
1.5	Machi	ne Learning Algorithms	19
	1.5.1	Bayes Net	19
	1.5.2	Naive Bayes	19
	1.5.3	Logistic	20
	1.5.4	SMO	20
	1.5.5	IBK	20
	1.5.6	K Star	21
	1.5.7	Multi Class Classifier	21
	1.5.8	Random Forest	22
	1.5.9	Random Tree	23
1.6	Applic	ations of Machine Learning	23
	1.6.1	Smart Traffic Management and Transportation	23
	1.6.2	Combating Pollution	24
	1.6.3	Public Safety	24
	1.6.4	Smart Grids and Machine Learning	24
1.7	Role o	f Artificial Intelligence	25

Chapter – 2 LITERATURE REVIEW

2.1	Introduction	32
2.2	Enhancing Public Transport Experience	32
2.3	Commuting and Traffic Congestion Issues	41
2.4	Technologies and Transportation Systems	54
2.5	IoT Based Traffic Prediction Models	61
2.6	Artificial Intelligence and Traffic Management	71

Chapter – 3 RESEARCH METHODOLOGY

3.1	Introduction 74		
3.2	Significance of Research 74		
3.3	Proble	em Statement	75
3.4	Objec	tives	75
3.5	Hypot	hesis	76
3.6	Scope	of Study	77
3.7	Resea	rch Design	77
	3.7.1	Information Collection Procedure	78
	3.7.2	Comparative Analysis of Technologies and Models	80
	3.7.3	Machine Learning Predictive Model Development	81
	3.7.4	Performance Evaluation	81
	3.7.5	Machine Learning Approach Selection	81
3.8	Data (Collection Sources	81
	3.8.1	Chicago Dataset: "Chicago_Traffic_1000	82
	3.8.2	Udaipur Dataset: "Udaipur Traffic"	84
3.9	Tools	and Techniques	87
	3.9.1	Weka Tool	87
		3.9.1.1 Components and Techniques	89
	3.9.2	Python	93
3.10	0 Summary 94		

Chapter – 4 FEATURE EXTRACTION

4.1	Overview 96		
4.2	Feature Selection Methods 99		
	4.2.1	Info Gain Attribute Eval	101
	4.2.2	Correlation Attribute Eval	103
	4.2.3	Classifier Attribute Eval	105
	4.2.4	Cfs Subset Eval	106
	4.2.5	Gain Ratio Attribute Eval	107
	4.2.6	OneR Attribute Eval	109
	4.2.7	ReliefF Attribute Eval	111
	4.2.8	Symmetrical Uncert Attribute Eval	113
4.3	Featur	e Extraction Using Multiple Regression	115
4.4	Comb	ined Feature Selection Matrix	117
4.5	Rank	and Percentile	121
4.6	Summ	ary	122
Ch	apter	- 5 UTILZATION OF AI AND ML PREDICTIO)N
5.1	Traffic	ALGORITHMS c Control Systems for Smart Cities	123
	5.1.1	IoT-Based Traffic Prediction Models	124
	5.1.2	Machine Learning-Based Traffic Prediction	125
5.2	Machi	ne Learning Predictive Model for Smart Transportation	126
5.3			
	Analys	is of Machine Learning Modules for Smart Transportation	128
	Analys 5.3.1	is of Machine Learning Modules for Smart Transportation Performance Measure	128 128
	Analys 5.3.1 5.3.2.	is of Machine Learning Modules for Smart Transportation Performance Measure Error Measures	128 128 132
	Analys 5.3.1 5.3.2. 5.3.3	is of Machine Learning Modules for Smart Transportation Performance Measure Error Measures Cross-Validation Configuration Setting (10-folds) Results	128 128 132 134
	Analys 5.3.1 5.3.2. 5.3.3	is of Machine Learning Modules for Smart Transportation Performance Measure Error Measures Cross-Validation Configuration Setting (10-folds) Results A. Performance Measures	128 128 132 134 135
	Analys 5.3.1 5.3.2. 5.3.3	 bis of Machine Learning Modules for Smart Transportation Performance Measure Error Measures Cross-Validation Configuration Setting (10-folds) Results A. Performance Measures B. Error Measure Results 	128 128 132 134 135 146
	Analys 5.3.1 5.3.2. 5.3.3	 bis of Machine Learning Modules for Smart Transportation Performance Measure Error Measures Cross-Validation Configuration Setting (10-folds) Results A. Performance Measures B. Error Measure Results C. Execution Time Results 	 128 128 132 134 135 146 149
	Analys 5.3.1 5.3.2. 5.3.3 5.3.4	 bis of Machine Learning Modules for Smart Transportation Performance Measure Error Measures Cross-Validation Configuration Setting (10-folds) Results A. Performance Measures B. Error Measure Results C. Execution Time Results Cross-Validation Configuration Setting (25-folds) Results 	 128 128 132 134 135 146 149 150
	Analys 5.3.1 5.3.2. 5.3.3 5.3.4	 A. Performance Measure B. Error Measure Results C. Execution Time Results C. A. Performance Measures 	 128 128 132 134 135 146 149 150 151
	Analys 5.3.1 5.3.2. 5.3.3 5.3.4	 A. Performance Measure B. Error Measure Results Cross-Validation Configuration Setting (10-folds) Results A. Performance Measures B. Error Measure Results C. Execution Time Results Cross-Validation Configuration Setting (25-folds) Results A. Performance Measures B. Error Measure Results 	 128 128 132 134 135 146 149 150 151 162

5	3.5 Cross-Validation Configuration Setting (30% Split) Results	166
	A. Performance Measures	167
	B. Error Measure Results	177
	C. Execution Time Results	179
	3.6 Consolidated Result	181
	3.7 Dominance Chart	191
	3.8 Weighted Sum Model Analysis Using Python	193
	3.9 Rank and Percentile Method	197
5.4	Hypothesis Testing Results	204
5.5	Summary	209
Ch	pter – 6 CONCLUSION AND FUTURE SCOPE	
6.1	Summary of Findings	210
	5.1.1 Configuration Setting: Cross Validation – 10 folds	212
	5.1.2 Configuration Setting: Cross Validation – 25 folds	212
	5.1.3 Configuration Setting: Cross Validation – 30% Split	213
6.2	Hypotheses Based Findings	214
	5.2.1 Hypotheses 1	214
	5.2.2 Hypotheses 2	215
6.3	Challenges in Smart Transportation	217
6.4	Future Directions in Smart Transportation	218
REI	ERENCES	220
DIS	EMINATION OF RESEARCH WORK	232
AN	EXURE	
Hyp	thesis – 1 Survey Questions	234
Pap	 - 1: Exploring the Role of Machine Learning Algorithms for Smart Commuting in Smart Cities 	
Pap	- 2: Use of AI in Cloud based Certificate Authentication for Travel Concession.	
Pap	- 3: Data Analytics Sales Prediction Model	
CEI	FIFICATES	

1.1	Smart City Integration	2
1.2	Smart City Components & IoT	4
1.3	Architecture of IoT	13
1.4	Steps of Applying Machine Learning Techniques	17
1.5	Old Transportation System	25
1.6	Sub-systems in Intelligent Transportation System	26
3.1	Chicago Traffic Tracker	83
3.2	Chicago Data Portal	84
3.3	tomtom Route Monitoring	85
3.4	tomtom Traffic Stats	86
3.5	tomtom Junction Analytics	86
3.6	Preprocessing Step Tool	89
3.7	Attribute Selection	90
3.8	All Attribute (Applied on Dataset Chicago_Traffic_1000)	90
3.9	Classification Algorithms Tool	91
3.10	Clustering Algorithm	92
3.11	Visualization	92
4.1	Attribute Score for Info Gain Attribute Eval	102
4.2	Attribute Score for Correlation Attribute Eval	104
4.3	Attribute Score for Gain Ratio Attribute Eval	108
4.4	Attribute Score for OneR Attribute Eval	110
4.5	Attribute Score for ReliefF Attribute Eval	112
4.6	Attribute Score for Symmetrical Uncert Attribute Eval	114
4.7	Attribute and Frequency	119
5.1	Vehicle Location Tracking Using IoT and Machine Learning	124
5.2	Smart Transportation System	127
5.3	Confusion Matrix	130
5.4	ROC Curve	131
5.5	Area Under ROC Curve	132
5.6	4-fold Cross-Validation Example	134
5.7	Performance Measure Accuracy (Cross-Validation: 10 Folds)	135

LIST OF FIGURES

5.8	Incorrectly Classified Instances (Cross-Validation: 10 Folds)	136
5.9	Kappa Statistic Values (Cross-Validation: 10 Folds)	136
5.10	TP Rate (Cross Validation: 10-Folds – Low Traffic	138
5.11	FP Rate (Cross Validation: 10-Folds – Low Traffic)	138
5.12	Precision (Cross Validation: 10-Folds – Low Traffic)	139
5.13	Recall (Cross Validation: 10-Folds – Low Traffic)	140
5.14	F-Measure (Cross Validation: 10-Folds – Low Traffic)	140
5.15	ROC Area (Cross Validation: 10-Folds – Low Traffic)	141
5.16	TP Rate (Cross Validation: 10-Folds – Heavy Traffic)	142
5.17	FP Rate (Cross Validation: 10-Folds – Heavy Traffic)	143
5.18	Precision (Cross Validation: 10-Folds – Heavy Traffic)	144
5.19	Recall (Cross Validation: 10-Folds – Heavy Traffic)	144
5.20	F-Measure (Cross Validation: 10-Folds – Heavy Traffic)	145
5.21	ROC Area (Cross Validation: 10-Folds – Heavy Traffic)	145
5.22	Mean Absolute Error (Cross-Validation: 10 Folds)	146
5.23	Root Mean Squared Error (Cross-Validation: 10 Folds)	147
5.24	Relative Absolute Error (Cross Validation: 10-Folds)	147
5.25	Root Relative Squared Error (Cross Validation: 10-Folds)	148
5.26	Average Execution Time (Cross Validation: 10-Folds)	149
5.27	Performance Measure Accuracy (Cross-Validation: 25 Folds)	151
5.28	Incorrectly Classified Instances (Cross-Validation: 25 Folds)	152
5.29	Kappa Statistic (Cross-Validation: 25 Folds)	152
5.30	TP Rate (Cross Validation: 25-Folds – Low Traffic)	154
5.31	FP Rate (Cross Validation: 25-Folds – Low Traffic)	154
5.32	Precision (Cross Validation: 25-Folds – Low Traffic)	155
5.33	Recall (Cross Validation: 25-Folds – Low Traffic)	155
5.34	F-Measure (Cross Validation: 25-Folds – Low Traffic)	156
5.35	ROC Area (Cross Validation: 25-Folds – Low Traffic)	157
5.36	TP Rate (Cross Validation: 25-Folds – Heavy Traffic)	158
5.37	FP Rate (Cross Validation: 25-Folds – Heavy Traffic)	159
5.38	Precision (Cross Validation: 25-Folds – Heavy Traffic)	159
5.39	Recall (Cross Validation: 25-Folds – Heavy Traffic)	160

5.40	F-Measure (Cross Validation: 25-Folds – Heavy Traffic)	160
5.41	ROC Area (Cross Validation: 25-Folds – Heavy Traffic)	161
5.42	Mean Absolute Error (Cross-Validation: 25 Folds)	162
5.43	Root Mean Squared Error (Cross-Validation: 25 Folds	163
5.44	Relative Absolute Error (Cross Validation: 25-Folds)	163
5.45	Root Relative Squared Error (Cross Validation: 25-Folds)	164
5.46	Average Execution Time (Cross Validation: 25-Folds)	165
5.47	Data Set Split	166
5.48	Performance Measure Accuracy (Cross-Validation: 30% Split)	167
5.49	Incorrectly Classified Instances (Cross-Validation: 30% Split)	168
5.50	Kappa Statistic (Cross-Validation: 30% Split)	168
5.51	TP Rate (Cross-Validation: 30% Split)	169
5.52	FP Rate (Cross-Validation: 30% Split)	170
5.53	Precision (Cross-Validation: 30% Split)	170
5.54	Recall (Cross-Validation: 30% Split)	171
5.55	F-Measure (Cross-Validation: 30% Split)	171
5.56	ROC Area (Cross-Validation: 30% Split)	172
5.57	TP Rate (Cross-Validation: 30% Split)	173
5.58	FP Rate (Cross-Validation: 30% Split)	174
5.59	Precision (Cross-Validation: 30% Split)	174
5.60	Recall (Cross-Validation: 30% Split)	175
5.61	F-Measure (Cross-Validation: 30% Split)	175
5.62	ROC Area (Cross-Validation: 30% Split)	176
5.63	Mean Absolute Error (Cross-Validation: 30% Split)	177
5.64	Root Mean Squared Error (Cross-Validation: 30% Split)	178
5.65	Relative Absolute Error (Cross-Validation: 30% Split)	178
5.66	Root Relative Square Error (Cross-Validation: 30% Split)	179
5.67	Average Execution Time (Cross-Validation: 30% Split)	180
5.68	Accuracy (Cross-Validation: 10-Fold, 25-Fold and 30% Split)	181
5.69	Incorrectly Classified Instances (10-Fold, 25-Fold and 30% Split)	181
5.70	Kappa Statistics (Cross-Validation: 10-Fold, 25-Fold and 30%	182
5.71	TP Rate (Cross-Validation: 10-Fold, 25-Fold and 30% Split)	182

5.72	FP Rate (Cross-Validation: 10-Fold, 25-Fold and 30% Split)	183
5.73	Precision (Cross-Validation: 10-Fold, 25-Fold and 30% Split)	183
5.74	Recall (Cross-Validation: 10-Fold, 25-Fold and 30% Split)	184
5.75	F Measure (Cross-Validation: 10-Fold, 25-Fold and 30% Split)	184
5.76	ROC Area (Cross-Validation: 10-Fold, 25-Fold and 30% Split)	185
5.77	TP Rate (Cross-Validation: 10-Fold, 25-Fold and 30% Split)	185
5.78	FP Rate (Cross-Validation: 10-Fold, 25-Fold and 30% Split)	186
5.79	Precision (Cross-Validation: 10-Fold, 25-Fold and 30% Split)	186
5.80	Recall (Cross-Validation: 10-Fold, 25-Fold and 30% Split)	187
5.81	F Measure (Cross-Validation: 10-Fold, 25-Fold and 30% Split)	187
5.82	ROC Area (Cross-Validation: 10-Fold, 25-Fold and 30% Split)	188
5.83	Mean Absolute Error (10-Fold, 25-Fold and 30% Split)	188
5.84	Root Mean Squared Error (10-Fold, 25-Fold and 30% Split)	189
5.85	Relative Absolute Error(10-Fold,25-Fold & 30% Split)	189
5.86	Root Relative Squared Error (10-Fold, 25-Fold and 30% Split)	190
5.87	Execution Time (10-Fold, 25-Fold and 30% Split)	191
5.88	Running MCDM Method in Python Environment	196
5.89	Right Tailed Chi-Square curve	206
5.90	T-Test Python Program Output	208
5.91	Left Tailed T-test curve	208
6.1	Cross Validation 10 – Fold Findings	212
6.2	Cross Validation 25 – Fold Findings	213
6.3	Cross Validation 30% – Split Findings	213

4.1	Attribute Names and ID	100
4.2	Attribute Score for Info Gain Attribute Eval	102
4.3	Attribute Score for Correlation Attribute Eval	104
4.4	Attribute Score for Classifier Attribute Eval	106
4.5	Attribute Score for Gain Ratio Attribute Eval	108
4.6	Attribute Score for OneR Attribute Eval	110
4.7	Attribute Score for ReliefF Attribute Eval	112
4.8	Attribute Score for Symmetrical Uncert Attribute Eval	114
4.9	Variables Entered / Removed	115
4.10	Model Summary	115
4.11	ANOVA Summary	116
4.12	Coefficients Summary	116
4.13	Attribute Names and ID	117
4.14	Combined Feature Selection Matrix	118
4.15	Attribute and Count	119
4.16	Overall Attribute Performance in Percentage (%)	120
4.17	Rank & Percentile Approach Results	121
5.1	Classifiers and Accuracy Measures (Cross Validation: 10-Folds)	135
5.2	Classifiers and Performance Measures Class Label: Low Traffic	137
5.3	Classifiers Performance Measure Class Label: Heavy Traffic	142
5.4	Classifiers and Error Measures (Cross Validation: 10-Folds)	146
5.5	Classifiers and Average Execution Time (10-Folds)	149
5.6	Classifiers and Accuracy Measures (Cross-Validation: 25-Folds)	151
5.7	Classifiers and Performance Measures Class Label: Low Traffic	153
5.8	Classifiers Performance Measure Class Label: Heavy Traffic:	158
5.9	Classifiers and Error Measures (Cross Validation: 25-Folds)	162
5.10	Classifiers and Average Execution Time (25-Folds)	165
5.11	Classifiers and Accuracy Measures (30% Split)	167
5.12	Classifiers Performance Measures Class Label: Low Traffic:	169
5.13	Classifiers Performance Measure Class Label: Heavy Traffic:	173
5.14	Classifiers and Error Measures (Cross Validation: 30% Split)	177

LIST OF TABLES

5.15Classifiers and Average Execution Time (30% Split)1805.16Machine Learning Algorithms Dominance Chart1925.17Weighted Sum Score (Cross Validation-10 Folds)1965.18Classification Models and Ranks (Cross Validation-10 Folds)2005.19Weighted Sum Score (Cross Validation-25 Folds)2015.20Classification Models and Ranks (Cross Validation-25 Folds)2015.21Weighted Sum Score (Cross Validation-30% Split)2025.22Classification Models and Ranks (Cross Validation-30% Split)2035.23Type of Technology and Level of Enhancement2045.24Chi-Square Test Results2055.25Calculation of Expected Frequency2055.26Observed and Expected Frequency calculations.2055.27T-test calculation207			
5.16Machine Learning Algorithms Dominance Chart1925.17Weighted Sum Score (Cross Validation-10 Folds)1965.18Classification Models and Ranks (Cross Validation-10 Folds)2005.19Weighted Sum Score (Cross Validation-25 Folds)2015.20Classification Models and Ranks (Cross Validation-25 Folds)2015.21Weighted Sum Score (Cross Validation-30% Split)2025.22Classification Models and Ranks (Cross Validation-30% Split)2035.23Type of Technology and Level of Enhancement2045.24Chi-Square Test Results2055.25Calculation of Expected Frequency2055.26Observed and Expected Frequency calculations.2055.27T-test calculation207	5.15	Classifiers and Average Execution Time (30% Split)	180
5.17Weighted Sum Score (Cross Validation-10 Folds)1965.18Classification Models and Ranks (Cross Validation-10 Folds)2005.19Weighted Sum Score (Cross Validation-25 Folds)2015.20Classification Models and Ranks (Cross Validation-25 Folds)2015.21Weighted Sum Score (Cross Validation-30% Split)2025.22Classification Models and Ranks (Cross Validation-30% Split)2035.23Type of Technology and Level of Enhancement2045.24Chi-Square Test Results2055.25Calculation of Expected Frequency2055.26Observed and Expected Frequency calculations.2055.27T-test calculation207	5.16	Machine Learning Algorithms Dominance Chart	192
5.18Classification Models and Ranks (Cross Validation-10 Folds)2005.19Weighted Sum Score (Cross Validation-25 Folds)2015.20Classification Models and Ranks (Cross Validation-25 Folds)2015.21Weighted Sum Score (Cross Validation-30% Split)2025.22Classification Models and Ranks (Cross Validation-30% Split)2035.23Type of Technology and Level of Enhancement2045.24Chi-Square Test Results2055.25Calculation of Expected Frequency2055.26Observed and Expected Frequency calculations.2055.27T-test calculation207	5.17	Weighted Sum Score (Cross Validation-10 Folds)	196
5.19Weighted Sum Score (Cross Validation-25 Folds)2015.20Classification Models and Ranks (Cross Validation-25 Folds)2015.21Weighted Sum Score (Cross Validation-30% Split)2025.22Classification Models and Ranks (Cross Validation-30% Split)2035.23Type of Technology and Level of Enhancement2045.24Chi-Square Test Results2055.25Calculation of Expected Frequency2055.26Observed and Expected Frequency calculations.2055.27T-test calculation207	5.18	Classification Models and Ranks (Cross Validation-10 Folds)	200
5.20Classification Models and Ranks (Cross Validation-25 Folds)2015.21Weighted Sum Score (Cross Validation-30% Split)2025.22Classification Models and Ranks (Cross Validation-30% Split)2035.23Type of Technology and Level of Enhancement2045.24Chi-Square Test Results2055.25Calculation of Expected Frequency2055.26Observed and Expected Frequency calculations.2055.27T-test calculation207	5.19	Weighted Sum Score (Cross Validation-25 Folds)	201
5.21Weighted Sum Score (Cross Validation-30% Split)2025.22Classification Models and Ranks (Cross Validation-30% Split)2035.23Type of Technology and Level of Enhancement2045.24Chi-Square Test Results2055.25Calculation of Expected Frequency2055.26Observed and Expected Frequency calculations.2055.27T-test calculation207	5.20	Classification Models and Ranks (Cross Validation-25 Folds)	201
5.22Classification Models and Ranks (Cross Validation-30% Split)2035.23Type of Technology and Level of Enhancement2045.24Chi-Square Test Results2055.25Calculation of Expected Frequency2055.26Observed and Expected Frequency calculations.2055.27T-test calculation207	5.21	Weighted Sum Score (Cross Validation-30% Split)	202
5.23Type of Technology and Level of Enhancement2045.24Chi-Square Test Results2055.25Calculation of Expected Frequency2055.26Observed and Expected Frequency calculations.2055.27T-test calculation207	5.22	Classification Models and Ranks (Cross Validation-30% Split)	203
5.24Chi-Square Test Results2055.25Calculation of Expected Frequency2055.26Observed and Expected Frequency calculations.2055.27T-test calculation207	5.23	Type of Technology and Level of Enhancement	204
5.25Calculation of Expected Frequency2055.26Observed and Expected Frequency calculations.2055.27T-test calculation207	5.24	Chi-Square Test Results	205
5.26Observed and Expected Frequency calculations.2055.27T-test calculation207	5.25	Calculation of Expected Frequency	205
5.27 T-test calculation 207	5.26	Observed and Expected Frequency calculations.	205
	5.27	T-test calculation	207

AALS	Accident Alert Sound System
AI	Artificial Intelligence
ANN	Artificial Neural Network
API	Application Program Interfaces
AQI	Air Quality Index
ARIMA	Autoregressive Integrated Moving Average
ATM	Adaptive Traffic Management
AUC	Area Under ROC Curve
AV	Autonomous Vehicles
CNN	Convolution Neural Networks
CoAP	Constrained Application Protocol
CRN	Cognitive Radio Networks
DL	Deep Learning
ETM	Electronic Ticketing Machines
FN	False Negative
FP	False Positive
FPGA	Field Programmable Gate Array
FPR	False Positive Rate
GRU	Gated Recurrent Unit
HTTP	Hypertext transfer protocol
IBK	Instance-Based k-Nearest Neighbors
IBSO	Improved Binary Swarm Optimization
ICT	Information Communication and Technology
ІоТ	Internet of Things
IEEE	Institute of Electrical and Electronics Engineers
ITS	Intelligent Transportation System
KNN	k-Nearest Neighbours
LPWAN	Low-power wide area network
LSTM	Long Short-Term Memory
MaaS	Mobility-as-a-Service
ML	Machine Learning

ABBREVIATIONS

MLP	Multilayer Perceptron
MQTT	Message Queuing Telemetry Transport
OSM	Open Street Map
PAS	Public Addressing System
RF	Random Forest
RNN	Recurrent Neural Networks
ROC	Receiver Operating Characteristics
SARIMA	Seasonal Auto Regressive Integrated Moving Average
SCs	Smart Cities
SDN	Software-Defined Network
SEE-TREND	Secure Early Traffic-Related Event Detection
SFC	Static Feedback Control
SMO	Sequential Minimal Optimization
SOAP	Simple Object Access Protocol
SSL	Secure Socket Layer
SVM	Support Vector Machines
TMS	Transport Management System
TN	True Negative
TNSTC	Tamil Nadu State Transport Corporation
ТР	True Positive
TPR	True Positive Rate
UTAUT	Unified Theory of Acceptance and Use of Technology
VKT	Vehicle Kilometers Traveled
VMT	Vehicle miles travelled
WSDL	Web Services Description Language

SYMBOLS

μ	Mean
σ	Standard Deviation
χ	Chi – square
π	Pi
α	Significant Level
f	Frequency
Ef	Expected Frequency
β	Standardized Coefficient