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5.1

SUMMARY

Various mathematical notations are employed to express fixed point theorems in

metric spaces. These notations help formalize the statements and conditions of these

theorems. Here's a summary of different mathematical notations used in presenting fixed

point theorems in metric spaces:

1.

Brouwer Fixed Point Theorem: Let X be a closed, bounded, and convex subset
of Euclidean space R, and f: X—X be a continuous mapping. The theorem is often

presented symbolically as:
Ax €eX: fix)=x.

Banach Contraction Mapping Theorem: Consider a complete metric space (X,
d) and a mapping f:X—X that is a contraction with Lipschitz constant 0 < 4 < 1.

The theorem is expressed as:
AxeX: f(x)=x.

Schauder Fixed Point Theorem: Let X be a compact convex subset of a normed
linear space (E, |I-ll), and fi.X—X be a continuous mapping. The theorem can be

stated as:
AxeX:f(x)=x.

Tychonoff Fixed Point Theorem: Consider a locally convex topological vector

space E and a continuous mapping f: E—E. The theorem is presented as:
Ax€E:f(x)=x.

Edelstein Fixed Point Theorem: M. Edelstein's extensions to the Banach
contraction principle involve considering various types of mappings. These
theorems often follow a similar structure to the Banach contraction theorem but

with different conditions on the mapping fand the space X.

These notations play a crucial role in expressing the formal statements of fixed

point theorems, making it easier to understand the conditions under which fixed points

exist and are unique in various metric space settings. Different mathematical notations

were used to express fixed point theorems in metric spaces, and advanced proofs of these

theorems often involve intricate mathematical reasoning.
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Summary of Advanced Proofs:

a. Banach Contraction Mapping Theorem Proof: The advanced proof of the Banach
Contraction Mapping Theorem involves showing that a contraction mapping f has a
unique fixed point in a complete metric space X. This proof typically consists of two

main steps:

e Proving the Contraction Property: Showing that there exists a Lipschitz constant

0</<I such that for all x,y€X, d(f{x)f(y))<A-d(x,p).

e Proving the Existence and Uniqueness of Fixed Point: Using the contraction
property, the proof establishes that the sequence xo, f{xo), f{f(x0)),... converges to a

unique fixed point x*.

b. Brouwer Fixed Point Theorem Proof: The Brouwer Fixed Point Theorem's proof
involves algebraic topology and often uses techniques such as the degree theory to
establish the existence of a fixed point. The theorem states that for a continuous

mapping f: D"—D" from a closed ball D" to itself, there is at least one fixed point.

c. Tychonoff Fixed Point Theorem Proof: The Tychonoff Fixed Point Theorem
generalizes Brouwer's theorem to locally convex topological vector spaces. Proving
this theorem often involves demonstrating that for a continuous mapping f on such a
space, there exists a fixed point. This proof might exploit properties of locally convex

spaces and continuity.

d. Advanced Fuzzy Fixed Point Theorems Proof: Advanced proofs of fuzzy fixed
point theorems involve intricate reasoning in the context of fuzzy metric spaces. These
proofs build upon the properties of fuzzy metrics and extensions of contractions in
fuzzy spaces. Techniques from functional analysis and advanced mathematical

structures like multi-valued mappings may be employed.

In summary, notation for fixed point theorems in metric spaces employs symbols to
represent spaces, mappings, and fixed points. Advanced proofs of these theorems require
sophisticated mathematical techniques and often involve establishing contraction
properties, utilizing algebraic topology, and exploiting the specific properties of metric

spaces or fuzzy metric spaces. These proofs represent the culmination of mathematical
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reasoning and provide deeper insights into the properties of mappings and fixed points in

various contexts.

The study demonstrates the existence of a singular fixed point shared by the operators S,
T, A, and B. Assuming that an element denoted as 'w' exists within the set X and serves as
a common fixed point for the operators S, T, A, and B, the analysis proceeds to explore
the implications of this scenario. The study establishes the uniqueness of a common fixed
point among the operators S, T, A, and B. By utilizing equation d(SP x, T9y) < ¢ d* (Ax,
By), d* (Ax, SP x), d* (By, T9y), d* (SP x, By), d* (Ax, T9y) and the characteristics of the

function v, the analysis proceeds as follows:

1. The distance between Sz and z is denoted as d (Sz, z). Using the properties of the
operators’ S and T, it is shown that this distance is bounded by certain terms

involving ¢ and distances between different pairs of points.

2. The above derivation simplifies to ¢ times the distance between Sz and z,
multiplied by several terms including the distances between Az and BTz, Az and

Spz, BTz and Tq(Tz), Spz and BTz, and Az and Tq(Tz).

3. By substituting values and simplifying, it is established that the boundedness of v
times the distance between Sz and z is less than or equal to the distance between

Sz and z.
4. This implies that d(Sz, z) = 1, leading to the conclusion that Sz is equal to z.

5. On the other hand, the distance between z and Tz is denoted as d(z, Tz). By using

the properties of the operators Sp and Tq, similar manipulations are performed.

6. This manipulation results in a similar bounding relationship involving ¢, distances
between Az and BTz, Az and Spz, BTz and Tq(Tz), Spz and BTz, and Az and
Tq(Tz).

7. The conclusion is drawn based on the above-stated derivations and manipulations.

In essence, the argument demonstrates that under certain conditions and
mathematical relationships, the fixed point Sz is equal to z, and similar conclusions can be

drawn for other relevant pairs of points involving the operators S, T, A, and B.
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Few examples of fixed point theorems for compatible maps in fuzzy metric spaces
were presented. These theorems highlighted the diverse ways in which compatible maps
interact with the fuzzy metric structure to yield fixed points. The proofs often involve
constructing appropriate sequences, exploiting certain properties of the maps, and utilizing
the completeness or contraction-like behaviour of the fuzzy metric space. Theorems
namely Ruskai's Fixed Point Theorem, Ruskai-Tarski Fixed Point Theorem, Suzuki-Type
Fixed Point Theorem, Chatterjea-Type Fixed Point Theorem and Ciric-Type Fixed Point
Theorem showcased the varied interactions between compatible maps and the fuzzy metric
structure, leading to the establishment of fixed points. The proofs of these theorems
commonly involve the creation of specific sequences, leveraging unique characteristics of
the maps, and capitalizing on either the completeness or contraction-like traits of the fuzzy

metric space.

Fixed point theorems in fuzzy metric spaces provide an extension of the classical
fixed point theorems to a more general context. For any two elements x and y in the fuzzy
metric space, the degree of nearness between x and y using the threshold k; is greater than
or equal to the degree of nearness using the threshold t, then it must be the case that x is

equal to y.

In other words, when k is chosen such that the nearness between x and y becomes
greater or equal when using a larger threshold kt, it implies that x and y are essentially the
same element. This is a stronger version of the reflexivity property seen in traditional
metric spaces, where nearness can't increase as the threshold increases unless the two
points are identical. This property has important implications for the consistency and
symmetry of the fuzzy metric, ensuring that the nearness measure doesn't increase

arbitrarily with higher thresholds unless the elements are identical.

Work highlighted the importance of compatibility and continuity in characterizing
the behaviour of mappings in a fuzzy metric space and provided the insights into how these
properties influence the results of the mappings and their compositions, shedding light on

their behaviour as they interact with each other and converge to specific points.

Associated proofs provided rigorous mathematical support for the statements
mentioned earlier. The proofs utilized the properties of compatibility, continuity of

mappings, and limit behaviour to derive the desired conclusions. The uniqueness of limits
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and the relationships established through compatibility and continuity were key in these
proofs. The proofs solidified the relationships and behaviours outlined in the original

statements.

The work was focused on fuzzy mathematics and common fixed points of suitable
maps in fuzzy metric spaces. Topological space includes fuzzy metric space. Since it is
fundamental to the applications of many branches of mathematics, fixed point theory is
one of the pillars of mathematical advancement. Since it can be simply and conveniently
observed, the Banach contraction principle is one of the most effective power tools to
research in this area. In contrast to earlier versions, fuzzy metric spaces now define fuzzy
metrics using fuzzy scalars rather than fuzzy numbers or real numbers. The present
research work had made a solution suggesting for more problems involving common fixed

points of compatible maps in fuzzy metric spaces and fuzzy mathematics.

Chapter specific several notable summaries can also be drawn:

1. Impact of Compatibility: The derived fixed point theorems for incompatible
maps suggested that even when maps are not intrinsically compatible, under certain
conditions, fixed points can still emerge. This highlights the significance of
exploring scenarios beyond conventional compatibility assumptions, broadening

the applicability of fixed point results.

2. Fuzziness Enhances Fixed Point Existence: The proven fixed point theorems
within fuzzy metric spaces underscore the role of fuzziness in promoting the
existence of fixed points. The interplay between fuzzy metric structures and map
properties showcases how imprecision and uncertainty can contribute to the

establishment of fixed points.

3. Common Fixed Points in Compatibility and Fuzziness: The common fixed
point theorems derived for compatible maps in fuzzy metric spaces emphasized the
potential for multiple compatible maps to possess shared fixed points within fuzzy
contexts. This insight demonstrated the harmonious interaction between

compatibility and fuzziness in yielding common fixed points.
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4. Versatility of Fuzzy Mathematics: By obtaining fixed point and common fixed
point theorems in the realm of fuzzy mathematics, the research underscored the
broad applicability of these theorems across various settings. This versatility
speaks to the foundational nature of fixed point principles in fuzzy mathematical

frameworks.

In totality, the analysis of specified research objectives highlighted the intricate
relationships between compatibility, fuzziness, and fixed point properties. The research
outcomes underscored the potential for extending traditional concepts of compatibility and
fixed points into fuzzy settings, thereby enriching the understanding and application of

these concepts in diverse mathematical contexts.

The research work discussed the extension of fixed point theorems to idempotent
mappings in the context of fuzzy metric spaces. This involved the exploration of technical
pathways to establish the existence and uniqueness of common fixed points in abstract
spaces, specifically in the realm of complete and compact Intuitionistic Generalized Fuzzy
Metric Spaces. The study also delved into proving common fixed point theorems for

weakly compatible mappings.

Additionally, the research investigated the application of the contractive condition of
integral type in Intuitionistic Generalized Fuzzy Metric Spaces to derive fixed point
results. The concept of occasionally converse commuting mappings was also examined for
its role in establishing common fixed point results in Intuitionistic Generalized Fuzzy

Metric Spaces.

Through these explorations, the research demonstrated that similar methodologies
could potentially be employed to investigate other intriguing areas of study. Overall, the
work contributes to the generalization of fixed point theorems for idempotent mappings in
fuzzy metric spaces and provides insights into extending these concepts to diverse

contexts.

5.2 CONCLUSION

In conclusion, the application of fuzzy set theory in the field of engineering has

significantly impacted various disciplines and brought about new methodological
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possibilities. Fuzzy set theory finds applications in a wide range of applied sciences,
including neural network theory, stability theory, mathematical programming, modelling
theory, medical sciences, image processing, control theory, communication, and more. Its
influence spans across all engineering disciplines, including civil, electrical, mechanical,
robotics, industrial, computer, and nuclear engineering, leading to advancements and

improvements in these fields.

Fuzzy set theory has led to the development of fixed and common fixed point
theorems that satisfy diverse contractive conditions in fuzzy metric spaces. This has
extended the application of fuzzy sets to topology and analysis, allowing for the

exploration of various theoretical aspects and practical implications.

The concept of fuzzy metric spaces has found numerous applications not only in
mathematics but also in engineering and even in branches of quantum particle physics. Its
versatility is evident in its ability to model uncertainty and vagueness in various real-world
scenarios, enabling more accurate and flexible representations. Its applications have
proven invaluable in addressing complex and uncertain problems across diverse
disciplines, demonstrating the broad-reaching impact of this mathematical concept. As
research continues to expand the theory of fuzzy sets and its applications, it is likely that
its influence will continue to grow, offering innovative solutions to challenges in both

theoretical and practical realms.
Research Objective based Conclusion drawn is stated here under:

1. In conclusion, the comprehensive study on mathematical notation, preliminaries,
advanced proofs, and fixed point theorems for compatible maps represents a
significant contribution to the field of mathematical analysis. The study's focus on
notation provides a standardized language for expressing complex mathematical

concepts, ensuring clarity and precision in the presentation of ideas.

The establishment of preliminaries lays the foundation for understanding the
context in which compatible maps operate. By defining essential concepts such as
metric spaces, mappings, continuity, and fixed points, the study creates a solid
framework upon which more advanced ideas can be built. This groundwork
enhances the reader's ability to grasp the intricacies of the subsequent proofs and

theorems.
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The advanced proofs presented in the study demonstrate a high level of
mathematical rigor and skill. By delving into the intricacies of the mathematical
arguments, the study showcases the expertise of the researchers in navigating
complex mathematical terrain. These proofs not only validate the theoretical

concepts but also highlight the interconnectedness of mathematical principles.

The study's exploration of fixed point and common fixed point theorems for
compatible maps illuminates the practical implications of these abstract concepts.
By establishing conditions under which mappings converge to fixed points, the
study offers tools for addressing diverse mathematical and real-world problems.
These theorems underscore the broader applicability of mathematical theory and

its ability to find solutions to a wide range of challenges.

In conclusion, the study's contributions extend beyond individual theorems,
providing a holistic view of the mathematical landscape. Its clear notation, well-
defined preliminaries, advanced proofs, and application-driven theorems
collectively enrich the field of compatible maps. As mathematical research
evolves, the insights gained from this study will likely continue to influence future
investigations, facilitating further advancements and applications in various

domains.

In conclusion, the meticulous study on mathematical notation, preliminaries, and
advanced proofs of fixed point and common fixed point theorems in fuzzy metric
spaces represents a significant contribution to both the field of fuzzy mathematics
and broader mathematical analysis. The study's focus on establishing clear and
consistent notation serves as a foundational language for conveying intricate

mathematical ideas with precision and clarity.

The definition of preliminaries lays a robust groundwork for understanding the
context in which fuzzy metric spaces and fixed point theorems operate. By
introducing essential concepts such as fuzzy metrics, compatibility, and
convergence, the study creates a well-defined framework that enables deeper

insights into the subsequent proofs and theorems.

The advanced proofs presented in the study showcase the depth of mathematical

rigor and expertise of the researchers. By navigating intricate mathematical
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arguments, the study not only validates theoretical concepts but also underscores
the interconnectedness of various principles within fuzzy metric spaces. These

proofs serve as pillars of evidence, anchoring the study's theoretical foundation.

The study's exploration of fixed point and common fixed point theorems in fuzzy
metric spaces contributes to the practical understanding of these abstract notions.
By establishing conditions under which fuzzy mappings converge to fixed points,
the study provides powerful tools for addressing uncertainties in mathematical
modelling and real-world applications. The incorporation of mathematical
notations enhances the study's accessibility, allowing readers to engage with the

technical aspects of the theorems.

In conclusion, the study's contributions extend beyond individual theorems,
enriching the field of fuzzy metric spaces and its application. Its clear notation,
well-defined preliminaries, and advanced proofs collectively advance the
understanding of fuzzy mathematics. As the field continues to evolve, the insights
gained from this study are likely to influence and inspire future research, enabling

further developments and practical implementations in various domains.

In conclusion, the comprehensive study focusing on common fixed point theorems
in compatible maps within fuzzy metric spaces has yielded profound insights into
the convergence behaviour and interplay of mappings. The meticulous
establishment of mathematical notation has played a pivotal role in ensuring clarity

and precision in the expression of complex mathematical ideas.

The definition of preliminary concepts has provided a robust framework for
understanding the context in which compatible maps operate within fuzzy metric
spaces. By introducing fundamental notions such as fuzzy metrics, compatibility,
and convergence, the study has laid a solid foundation for comprehending the

subsequent advanced proofs and theorems.

The advanced proofs presented in the study exemplify a high level of mathematical
rigor and expertise. By navigating intricate mathematical arguments, the study not
only validates the theoretical concepts but also unveils the intricate web of
connections among mathematical principles. These advanced proofs serve as a

testament to the researchers' skill in constructing compelling and logical
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mathematical arguments.

The exploration of common fixed point theorems for compatible maps in fuzzy
metric spaces offers insights into the practical implications of these abstract
mathematical concepts. By establishing conditions under which mappings
converge to shared fixed points, the study provides valuable tools for addressing
uncertainties in modelling and real-world applications. The incorporation of
mathematical notation elevates the technical precision and rigor of the study,

facilitating deeper engagement with the proofs and theorems.

In summary, the study's contributions transcend individual theorems, enriching our
understanding of compatible maps in fuzzy metric spaces. The integration of
mathematical notation, well-defined preliminaries, advanced proofs, and
application-driven theorems collectively advances the field of fuzzy mathematics.
As mathematical research evolves, the insights gained from this study are poised
to guide future explorations, paving the way for further advancements and

applications in various domains of mathematical inquiry.

In conclusion, the comprehensive study on fixed point and common fixed point
theorems in the realm of fuzzy mathematics has illuminated the convergence
behaviour and interplay of mappings within uncertain and vague settings. The
meticulous establishment of mathematical notation has been instrumental in

ensuring precision and clarity in communicating intricate mathematical concepts.

The definition of preliminary concepts has provided a robust foundation for
understanding the context within which fixed point theorems operate in fuzzy
mathematics. By introducing fundamental notions such as fuzzy sets, mappings,
convergence, and compatibility, the study has laid the groundwork for

comprehending the subsequent advanced proofs and theorems.

The advanced proofs presented in the study reflect a high level of mathematical
rigor and proficiency. By skilfully navigating intricate mathematical arguments,
the study validates theoretical concepts and reveals the intricate connections among
fuzzy mathematical principles. These advanced proofs showcase the researchers'

expertise in constructing cogent and logical mathematical reasoning.
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The exploration of fixed point and common fixed point theorems in fuzzy
mathematics offers insights into the practical implications of these abstract
mathematical concepts. By establishing conditions under which mappings
converge to shared fixed points, the study provides essential tools for addressing
uncertainty and vagueness in various real-world scenarios. The incorporation of
mathematical notation enhances the technical rigor of the study, facilitating deeper

engagement with the proofs and theorems.

In summary, the study's contributions extend beyond individual theorems,
enriching our understanding of fuzzy mathematics. The integration of
mathematical notation, well-defined preliminaries, advanced proofs, and
application-driven theorems collectively advances the field of fuzzy mathematics.
As mathematical research evolves, the insights gained from this study are poised
to guide future research, leading to further advancements and applications in

diverse domains of mathematical inquiry.

Conclusive notations for real life application of the Common Fixed-Point Theorem
for Compatible Mappings in Fuzzy Metric Spaces proves valuable across diverse real-life
scenarios. This theorem, encapsulated by clear mathematical notations, addresses stability

and convergence in dynamic systems:
A. Economic Equilibrium: 7(x,y)<h(x,y)-S(x,y) ensures stable economic equilibria.
B. Environmental Modelling: 7(x,y)<h(x,y)-S(x,y) leads to stable ecological states.

C. Network Routing in Communication Systems: 7(x,y)<h(x,y)-S(x,y) guarantees stable

routing configurations.

D. Collaborative Decision-Making: 7(x,y)<h(x,y)-S(x,y) facilitates stable collaborative

decisions.

E. Control Systems in Physics: 7(x,y)<h(x,y)-S(x,y) stabilizes physical systems through

compatible mappings.

In essence, The Common Fixed-Point Theorem for Compatible Mappings in a
Fuzzy Metric Space within the context of economic equilibrium, a set of detailed
mathematical notations is essential. Let X denote the set of possible economic states, and

consider compatible mappings T,S:XxX—X representing economic policies or strategies.
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To quantify the dissimilarity between economic states, introduce a fuzzy metric
M:XxX—[0,1]. The compatibility condition is expressed through a function
h:X*xX—[0,1] such that M(Tx,Ty)<h(x,y)-M(Sx,Sy) for all x,y€X. This condition ensures
that the effects of the mappings T and S on economic states are related consistently by the
fuzzy metric and the compatibility function. The fixed-point notation M(Tz, Sz)=0
signifies a state z where the economic policies T and S coincide, indicating an equilibrium.
In practical terms, this mathematical framework allows for the assessment of economic
strategies, ensuring the existence of stable equilibrium points. Policymakers can utilize
this model to predict the impact of proposed economic policies and make informed
decisions, contributing to the stability and predictability of economic systems. Overall, the
detailed notations offer a rigorous and applicable approach to analysing economic

equilibrium using the Common Fixed-Point Theorem in the realm of fuzzy metric spaces.

5.3 LIMITATIONS

The conclusions presented above were well-articulated and highlighted the positive
aspects of the study. It is important to discuss the conclusion within the context of the
methodology, limitations, and potential biases. Here are some specific limitations of
research performed on common fixed points of compatible maps in Fuzzy metric spaces

and Fuzzy mathematics:

1. Astheresearch discusses some limited fixed point and common point theorems for
incompatible maps, hence the study does not fully address or justify the concept of
incompatible maps. Further, the obtained theorems have limited applicability or

not covers all possible scenarios of incompatible maps.

2. The effectiveness of the chosen notation may vary among different audiences or
mathematical communities. The study may not account for potential challenges or

criticisms related to the selected notation.

3. Fuzzy metric spaces may have multiple definitions, and the study do not explore
the implications of choosing a particular definition over others. The theorems

obtained in fuzzy metric spaces have limited practical applications.

158



5.4

4. The obtained theorems do not provide insights into the broader implications of

compatible maps in fuzzy metric spaces and their clarity and precision of notation
are subjective and depend on the reader's background and familiarity with the

chosen notation.

The work does not consider alternative perspectives with different set of results
hence, the practical implications identified in the study may not be immediately

applicable or may have limited real-world relevance.

The assumptions made in study does not represent the diversity of mathematical
contexts, and limiting the generalizability of the findings. Hence, the study cannot
address potential critiques regarding the generalizability of the results to other

mathematical contexts.

FUTURE RESEARCH DIRECTION

The study of common fixed points of compatible maps in fuzzy metric spaces and

fuzzy mathematics is an active area of research that holds promise for future developments.

Here are some potential future research directions in this field:

1. Generalization of Compatibility: Investigate the generalization of compatibility

conditions beyond traditional compatibility. Explore more flexible notions of
compatibility that can encompass a wider range of mappings and interactions while

still ensuring the existence of common fixed points.

Mixed Fuzzy Metrics: Extend the study to mixed fuzzy metrics, which combine
concepts from fuzzy set theory and metric spaces. Develop theories for common
fixed points of compatible maps in such mixed fuzzy metric spaces, considering

their potential applications in modelling uncertainty in various scenarios.

Hybrid Approaches: Combine fuzzy set theory with other mathematical
frameworks, such as intuitionistic fuzzy sets, rough sets, or interval-valued fuzzy
sets. Investigate common fixed points in these hybrid contexts to address complex

uncertainty and vagueness.
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10.

Applications in Engineering and Sciences: Continue exploring applications of
common fixed point theory in engineering fields such as control systems,
optimization, image processing, and robotics. Extend the scope to scientific areas

like physics, biology, and economics where fuzzy mathematics can offer insights.

Non-Metric Spaces: Extend the theory of common fixed points to non-metric
spaces that can capture more abstract notions of distance and convergence.
Investigate how compatibility conditions can be adapted to such spaces and what

implications it has on the existence of fixed points.

Variational Inequalities and Equilibrium Problems: Study common fixed
points of compatible maps in the context of variational inequalities and equilibrium
problems. Explore their connections to optimization and game theory and develop

solution techniques using fuzzy mathematics.

Fuzzy Topology and Analysis: Explore the interplay between fuzzy topology,
fuzzy analysis, and common fixed point theory. Investigate how fuzzy continuity
and fuzzy compactness can influence the existence and properties of common fixed

points.

Multi-Valued Mappings: Extend the study to common fixed points of multi-
valued mappings, where each mapping assigns a set of points rather than a single
point. Investigate compatibility conditions and their impact on the existence of

fixed points in such cases.

Quantum Fuzzy Mathematics: Investigate the application of common fixed point
theory in the context of quantum fuzzy mathematics. Study common fixed points

in quantum fuzzy metric spaces and explore connections to quantum physics.

Computational Techniques: Develop computational methods and algorithms for
finding common fixed points of compatible maps in fuzzy metric spaces.
Investigate numerical approaches that can handle the complexities of fuzzy

mathematics efficiently.
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In summary, the future of research in common fixed points of compatible maps in
fuzzy metric spaces and fuzzy mathematics holds exciting possibilities for generalizations,
applications in various fields, and interdisciplinary collaborations. The exploration of new
concepts, hybrid frameworks, and computational methods will likely lead to innovative

solutions and deeper insights into uncertainty modelling and analysis.
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