CHAPT	ER- I INTRODUCTION	1 – 14
1.1	Historical Development of Electrical Vehicle	1
1.2	Definition of an Electrical Vehicles	3
	1.2.1 Battery Electric Vehicles (BEVs)	4
	1.2.2 Hybrid Electric Vehicles (HEVs)	4
	1.2.3 Plug-In Hybrid Electric Vehicles (PHEVs)	4
1.3	Configurations of Electric Vehicles	4
1.4	3-Wheeled & 4-Wheeled Vehicles	6
	1.4.1 3-Wheeled Vehicles	6
	1.4.2 Advantages of Tadpole over Delta structure	8
1.5	Types of Tadpole structure Vehicle	5
	1.5.1 Solar-Powered Tadpole	8
	1.5.2 Hybrid Tadpole	8
1.6	Current State of Electrical Vehicle Technology	9
	1.6.1 Lightweight Materials	10
1.7	Energy-Efficient Structures	10
	1.7.1 Parameters of Energy-Efficient Structure	11
	1.7.2 Benefits of Energy-Efficient Structures	12
	1.7.3 Challenges Involved in Designing an Energy-Efficient	12
	Structure	
1.8	Problem Statement	13
1.9	Aim	13
1.10	Objectives of the Proposed Study	14
1.11	Scope	14
1.12	Hypothesis	14
CHAPT	ER- II REVIEW OF LITERATURE	15 – 42
2.1	Three-Wheeled Vehicle	15
2.2	Concept of tadpole structure	16
2.3	Corner Module Design	17
2.4	Tadpole Electric Vehicle	17
2.5	Components of Tadpole EV	18

INDEX

Index

2.6	Chassis	20
	2.6.1 Wheelbase and Track Width	21
	2.6.2 Center of Gravity	21
2.7	Steering System	22
	2.7.1 Rollover Stability	25
	2.7.2 Oversteer/ Understeer	25
2.8	Suspension Geometry	26
2.9	Rear Swing Arm	27
	2.9.1 Types of Swing-Arm	27
	2.9.2 Wheel Hub	28
	2.9.3 Motor	28
2.10	Battery & Controller	29
2.11	Vehicle Dynamics	30
2.12	Regulations for South Asia for Small Electric Vehicles	33
	2.12.1 Maximum weight and Speed Regulations	33
	2.12.2 Maximum Overall Dimension Regulations	34
	2.12.3 Motor Selection Regulations	34
2.13	Canadian Motor Vehicle Rule	34
2.14	SAE Driver Ergonomics	35
2.15	Design Approach	36
	2.15.1 System Light Weight Design	36
	2.15.2 Generative Design	36
2.16	Life Cycle Assessment (LCA)	38
2.17	Autonomous Tadpole Electric Vehicle (ATEV)	38
2.18	Indian Road Conditions	39
	2.18.1 Overview of Indian Road Network	39
	2.18.2 Challenges and Unique Characteristics	40
2.19	EV Performance Characteristics	40
2.20	Research Gaps	42
CHAPT	ER-III METHODOLOGY	43 - 55
3.1	Introduction	43
3.2	Importance of Designing Energy-Efficient Electric Vehicles	43

3.3	Rationale Behind Focusing on the Tadpole Structure	43
3.4	Outline of the Methodology	44
3.5	Research Design and Approach	45
	3.5.1 Research Design	45
	3.5.2 Justification for Research Design Choice	45
3.6	Literature Review	45
3.7	Initial Conceptualization	46
	3.7.1 Defining Design Parameters	46
	3.7.2 Initial Conceptualization	46
	3.7.3 Design Approach: Creating an Energy-Efficient EV	47
	Structure	
3.8	Material Selection	47
	3.8.1 Material Selection Criteria	47
3.9	Design Development	48
	3.9.1 Establishing Design Parameters	48
	3.9.2 Iterative Design Process	48
3.10	Research Design and Approach	48
3.11	Simulation and Analysis	48
	3.11.1 Simulation Tools and Software Used	49
	3.11.2 Process of Finite Element Analysis	49
	3.11.3 Expected Outcomes	49
	3.11.4 Vehicle Dynamics Simulation	50
	3.11.5 Relevance to the Study	50
	3.11.6 Suspension and Stability Analysis	50
3.12	Prototyping and Testing	51
	3.12.1 Process of Physical Prototyping	51
	3.12.2 Manufacturing Techniques	51
3.13	Description of Various Tests	51
3.14	Methodology of Testing	52
	3.14.1 Data Collection and Analysis	52
	3.14.2 Data Collection and Empirical Analysis	53
	3.14.3 Road Condition Data	53
	3.14.4 Data Collection Methods	53

Index

3.15	Analysis Techniques	54
	3.15.1 Performance Analysis	54
3.16	Additional Considerations	54
СНАРТ	ER- IV DESIGN AND OPTIMIZATION	56 – 97
4.1	Chassis/ Frame Design	56
	4.1.1 Design Considerations	56
	4.1.2 Material Selection	56
	4.1.3 Wheelbase and track	57
	4.1.4 Position of centre of mass of a vehicle	58
	4.1.5 Individual Static Wheel Loads and Front to Rear	60
	Weight Balance	
	4.1.6 Un-sprung mass lateral force	62
	4.1.7 Dimension Parameters & CAD Model	63
	4.1.8 Calculations for Load	66
	4.1.9 Impact Analysis	66
4.2	Rear Wheel Assembly Design	71
	4.2.1 Selection of Motor	71
	4.2.2 Swing Arm	73
	4.2.3 Rear Wheel Swing arm assembly	79
4.3	Design of front wheel assembly and Suspension system	80
4.4	Steering System	88
4.5	Battery Selection	92
4.6	Braking System Design	94
СНАРТ	ER- V PROTOTYPE AND TESTING	98 – 126
5.1	Chassis Manufacturing for Tadpole Structured Electric	98
	Vehicle	
	5.1.1 Design Considerations	98
	5.1.2 Fabrication Techniques	98
	5.1.3 Integration of the Roll Hoop	98
	5.1.4 Surface Treatment and Finishing	99
	5.1.5 Component Integration	99
5.2	Rear Swing Arm Manufacturing and Assembly	99

dex
dex

	5.2.1 Material Selection	100
	5.2.2 Fabrication Techniques	100
	5.2.3 Integration of Bushings and Bearings	100
	5.2.4 Mounting of the Suspension Components	100
5.3	Upright Manufacturing Using CNC Machining	101
	5.3.1 Material Selection	101
	5.3.2 CNC Machining Process	101
	5.3.3 Surface Treatment and Finishing	102
	5.3.4 Integration and Assembly	102
5.4	Integration of Vehicle Components: Suspension, Steering,	102
	Motor, Battery, and Electrical Connections	
	5.4.1 Mounting of Suspension Components	102
	5.4.2 Steering System Assembly	103
	5.4.3 Motor and Drive Train Installation	104
	5.4.4 Battery System Integration	104
	5.4.5 Electrical Connections	105
	5.4.6 Electrical System and Wiring	105
	5.4.7 Braking System Integration	107
5.5	Bill of Material and Cost Sheet	109
5.6	Prototype Testing	110
	5.6.1 Brake Test	110
	5.6.2 Aerodynamic Drag Test	112
	5.6.3 Yaw Rate Testing	114
	5.6.4 Pitch Testing	115
	5.6.5 Rollover Testing	115
	5.6.6 Testing the Center of Gravity (CG)	116
	5.6.7 Lateral Force Testing	117
	5.6.8 Acceleration and Speed Test	118
	5.6.9 Range Test	119
5.7	Performance Analysis	121
	5.7.1 Design and Analysis of Experiments	122
	5.7.2 Signal to Noise Ratio	122
	5.7.3 Selection of Orthogonal Array (OA)	123

	5.7.4 Analysis of Variance (ANOVA)	124
	5.7.5 Taguchi Analysis: Range versus Weight, Camber, Tire Width	124
	5.7.6 Regression Analysis	125
СНАРТ	ER- VI RESULT AND DISCUSSION	127 – 139
6.1	Weight	127
6.2	Camber	127
6.3	Tyre Width	128
6.4	Response Table for Signal-to-Noise Ratios	129
6.5	Analysis and Implications	130
6.6	Response Table for Means	131
6.7	Regression Analysis: Range versus Weight, Camber, Tyre	132
	width	
	6.7.1 Regression Equation	132
	6.7.2 Coefficients	133
	6.7.3 Model Summary	133
6.8	Main Effects and Interaction Plots for Range	137
	6.8.1 Main Effects Plot for Range	137
	6.8.2 Interaction Plot for Range	137
6.9	Overall Results	138
CHAPT	ER- VII CONCLUSION AND FUTURE SCOPE	140 - 142
7.1	Conclusion	140
7.2	Future Scope	141
REFER	ENCES	143 - 152

LIST OF TABLE

Table No.	Particulars	Chapter Page No.
1.1	Comparison of Three-wheel and Four-wheel Vehicles	6
2.1	Vehicle Class and Maximum Speed and Vehicle Weights	33
	[66]	
2.2	Overall Dimensions Limits for 3 – Wheelers	34
2.3	Motor Power (W) as Per the Vehicle Speed	34
4.1	Material Properties of AISI 4130	56
4.2	Center of Mass of Vehicle	59
4.3	Individual Wheel Loads	62
4.4	Estimated vehicle chassis parameters	65
4.5	Front Impact Analysis Results	68
4.6	Side Impact Analysis Results	70
4.7	Rear Impact Analysis Results	71
4.8	Iteration of Chassis	71
4.9	Peak Current Calculation	72
4.10	Specifications of selected motor	72
4.11	Calculation of Maximum Acceleration	73
4.12	Material Properties	74
4.13	Weight Reduction and it's percentage	75
4.14	Ranking for geometry parameter	77
4.15	Observed Values of different Parameters	78
4.16	Multiplication Factors for Parameters	78
4.17	Total Weightage of Parameters and Ranking	79
4.18	Initial Design considerations for Front Wheel Assembly	80
4.19	Design Considerations & Parameters	80
4.20	Calculated Suspension Parameters	84
4.21	Material Properties of Al 6061 T6	84
4.22	Double wishbone, damper to lower wishbone Incremental	90
	Geometry Values	
4.23	Steering System Parameters	92

Index	
-------	--

Table No.	Particulars	Chapter Page No.
4.24	Selected Battery Pack Specification	92
4.25	Braking Parameters and Values	94
4.26	Braking Parameters	97
5.1	Bill of Material and Cost	109
5.2	Brake Test Performance of Vehicle	112
5.3	Results of Aerodynamic Drag Coefficient113	
5.4	Yaw Rate for Different Test Types	114
5.5	Pitch Angles for Different Speed	115
5.6	Rollover Threshold Degrees at Different Speed and Test	116
	Туре	
5.7	CG Position Results by Using Tilt Table Method	117
5.8	Lateral Force Observed and Vehicle Stability	118
5.9	Acceleration Test Results	119
5.10	Different Mode and Range Results	121
5.11	Parameters and their Values	123
5.12	Taguchi L9 array for Experimentation	123
6.1	Experimentation Results	128
6.2	Response Table for Signal-to-Noise Ratios	129
6.3	Response Table for Means	131
6.4	Parametric Constant and Coefficients	133
6.5	Model Summary	133
6.6	ANOVA & Regression	133
6.7	Overall Results	138
7.1	Optimized Parameters	140

LIST OF FIGURE

Fig. No.	Particulars	Chapter Page No.	
1	Historical Development of EV	2	
2	General Configuration of EV	3	
3	EV Configurations	5	
4	Delta Structure	7	
5	Tadpole Structure7		
6	Current Electric Vehicle Scenario in India (ecogears.in)	9	
7	Performance of the three trained models by Ijaz et al. [36].		
	Decision jungle obtained highest average accuracy of 81%		
8	Conceptual Design of Structure 16		
9	Wheel Base and Track Width	21	
10	Steering System Components (1. Steering Wheel, 2.	22	
	Column, 3. Rack & Pinion, 4. Tie Rod, 5. Upright)		
11	Bump Steer	24	
12	Steering Geometry (Camber, Caster, Toe, KPI)	25	
13	Turning of Tadpole Vehicle	25	
14	Workflow of the matching algorithm proposed by Luo et		
	al. [48]		
15	Vehicle Dynamics [47], [62]	31	
16	Vehicle Forces on Inclination33		
17	SAE 30TH Percentile Male Model Driver Ergonomics 35		
18	ATEV Architecture 39		
19	Flow Chart of General Methodology Used for Research	44	
20	Design Approach	47	
21	Position of the Center of mass [53]	58	
22	Static Wheel Loads	61	
23	a) Side view of chassis b) Front view of chassis c) Top	64	
	view of chassis d) Isometric view of chassis		
24	a), b) and c) Showing Front Impact Analysis	68	
25	d), e) and f) Showing Side Impact Analysis	69	

Index

Fig. No.	Particulars	Chapter Page No.
26	g), h) and i) Showing Rear Impact Analysis	71
27	Weight and Shape Optimization Iterations	75
28	Loading Conditions for Rear Swing Arm	76
29	Iterations of Rear Swing Arm Analysis by using Ansys	77
	Software	
30	Rear wheel Assembly including Mono-shock Suspension	79
31	Lotus Suspension Analysis	83
32	Stresses Induced in Upright	85
33	Deformation in Upright 8	
34	Stresses Induced in Lower A- Arm	86
35	Deformation in Lower A- Arm	86
36	Stresses Induced in Upper A- Arm	87
37	Deformation in Upper A- Arm	87
38	Front Wheel Assembly	88
39	Ackermann geometry for Tadpole Structure	89
40	Steering Parameters Analysis	91
41	Integrated Chassis 99	
42	Rear Wheel Assembly 101	
43	Front Wheel Assembly	104
44	Wire Diagram of Tadpole Structured EV	106
45	Braking System Master Cylinder	108
46	Track Selected for Braking & Acceleration Test 1	
47	Track Selected for Testing	126
48	Main Effect plot for SN ratios	130
49	Main Effect Plot for Means	131
50	Pareto Chart of Standardized Effect	134
51	Normal Probability Plot	134
52	Residual Fits	135
53	Histogram of Frequency	135
54	Observation Order	136

Index

Fig. No.	Particulars	Chapter Page No.
55	Main Effects Plot for Range	137
56	Interaction Plot for Range	137