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PREFACE 

The Thesis entitled “Common fixed points of Compatible maps in fuzzy metric spaces 

and Fuzzy Mathematics” is submitted for the award of Ph. D degree in Faculty of 

Mathematics to Pacific Academy of Higher Education and Research University, 

Udaipur, Rajasthan. The proposed study is the carried out under the valuable guidance 

and supervision of Dr. Ritu Khanna, Professor & Dr. Shailesh T. Patel by Shefal H. 

Vaghela. 

In the realm of mathematics, a metric space designates a collection of elements in 

which distances between any two members of this collection are established. These 

distances, collectively referred to as a metric, define the structure of the space. The 

most recognizable instance of a metric space is the three-dimensional Euclidean 

space. In essence, a "metric" serves as a generalization of the Euclidean metric, 

encompassing the essential characteristics of the Euclidean distance. In the Euclidean 

metric, the distance between two points is the length of the straight line connecting 

them. Noteworthy examples of other metric spaces arise in contexts such as elliptic 

geometry and hyperbolic geometry. In these scenarios, distance measurement on a 

sphere using angles functions as a metric, and in special relativity, the hyperboloid 

model of hyperbolic geometry serves as a metric space for velocities. The presence of 

a metric within a space gives rise to topological attributes like open and closed sets, 

which in turn contribute to the examination of more abstract topological spaces. 

The research report deals mainly with Common fixed points of compatible maps in 

fuzzy metric spaces and fuzzy Mathematics. Fuzzy metric space is parts of 

topological space.  

Fixed point theory stands as a cornerstone in the advancement of mathematics due to 

its fundamental role in the applications across various mathematical disciplines. A 

prominent tool within this domain is the Banach contraction principle, which serves 

as an efficient and easily discernible instrument for exploration. In this context, fuzzy 

metric spaces undergo a redefinition that distinguishes them from their predecessors 

by employing fuzzy scalars instead of fuzzy or real numbers to define the fuzzy 

metric. Demonstrably, any standard metric space can give rise to a complete fuzzy 



metric space whenever the original space does. Moreover, the consistency of the 

fuzzy topology induced by the fuzzy metric spaces introduced in this study with the 

prescribed topology is established. These findings establish foundational elements for 

research endeavors in fuzzy optimization and pattern recognition. Notably, the 

concept of a compatible pair of mutually continuous mappings is defined, leading to a 

fixed point theorem in fuzzy metric spaces. This theorem yields a fixed point while 

not mandating continuity of the mapping. Building upon this, the notion of a 

compatible mapping is extended within the realm of fuzzy metric spaces. Generalized 

fuzzy metric spaces introduce the concept of compatibility, resulting in common fixed 

point theorems for compatible mappings. The investigation also delves into the 

concepts of semi-compatibility and weak compatibility in the context of fuzzy metric 

spaces, leveraging these concepts to establish a common fixed point theorem. This 

work enhances the conditions for mapping continuity by substituting compatibility 

with semi-compatibility and weak compatibility. 

The research work was based on more applications on Common fixed points of 

compatible maps in fuzzy metric spaces and fuzzy Mathematics. The Research work 

basically carried around following research objectives:  

• Some fixed point and common fixed point theorems for in compatible maps 

will be obtained. 

• Some fixed point and common fixed point theorems in fuzzy metric spaces 

will be proved. 

• Some common fixed point theorems in compatible maps in fuzzy metric 

spaces will be obtained. 

• Some fixed point and common fixed point theorems for in fuzzy mathematics 

will be obtained. 

The whole work included in the Thesis is divided into five different chapters: 

Chapter 1 is of general introduction. The content of the chapter includes, general 

introduction on the fixed point theorem, fuzzy metric space and fuzzy mathematics. 

This chapter also describes fuzzy metric space and theorems which were used in this 



work. This chapter demonstrated different compatibility mappings and their types and 

the methodology. 

Chapter 2 is of review of literature which have presented literature associated with 

Fixed Points Theory and Its Application, Common Fixed Points Application for 

Compatible Maps and Fuzzy Metric Space and Common Fixed Point. 

Chapter 3 is of Fuzzy Metric Space discussed about the Definition and Basic 

Properties, Formal mathematical notation definition of fuzzy metric spaces followed 

with the key properties and characteristics. Chapter also presented basics of fuzzy 

Logic relevant to fuzzy metric spaces. 

Chapter 4 is of fixed point theorem in compatible mapping which describes various 

types of fixed point theorems, followed with the description of the theorems in 

context to compatible maps namely Banach's Fixed Point Theorem, Kannan's Fixed 

Point Theorem, Browder's Fixed Point Theorem, Rosenberg-Kannan Fixed Point 

Theorem and Chatterjea's Fixed Point Theorem. This chapter also describes various 

fixed point theorems in different spaces followed with the description of main 

outcome.  

Chapter 5 is of Conclusion, Summary and Future Research. The chapter demonstrated 

various finding followed with the conclusion of the research work. This chapter also 

presented the possible future directions of our proposed research work.  

References have been indicated in Thesis by the name(s) of the author(s) with year of 

publication and listed author wise in alphabetical order at the end. The main points in 

the chapter have been numbered in such a way that the first number indicates chapter: 

second number the serial order. The research papers incorporated in the Thesis have 

been published in reputed Journals and filed at the end of the thesis. 

Research concluded that, the application of fuzzy set theory in the field of engineering 

has significantly impacted various disciplines and brought about new methodological 

possibilities. Fuzzy set theory finds applications in a wide range of applied sciences, 

including neural network theory, stability theory, mathematical programming, 

modelling theory, medical sciences, image processing, control theory, 

communication, and more. Its influence spans across all engineering disciplines, 



including civil, electrical, mechanical, robotics, industrial, computer, and nuclear 

engineering, leading to advancements and improvements in these fields. 

Fuzzy set theory has led to the development of fixed and common fixed point 

theorems that satisfy diverse contractive conditions in fuzzy metric spaces. This has 

extended the application of fuzzy sets to topology and analysis, allowing for the 

exploration of various theoretical aspects and practical implications. 

The concept of fuzzy metric spaces has found numerous applications not only in 

mathematics but also in engineering and even in branches of quantum particle 

physics. Its versatility is evident in its ability to model uncertainty and vagueness in 

various real-world scenarios, enabling more accurate and flexible representations. Its 

applications have proven invaluable in addressing complex and uncertain problems 

across diverse disciplines, demonstrating the broad-reaching impact of this 

mathematical concept. As research continues to expand the theory of fuzzy sets and 

its applications, it is likely that its influence will continue to grow, offering innovative 

solutions to challenges in both theoretical and practical realms. 
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ABSTRACT  

This Ph.D. thesis, titled "Common Fixed Points of Compatible Maps in Fuzzy Metric 

Spaces and Fuzzy Mathematics," submitted to the Faculty of Mathematics at Pacific 

Academy of Higher Education and Research University, Udaipur, Rajasthan, explores 

the intersection of fuzzy metric spaces and fixed point theory. The study begins with 

an overview of metric spaces, introducing the concept of fuzziness and its application 

in mathematics. Fuzzy metric spaces, defined using fuzzy scalars, provide a unique 

perspective that extends the classical metric spaces, opening avenues for research in 

fuzzy optimization and pattern recognition. 

The thesis establishes the consistency of the fuzzy topology induced by fuzzy metric 

spaces with prescribed topologies and introduces the notion of a compatible pair of 

mutually continuous mappings. This leads to a fixed point theorem in fuzzy metric 

spaces, with a distinctive feature that it does not necessitate mapping continuity. The 

exploration further extends to compatible mappings in generalized fuzzy metric 

spaces, introducing common fixed point theorems. Semi-compatibility and weak 

compatibility concepts are introduced, offering alternative conditions for mapping 

continuity. 

The research objectives revolve around obtaining fixed point and common fixed point 

theorems for incompatible maps, fuzzy metric spaces, and compatible maps in fuzzy 

metric spaces. The work is organized into five chapters, covering general 

introductions, a review of literature, fuzzy metric spaces, fixed point theorems in 

compatible mapping, and a concluding chapter with future research directions. 

The literature review presents an overview of fixed points theory, common fixed 

points application for compatible maps, and the role of fuzzy metric spaces in 

common fixed points. Chapter 3 discusses fuzzy metric space, presenting definitions, 

properties, and mathematical notations, along with basics of fuzzy logic relevant to 

fuzzy metric spaces. Chapter 4 centers on fixed point theorems in compatible 

mapping, examining various types and their descriptions in the context of compatible 

maps. The chapter concludes with outcomes and insights into fixed point theorems 

across different spaces. Chapter 5 summarizes findings, concludes the research work, 

and outlines potential future directions. References are organized alphabetically, 



citing authors and publication years, with research papers included in reputed journals 

and filed at the thesis's end. 

The research concludes with an exploration of the application of fuzzy set theory in 

engineering, showcasing its impact across various disciplines. Fuzzy set theory's 

applications extend to neural network theory, stability theory, mathematical 

programming, medical sciences, image processing, and more, significantly advancing 

fields such as civil, electrical, mechanical, robotics, industrial, computer, and nuclear 

engineering. 

Fuzzy set theory contributes to fixed and common fixed point theorems in fuzzy 

metric spaces, broadening its applications to topology and analysis. The versatility of 

fuzzy metric spaces transcends mathematical domains, finding applications in 

engineering and quantum particle physics. Its ability to model uncertainty in real-

world scenarios demonstrates its invaluable role in addressing complex and uncertain 

problems across diverse disciplines. As research continues to unfold the theory of 

fuzzy sets and their applications, the impact is expected to grow, offering innovative 

solutions to theoretical and practical challenges. 
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1.1 INTRODUCTION 

One of the most effective techniques in modern mathematics is the theory of 

fixed points. The fixed point theorem is a well-known statement about the existence 

and characteristics of fixed points. The study of fixed point theorems is crucial to 

nonlinear analysis. One of the most often used analytical findings is the Banach 

contraction mapping theorem. After the renowned papers by Kirk and Browder were 

published in 1965, researchers began looking for closed convex subsets of Banach 

spaces that have the fixed point property for non-expansive self- mappings. This led 

to many significant advancements in the geometry of Banach spaces and produced a 

wealth of profound findings with broad-reaching implications.  

Definition: Let X be a set and a and b be two nonempty subsets of X such that � ∩ � ≠ Ø 

and �:� → � be a map. When does a point � ∈ � such that ƒ(�) = �. 

 Fixed point Theory Four main categories of theory are usually recognized: 

(1) Topological fixed point theory 

(2) Metric fixed point theory 

(3) Discrete fixed point theory 

(4) Fuzzy topological fixed point theory 

In the past, the three main theorems that were discovered helped to define the 

limits between the three fields of theory: 

(1) Which was derived in 1912 using Brouwer's fixed point theorem. 

(2) Which was derived in 1922 from a Banach's fixed point. 

(3) Which was derived in 1955 from Tarski's fixed point theorem. 

(4) Which was introduced in 1973 by the Finite Fuzzy Tychonoff Theorem. 

In this chapter, we focus on recent advancements in metric fixed point theory 

and its applications. S. Banach developed the first fixed point theorem in metric space 

in 1922 to help in contraction mapping. Contractive, non-expansive, Lipchitz's, and 

other continuous mappings are all products of contraction mapping. Nearly 40 years 

after the discovery of Banach's fixed point theorem, M. Edelstein developed a class 

of new fixed point theorems for a particular class of mappings in metric spaces.  
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The volume of fixed point theorems in metric spaces is the most significant 

generalization of the contraction mapping concept that has been produced by several 

mathematicians and is still in use today[36]. Of course, there are other fixed point 

theorems as well, such as the one linked to arbitrary mapping that J. Caristi 

established in 1975. Mathematical economics, optimisation theory, and game theory 

are important areas of mathematics and mathematical sciences in fixed point 

theorems[7]. 

A contraction mapping on a whole metric space has a unique fixed point, 

according to the famous Banach contraction principle (BCP). Banach achieved this 

important outcome using the concept of a decreasing map[30]. Fixed point theory has 

taken on a new dimension as a result of the invention of computers and the creation 

of new software for quick and efficient computation[39,31]. For the numerical solution 

of equations, the Brouwer fixed point theorem is crucial. The phrase "a continuous 

map on a close unit ball in Rn has a fixed point" is used exactly[23,41,42]. 

The Schauder's fixed point theorem, which states that "a continuous map on 

a convex compact subspace of a Banach space has fixed point" in 1930, is a 

significant expansion of this. The development of fixed point theory changes as a 

result of the formulation of Jugck's fixed point theorem on commutative maps, the 

relaxation of the commutatively condition by weak commutatively, and other related 

ideas. A new direction for approximating fixed point and the convergence of iterative 

sequences emerged in the field of fixed point theory. Many other authors have 

produced numerous works in this area. 

Which both beginners and experts in metric fixed point theory and its 

applications will find highly helpful[33,16]. In reality, Banach's fixed point theorem in 

metric spaces has grown to be a very popular tool for resolving issues in many 

disciplines of applied mathematics and the sciences due to its usefulness, simplicity, 

and applications. The Banach's fixed point theorem has also been used by numerous 

writers in the fields of applied economics[18,19,43], chemical engineering science, 

medicine, image recovery, electric engineering, and game theory. Consequently, 

different fixed point, common fixed point, coincidence point, etc. findings have been 

examined for maps satisfying various contractive requirements in diverse contexts. 
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This chapter includes a brief history of fixed point theorems in metric space, 

a fixed point theorem in fuzzy metric space, and a brief chronology of their 

development. We have picked the topic "fixed point theorem in metric space and 

fuzzy metric space with application" because we are fascinated by the growth of 

research on this subject as our study's objective. We have cited the original study, 

books, reviews, and other sources for information. 

1.2 BACKGROUND OF THE RESEARCH 

The study referring to, involving common fixed points of compatible maps in fuzzy metric 

spaces and fuzzy mathematics, is a topic within the realm of mathematics that explores 

fixed point theory and its application to fuzzy sets and fuzzy metric spaces. Let's break 

down the key concepts involved: 

• Fixed Point Theory: Fixed point theory is a branch of mathematics that deals with 

the study of mappings (functions) that have points that are invariant under the 

mapping. In other words, a point is a fixed point of a function if it remains 

unchanged when the function is applied to it. 

• Fuzzy Sets: Fuzzy set theory extends classical set theory to handle situations where 

elements can have degrees of membership rather than simply belonging or not 

belonging to a set. Fuzzy sets are used to represent uncertainty and vagueness in 

various applications. 

• Fuzzy Metric Spaces: A fuzzy metric space generalizes the concept of a metric 

space by allowing the distance between two points to be a value in the interval [0, 

1] rather than a real number. In fuzzy metric spaces, distances are represented with 

a degree of membership, accommodating uncertainty in the measurement of 

distances. 

• Compatible Maps: In the context of fuzzy metric spaces, compatible maps are a 

pair of mappings that satisfy certain conditions to ensure the existence of a common 

fixed point. These conditions are designed to ensure that the mappings work well 

together in finding fixed points. 
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• Common Fixed Points: Given a set of mappings, a common fixed point is a point 

that is simultaneously a fixed point for all the mappings in the set. The existence 

and properties of common fixed points are of interest in various mathematical 

contexts, including fuzzy metric spaces. 

The study of common fixed points of compatible maps in fuzzy metric spaces involves 

investigating the conditions under which such fixed points exist, as well as the properties 

and characteristics of these fixed points. This area of research bridges concepts from fixed 

point theory and fuzzy mathematics to provide insights into the behaviour of mappings in 

uncertain or imprecise environments. 

Research results may help to understand behaviour of compatible maps and their common 

fixed points in fuzzy metric spaces. Applications of these concepts could be found in 

various fields where uncertainty and imprecision are present, such as decision-making, 

optimization, and modelling real-world situations with vague information. 

1.2.1 Importance / Rationale of Proposed Investigation 

Indeed, fuzzy set theory has found a wide range of applications in various fields of 

engineering, as well as other disciplines. Here are some of the areas where fuzzy set theory 

has made a significant impact: 

• Control Theory: Fuzzy logic is widely used in control systems, especially in cases 

where the systems involve uncertainty, imprecision, and nonlinearity. Fuzzy 

control allows for the creation of controllers that can handle complex and uncertain 

environments. 

• Image Processing: Fuzzy image processing techniques are applied to tasks like 

image segmentation, edge detection, and pattern recognition. Fuzzy sets help in 

dealing with the ambiguity and uncertainty often present in image data. 

• Pattern Recognition: Fuzzy sets are employed to model the imprecise nature of 

patterns and features in recognition tasks. This is particularly useful when dealing 

with data that might not fit perfectly into traditional categories. 
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• Decision-Making Systems: Fuzzy logic is used to create decision support and 

expert systems that can handle imprecise or incomplete information. This has 

applications in areas like risk assessment and optimization. 

• Robotics: Fuzzy logic is used in robotics for tasks like path planning, sensor 

fusion, and behavior control. Fuzzy control systems allow robots to navigate and 

interact in complex and uncertain environments. 

• Medical Sciences: Fuzzy logic has applications in medical diagnosis, medical 

imaging, and treatment planning. It helps handle the uncertainty and variability 

present in medical data. 

• Engineering Design and Optimization: Fuzzy logic is used to optimize 

engineering designs in situations where the design parameters are imprecise or 

uncertain. 

• Communication Systems: Fuzzy logic can be applied to communication systems 

to improve error correction, data compression, and channel equalization. 

• Neural Networks: Fuzzy systems can be integrated with neural networks to 

enhance learning algorithms and decision-making processes. 

• Mathematical Programming: Fuzzy optimization techniques are used in 

mathematical programming to solve problems with imprecise or uncertain 

parameters. 

• Stability Theory: Fuzzy stability analysis can be used to assess the behaviour of 

systems in the presence of uncertainty. 

• Industrial Engineering: Fuzzy logic is applied in quality control, production 

scheduling, and resource allocation in industrial settings. 

• Civil Engineering: Fuzzy logic can help in structural analysis, risk assessment, 

and decision-making in civil engineering projects. 

• Environmental Engineering: Fuzzy logic is employed in modelling and decision-

making related to environmental systems. 
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The use of fuzzy metric spaces and fixed point theory within the context of fuzzy 

mathematics adds another layer of applicability to these areas. The ability to model 

uncertainty, vagueness, and imprecision through fuzzy sets and related concepts provides 

more robust tools for solving real-world problems. As it is mentioned, various engineering 

disciplines, as well as mathematics and physics, have been positively impacted by the 

application of fuzzy set theory. Researchers and practitioners continue to explore and 

develop new methods and applications, expanding the reach of fuzzy logic and related 

theories. 

A metric space in mathematics is a set for which the distances among each member of the 

set are specified. These separations are collectively referred to as a metric on the set. Three-

dimensional Euclidean space is the most well-known metric space. A "metric" is actually 

the generalisation of the Euclidean metric that results from the four well-established 

characteristics of the Euclidean distance. The length of the segment of a straight line that 

connects two points is how the Euclidean metric measures distance between them. In 

elliptic geometry and hyperbolic geometry, for instance, the distance on a sphere 

determined by an angle is a metric, while special relativity uses the hyperboloid model of 

hyperbolic geometry as a metric space of velocities. The study of more abstract topological 

spaces is facilitated by the topological qualities that a metric on a space produces, such as 

open and closed sets. 

The work focuses on fuzzy mathematics and common fixed points of suitable maps in 

fuzzy metric spaces. Topological space includes fuzzy metric space. Since it is 

fundamental to the applications of many branches of mathematics, fixed point theory is 

one of the pillars of mathematical advancement. Since it can be simply and conveniently 

observed, the Banach contraction principle is one of the most effective power tools to 

research in this area. In contrast to earlier versions, fuzzy metric spaces now define fuzzy 

metrics using fuzzy scalars rather than fuzzy numbers or real numbers. 

It is established that every regular metric space can produce a complete fuzzy metric space 

whenever the primary one does. We also demonstrate the consistency of the supplied 

topology with the fuzzy topology generated by the fuzzy metric spaces defined in this 

study. The findings offer some theoretical underpinnings for the study of fuzzy 

optimisation and pattern recognition. Fuzzy scalars, as opposed to fuzzy numbers or real 

numbers, are used to define fuzzy metric, redefining fuzzy metric spaces from their prior 
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iterations. It is established that every regular metric space can produce a complete fuzzy 

metric space whenever the primary one does. 

A fixed point theorem in a fuzzy metric space is obtained, which creates a fixed point but 

does not require the map to be continuous. The compatible pair of reciprocally continuous 

mappings is defined. Additionally, suitable mapping in a fuzzy metric space is introduced. 

In generalised fuzzy metric space, compatibility is introduced, and common fixed point 

theorems for compatible mappings are found. A common fixed point theorem has been 

proven using the fuzzy metric space concepts of semi-compatibility and weak 

compatibility. We use weak and semi-compatibility of the mappings in lieu of 

compatibility to improve the result of the condition of continuity of the mapping. 

Here, the present research work will make a solution suggesting for more problems 

involving common fixed points of compatible maps in fuzzy metric spaces and fuzzy 

mathematics. 

1.3 SCOPE OF STUDY  

The scope of a study on common fixed points of compatible maps in fuzzy metric spaces 

and fuzzy mathematics refers to the specific aspects, parameters, and boundaries that 

define the practical execution of the research. The scope of a study on common fixed points 

of compatible maps in fuzzy metric spaces and fuzzy mathematics is quite extensive and 

can encompass both theoretical investigations and practical applications. Engineering has 

unquestionably been a leader in the use of fuzzy set theory. In applied sciences such as 

neural network theory, stability theory, mathematical programming, modelling theory, 

engineering sciences, medical sciences (medical genetics, nervous system), image 

processing, control theory, communication, etc., fuzzy set theory has applications. The 

novel methodological options offered by fuzzy sets have already had a significant impact 

on all engineering disciplines, including civil engineering, electrical engineering, 

mechanical engineering, robotics, industrial engineering, computer engineering, nuclear 

engineering, etc. Fixed and common fixed point theorems in fuzzy metric spaces meeting 

various contractive criteria. Since then, other writers have extensively extended the theory 

of fuzzy sets and applications in order to exploit this concept in topology and analysis. 

Numerous mathematical disciplines, as well as engineering and numerous parts of 

quantum particle physics, use fuzzy metric spaces. 
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The scope of study is comprehensive and covers a wide range of theoretical and practical 

aspects in the realm of common fixed points of compatible maps in fuzzy metric spaces 

and fuzzy mathematics, with a particular emphasis on its applications in engineering and 

various scientific domains. Study aims to bridge the theoretical foundations of fuzzy 

metric spaces and fixed point theorems. By exploring the convergence of different aspects, 

study will contribute to the understanding of fuzzy mathematics and its diverse 

applications. Study scope underscores the far-reaching impact of fuzzy set theory and its 

potential to revolutionize problem-solving in both established and emerging fields. 

1.4 RESEARCH GAPS 

Research gaps in the field of common fixed points of compatible maps in fuzzy metric 

spaces and fuzzy mathematics refer to areas where further investigation, exploration, and 

development are needed. Here are some potential research gaps in this area: 

• Generalization of Compatible Maps: While the concept of compatible maps is 

well-defined, there might be room for generalizations that encompass a broader 

class of mappings. Exploring different compatibility conditions and their 

implications for common fixed points could be a research direction. 

• Complex Systems and Applications: Investigating common fixed points of 

compatible maps in the context of complex systems, such as neural networks, 

multi-agent systems, or evolutionary algorithms, could yield insights into how 

these fixed points relate to the behaviour of intricate systems. 

• Non-Metric and Non-Standard Fuzzy Spaces: Much of the existing research 

focuses on fuzzy metric spaces. Exploring the theory of common fixed points in 

non-metric fuzzy spaces or spaces with non-standard fuzzy structures could reveal 

new phenomena and challenges. 

• Algorithms and Numerical Methods: Developing efficient computational 

algorithms to find common fixed points of compatible maps in fuzzy metric spaces 

is an important practical aspect. Investigating the convergence properties, speed, 

and stability of such algorithms would be valuable. 
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• Stability and Sensitivity Analysis: Understanding the stability of common fixed 

points under perturbations or variations in the mappings and the fuzzy metric could 

have applications in systems analysis and control. 

• Extensions to Multivalued Mappings: Extending the theory to common fixed 

points of compatible multivalued mappings in fuzzy metric spaces could provide a 

richer framework for modelling and solving real-world problems. 

• Applications to Engineering Problems: While the potential applications of the 

theory are mentioned broadly, specific case studies and applications to engineering 

problems (e.g., robotics, control systems, optimization) could demonstrate the 

practical significance of the results. 

• Connection to Topology and Analysis: Exploring the interplay between fuzzy 

metric spaces and more traditional metric spaces in terms of fixed point theorems, 

continuity, and convergence could yield deeper insights into the properties of 

common fixed points. 

• Quantum Fuzzy Metric Spaces: Mentioned briefly in your initial question, 

exploring connections between common fixed points in fuzzy metric spaces and 

the concepts of quantum physics could be a highly specialized yet intriguing 

direction of research. 

• Comparative Studies: Comparative studies that analyse and contrast different 

approaches to common fixed points in fuzzy metric spaces could provide a clearer 

understanding of the strengths and limitations of various techniques. 

• Hybrid Approaches: Combining fuzzy set theory with other mathematical tools, 

such as interval analysis or uncertainty quantification, could lead to hybrid methods 

for analyzing common fixed points in fuzzy metric spaces. 

• General Theoretical Frameworks: Developing more general theoretical 

frameworks that encompass various types of fuzzy structures and mappings would 

provide a unified approach to studying common fixed points. 

These research gaps represent potential avenues for advancing the field of common fixed 

points of compatible maps in fuzzy metric spaces and fuzzy mathematics. Researchers in 
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this area can contribute by addressing these gaps and pushing the boundaries of knowledge 

in this specialized but impactful field. 

Major research gaps taken into consideration for the purpose of further study are as 

follows: 

1. Identifying the new and advanced fixed point and common fixed point theorems 

for in compatible maps. 

2. Identifying the new and advanced fixed point and common fixed point theorems in 

fuzzy metric spaces. 

3. Identifying the new and advanced common fixed point theorems in compatible 

maps in fuzzy metric spaces. 

4. Identifying the new and advanced fixed point and common fixed point theorems 

for in fuzzy mathematics. 

1.5 RESEARCH OBJECTIVES 

By adding and relaxing some requirements, as well as generalising the previous findings, 

it is anticipated that some fixed point theorems would be discovered in various spaces.  

To date, the majority of works in this domain have focused on topological space, metric 

space, fuzzy metric spaces, etc. The current study aims to investigate some novel results 

for fixed point theorems in various spaces by taking various mappings & diverse spaces, 

despite the fact that fixed point theorems in fuzzy 2-metric spaces, etc., have only rarely 

been worked out. 

• Some fixed point and common fixed point theorems for in compatible maps will 

be obtained. 

• Some fixed point and common fixed point theorems in fuzzy metric spaces will be 

proved. 

• Some common fixed point theorems in compatible maps in fuzzy metric spaces 

will be obtained. 
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• Some fixed point and common fixed point theorems for in fuzzy mathematics will 

be obtained. 

1.6 RESEARCH METHODOLOGY 

Exploring the different applications of common fixed points of compatible maps in fuzzy 

metric spaces and fuzzy mathematics requires a systematic research methodology and 

framework. Improving the results related to the continuity of mappings while utilizing 

semi-compatibility and weak compatibility in place of compatibility involves developing 

new theorems, refining existing concepts, and providing more comprehensive insights. 

Here is the methodology followed to explore more applications on Common fixed points 

of compatible maps in fuzzy metric spaces and fuzzy Mathematics: 

1. First Step: Clarify and Strengthen Definitions: The work will offer precise and 

well-defined mathematical formulations for semi-compatibility and weak 

compatibility of mappings. It is ensured that these definitions will capture the 

essential characteristics of these concepts. 

2. Second Step: Establish Equivalence Theorems: Work would be presented on 

proving theorems that demonstrate compatibility in terms of ensuring continuity. 

These theorems will serve as bridges between the different concepts. Identify 

scenarios where continuity can be achieved using these relaxed conditions. 

3. Third Step: Exploring Counterexamples: Identify cases and examining the 

instances where compatibility fails but one of the relaxed conditions ensures 

continuity. 

4. Fourth Step: Generalizing the Concepts: Consider generalizing the definitions 

compatibility to encompass broader classes of mappings. Explore whether these 

generalizations still yield improved results for continuity. 

5. Fifth Step: Providing Practical Examples: Offer examples where the use of 

compatibility leads to better insights or solutions than traditional compatibility. 

6. Sixth Step: Studying the Different Mathematical Spaces: Extending the 

investigation beyond just metric spaces to other types of spaces, such as fuzzy 
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spaces. Determine if the behaviour of compatibility remains consistent across these 

spaces. Followed with, ensuring the explanations and proofs.  

By following these strategies, research would be able to enhance the understanding of 

continuity, compatibility, and alternative concepts.  

1.7 COMPATIBILITY MAPPING AND ITS TYPES 

In fixed point theorems, the concept of "compatibility mapping" often refers to a condition 

that ensures the interaction between different mappings in a way that allows a fixed point 

theorem to hold. Compatible mappings play a crucial role in establishing the existence of 

fixed points. Here are some common types of compatibility mappings in the context of 

fixed point theorems: 

1.7.1 Compatible Mappings of Type (A):  

• These mappings satisfy a form of continuity known as "A-continuity." 

• They ensure that the images of convergent sequences under the mappings remain 

bounded. 

• Often used in conjunction with Banach's contraction principle and Nadler's fixed 

point theorem. 

General outline of how Compatible Mappings of Type (A) are used in fixed point theorems 

is given below: 

Mathematical Notation: 

• Let X be a metric space with metric d. 

• Let T:X→X be a mapping. 

• A sequence {xn} in X converges to x is denoted as xn→x. 

• The distance between two points x and y is denoted as d(x,y). 
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1.7.2 Compatible Mappings of Type (B): 

• Similar to Type (A) mappings, these ensure that the images of convergent 

sequences remain bounded. 

• Widely used in proving fixed point theorems for mappings that are not necessarily 

continuous. 

General outline of how Compatible Mappings of Type (B) are used in fixed point theorems 

is given below: 

Definition of Compatible Mappings of Type (B): Let X be a metric space with metric d. 

Consider two mappings T₁ ₂ ₁ ₂: X → X and T : X → X. The mappings T  and T  are said 

to be compatible of Type (B) if for any pair of points x and y in X with d (x, y) ≤ d(T (x), ₁

T (y)), it holds that d(T (x), T (y)) ≤ d(T₂ ₁ ₁ ₂ (x), T (y)).₂  

Mathematical Notation for Compatible Mappings of Type (B): 

• X: The metric space. 

• d (x, y): The distance between two points x and y in the metric space X. 

• T : The first mapping from X to X.₁  

• T : The second mapping from X to X.₂  

With this notation, the compatibility condition can be stated as follows: 

T  and T  are compatible of Type (B) if, for any x, y ₁ ₂ ∈ X such that d (x, y) ≤ d(T (x), ₁

T (y)), it holds that d(T (x), T (y)) ≤ d(T (x), T (y)).₂ ₁ ₁ ₂ ₂  

This notation is constructed on the basis of format discussed above for Compatible 

Mappings of Type (A).  

1.7.3 Compatible Mappings of Type (C): 

• These mappings satisfy a compatibility condition that guarantees the convergence 

of certain sequences under the mappings. 

• Often utilized in fixed point theorems where continuity assumptions are relaxed. 
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General outline of how Compatible Mappings of Type (C) are used in fixed point theorems 

is given below: 

"Compatible Mappings of Type (C)" in the context of fixed-point theorems, and if 

"Compatible Mappings of Type (C)" is a specific concept with defined properties, you 

might represent them using a notation that reflects their compatibility. A general way to 

notate compatible mappings for illustration: 

Let's assume that "Compatible Mappings of Type (C)" refers to a pair of compatible 

mappings T and S defined on a metric space (X, d), where their compatibility is 

characterized by a relation C. Here's how you could represent this notation: 

1. Compatible Mappings Notation: 

T: X → X  

S: X → X 

2. Compatibility Relation (C): 

Let's say that "Compatible Mappings of Type (C)" means that T and S satisfy a certain 

compatibility relation C. You might represent this relation using an appropriate 

notation. For example: 

• T(x) C S(x) for all x in X 

3. Fixed-Point Theorem Notation: 

If you're using these compatible mappings to prove a fixed-point theorem, the theorem 

might be stated in terms of their compatibility. For example: 

• Theorem: Let (X, d) be a metric space, and let T and S be Compatible 

Mappings of Type (C) on X such that [additional conditions]. Then there 

exists a point x∗ in X such that T(x∗) = x∗ and S(x∗) = x∗. 

In this theorem, the notion of "Compatible Mappings of Type (C)" is used to establish that 

the mappings T and S satisfy a compatibility condition that is stronger or more specific 

than a general compatibility condition. 

Fixed Point Notation:  

The fixed point x∗ for the mapping T is represented as: 

• T(x∗) = x∗ 
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1.7.4 Compatible Mappings of Type (D): 

• These mappings satisfy a condition that ensures the convergence of images of 

Cauchy sequences. 

• Used in the context of generalized metric spaces or partial metric spaces. 

General outline of how Compatible Mappings of Type (D) are used in fixed point theorems 

is given below: 

Compatible mappings of type (D) are often used in generalized metric spaces or partial 

metric spaces to ensure the convergence of images of Cauchy sequences. This can be 

represented mathematically as follows: 

Let X and Y be two generalized metric spaces (or partial metric spaces), and let dX and dY 

be their respective generalized metrics (or partial metrics). 

A mapping f:X→Y is said to be a compatible mapping of type (D) if it satisfies the 

following condition: 

For any Cauchy sequence (xn) in X, the sequence (f(xn)) in Y is also a Cauchy sequence. 

Mathematically, this can be expressed as: 

For all ε>0, there exists δ>0 such that for all xn, xm ∈	X, if dX (xn, xm) < δ, then dY (f(xn), f 

(xm)) <ε. 

In other words, the mapping f preserves the convergence properties of Cauchy sequences 

from X to Y, ensuring that if (xn) is a Cauchy sequence in X, then (f(xn)) is also a Cauchy 

sequence in Y. This compatibility property is crucial in maintaining the consistency of 

convergence in the context of generalized metric spaces or partial metric spaces. 

The notation for expressing compatible mappings of type (D) involving generalized 

metric spaces or partial metric spaces is as follows: 

Let X and Y be generalized metric spaces (or partial metric spaces), and let dX and dY be 

their respective generalized metrics (or partial metrics). 
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A mapping f: X→Y is a compatible mapping of type (D) if it satisfies the following 

condition:  

For all ε>0, there exists δ>0 such that for all xn, xm ∈	X, if dX (xn, xm) < δ, then dY (f(xn), f 

(xm)) <ε. 

This can be represented symbolically as: 

∀ε>0, ∃δ>0:∀xn, xm∈X, dX(xn, xm)<δ⇒dY(f(xn), f(xm))<ε 

In this notation: 

• ∀∀ represents "for all" or "for every". 

• ∃∃ represents "there exists". 

• ε is a small positive number that controls the neighbourhood of points. 

• δ is a small positive number associated with the mapping's compatibility condition. 

• xn and xm are elements of the generalized metric space X. 

• f(xn) and f(xm) are the corresponding images of xn and xm under the mapping f. 

• dX and dY are the generalized metrics (or partial metrics) in spaces X and Y 

respectively. 

This notation precisely captures the compatibility requirement for mappings of type (D) in 

the context of generalized metric spaces or partial metric spaces. 

1.7.5 Occasionally Weakly Compatible Mappings: 

• A more general form of compatibility that applies to non-continuous mappings. 

• It involves specifying conditions under which the images of points under different 

mappings are "occasionally" close to each other. 

• General outline of how Occasionally Weakly Compatible Mappings are used in 

fixed point theorems is given below: 
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• Definition of Occasionally Weakly Compatible Mappings: 

• Occasionally Weakly Compatible Mappings is a concept that extends the notion of 

compatibility between mappings to a more general setting, accommodating non-

continuous mappings. It establishes conditions under which the images of points 

under different mappings are "occasionally" close to each other. 

• Let X be a non-empty set and Y and Z be two metric spaces. Consider two 

mappings: f:X→Y and g:X→Z. The mappings f and g are said to be occasionally 

weakly compatible if there exists a subset A of X and two subsets Af ⊆	A and Ag ⊆	

A such that for every ε>0, there exists a δ>0 satisfying the following condition for 

all xf ∈	Af and xg ∈	Ag: dY(f(xf), g(xg)) < ε 

• where dY represents the distance metric in Y, and dY (f (xf), g(xg)) denotes the 

distance between the images of xf under f and xg under g. This condition implies 

that for sufficiently small ε, the images of points from Af and Ag are "occasionally" 

close.  

• In simpler terms, occasionally weakly compatible mappings allow the images of 

points to be close to each other, but this closeness is not required everywhere. 

Instead, it's required only on specific subsets of the domain X, represented by Af 

and Ag.  

• This concept has applications in various areas of mathematics, including fixed 

point theory, functional analysis, and nonlinear analysis. It accommodates 

scenarios where mappings might exhibit irregular behavior, discontinuities, or 

variations that prevent them from being continuously compatible but still satisfy 

this more flexible notion of occasional closeness. 

1.7.6 Alternately Dominated Mappings: 

• A condition weaker than contraction mappings. 

• Used in fixed point theorems that relax the Lipschitz condition and accommodate 

non-continuous mappings. 
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General outline of how Alternately Dominated Mappings are used in fixed point theorems 

is given below: 

Definition of Alternately Dominated Mappings: 

The concept of Alternately Dominated Mappings is a mathematical condition used in fixed 

point theory to establish the existence of fixed points for certain types of mappings. It 

provides a more relaxed condition compared to strict contractions, allowing for a broader 

class of mappings, including those that might not satisfy the Lipschitz condition or be 

continuous. The key mathematical concept is the alternating control of distances between 

points in the mapping process. Here's a more detailed explanation: 

Definition: Let (X,d) be a metric space, and let f:X→X be a mapping. The mapping f is 

said to be an Alternately Dominated Mapping if there exist constants 0≤a, b<1 such that 

for all x, y ∈	X, the following inequality holds: a⋅d(f(x),f(y))≤d(x,y)≤b⋅d(f(x),f(y)) 

In this definition, d represents the distance metric on the space X, and a and b are 

alternating constants. This inequality states that the distance between f(x) and f(y) is 

controlled by the distance between x and y, and vice versa, with alternating constants a and 

b. 

Role in Fixed Point Theorems: Alternately Dominated Mappings are used in fixed point 

theorems to establish the existence of fixed points for mappings that are not necessarily 

strict contractions. Here's how they are applied in this context: 

1. Relaxing the Contraction Condition: In traditional fixed point theorems like the 

Banach Fixed Point Theorem, strict contractions are required, imposing a Lipschitz 

constant strictly less than 1. Alternately Dominated Mappings provide a more 

flexible condition that can still guarantee the existence of fixed points without the 

strict contraction requirement. 

2. Accommodating Non-Continuous Mappings: Many practical problems involve 

mappings that might not be continuous or satisfy the Lipschitz condition. 

Alternately Dominated Mappings allow for the inclusion of such mappings, 

expanding the applicability of fixed point theorems. 

3. Proof Strategy: When proving the existence of fixed points using Alternately 

Dominated Mappings, the alternating distance bounds play a key role. These 
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bounds ensure that the distances between iterated points converge in a controlled 

manner, eventually leading to a fixed point of the mapping. 

4. Generalization: The concept of Alternately Dominated Mappings is a 

generalization of strict contractions. It encompasses a broader class of mappings 

that exhibit specific distance control properties, which can be tailored to the 

problem at hand. 

Overall, the mathematical concept of Alternately Dominated Mappings provides a way to 

establish fixed point theorems for mappings that might not satisfy strict contraction 

conditions. It introduces alternating distance control, allowing for more flexibility in 

convergence behavior and accommodating non-continuous mappings. This makes the 

fixed point theorem applicable to a wider range of functions encountered in both 

theoretical and applied mathematical contexts. 

1.7.7 Property (E) Mappings: 

• These mappings satisfy a property that ensures the convergence of the iterates of a 

sequence. 

• Widely used in fixed point theorems that involve non-continuous maps. 

General outline of how Property (E) Mappings are used in fixed point theorems is given 

below: 

Definition of Property (E) Mappings: 

In the context of fixed point theorems, Property (E) refers to a condition that guarantees 

the convergence of iterates of a sequence generated by a non-continuous mapping. This 

property is often used in fixed point theorems that deal with non-continuous maps. Here's 

the mathematical definition and notation: 

Let X be a metric space, and T:X→X be a mapping, which might not be continuous. We 

say that T satisfies Property (E) if for any sequence {xn} in X defined by xn+1=T (xn) for all 

n, the following condition holds: 

For any sequence {yn} in X with yn→y as n approaches infinity and yn+1=T(yn) for all n, the 

limit of the sequence {xn} is the same as the limit of the sequence {yn}: limn→∞ xn = limn→∞ 

yn=y. 
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Notation: 

• X: The metric space under consideration. 

• T:X→X: The mapping being analyzed. 

• {xn}: A sequence in X generated by iterates of T. 

• {yn}: Another sequence in X that satisfies the same iterative property as {xn}. 

• y: The common limit of both {xn} and {yn} as n approaches infinity. 

The significance of Property (E) in fixed point theorems lies in its ability to ensure 

convergence of sequences even when the mapping T is non-continuous. This is valuable 

in the context of fixed point theorems, which aim to establish the existence of points that 

remain invariant under certain mappings. While continuity is a desirable property, there 

are situations where non-continuous maps are involved, and Property (E) provides a 

sufficient condition for convergence in these cases. 

1.7.8 Weakly Compatible Mappings: 

• A more general concept that describes mappings that behave well together, even if 

they are not necessarily compatible in the traditional sense. 

General outline of how Weakly Compatible Mappings are used in fixed point theorems is 

given below: 

Definition of Weakly Compatible Mappings: 

Weakly compatible mappings are a mathematical concept that captures a relaxed form of 

compatibility between two or more mappings, even if they do not satisfy the conditions of 

traditional compatibility. This concept is often used in various mathematical and 

theoretical contexts to study interactions between mappings in a less restrictive manner. 

Here's the mathematical definition and notation: 

Let X be a non-empty set and let {fi:X→X}i∈I be a family of mappings, indexed by the set 

I. 

The mappings fi are said to be weakly compatible if, for any distinct i,j ∈	I and for any 

x∈X, there exists a point xij∈X such that at least one of the following conditions holds: 
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1. fi(xij)=fj(xij) 

2. fi(fj(xij))=xij 

3. fj(fi(xij))=xij 

In mathematical notation, we can express these conditions as follows: 

1. fi(xij)=fj(xij) 

2. fi∘fj(xij)=xij 

3. fj∘fi(xij)=xij 

Here, fi∘fj represents the composition of mappings fi and fj. 

In summary, weakly compatible mappings are mappings that exhibit a form of agreement 

or mutual behaviour at certain points, even if they are not strictly compatible in the 

traditional sense. This concept provides a more lenient way to study the interactions 

between mappings and their shared properties, allowing for a broader range of 

mathematical analyses and applications. 

Role in Fixed Point Theorems: The role of weakly compatible mappings in fixed point 

theorems can be succinctly described mathematically as follows: 

1. Enabling Flexible Compatibility: Weakly compatible mappings allow for a 

relaxed form of compatibility among mappings that might not satisfy strict 

pointwise agreements. This flexibility accommodates mappings with varying 

behaviors. 

2. Extending Fixed Point Results: By providing a shared interaction at certain 

points or through compositions, weakly compatible mappings extend the 

applicability of fixed point theorems. These theorems can be established without 

imposing stringent compatibility requirements. 

3. Generalizing Theorems: The introduction of weakly compatible mappings 

generalizes fixed point theorems to cover scenarios where strict compatibility 

assumptions do not hold. This inclusion encompasses both continuous and non-

continuous mappings. 
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4. Adapting Proof Strategies: Weakly compatible mappings prompt the 

development of proof techniques that emphasize the convergence and interaction 

properties described by weak compatibility, rather than focusing solely on 

continuity. 

5. Practical Application: In practical mathematical modeling, where systems exhibit 

irregularities and non-continuous behavior, weakly compatible mappings provide 

a versatile tool for applying fixed point theorems to real-world scenarios. 

In summary, the mathematical definition of weakly compatible mappings, along with their 

role in fixed point theorems, highlights their importance in broadening the scope of fixed 

point results to encompass a wider range of mappings and facilitating the application of 

these theorems in diverse contexts. 

1.7.9 Pairwise Compatible Mappings: 

• Refers to a situation where each pair of mappings among a set of mappings is 

compatible. 

It's important to note that the terminology and definitions of these types of compatibility 

mappings can vary based on the specific fixed point theorem and mathematical context. 

The choice of compatibility condition depends on the properties of the mappings involved 

and the goals of the fixed point theorem being proven. 

General outline of how Pairwise Compatible Mappings are used in fixed point theorems is 

given below: 

Mathematical Notation: 

Let X be a non-empty set and {Ti:X→X}i∈I be a family of mappings indexed by I. The 

notation for pairwise compatibility of mappings Ti and Tj can be represented as follows: 

• Ti and Tj are pairwise compatible if there exists a point xij∈X such that: 

• Ti(xij)=Tj(xij), or 

• Ti∘Tj(xij)=xij, or 

• Tj∘Ti(xij)=xij. 
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Mathematical Definition: 

Pairwise compatible mappings are a concept in fixed point theory that relaxes the 

compatibility requirements among mappings in a family. A family of mappings {Ti

:X→X}i∈I is said to be pairwise compatible if, for any distinct i,j∈I, there exists a point xij

∈X satisfying at least one of the following conditions: 

1. Ti(xij)=Tj(xij) 

2. Ti∘Tj(xij)=xij 

3. Tj∘Ti(xij)=xij 

The concept of pairwise compatibility provides a more relaxed form of compatibility 

among mappings in the family. Unlike traditional compatibility, which requires agreement 

among all pairs of mappings, pairwise compatibility only requires specific pairs of 

mappings to satisfy compatibility conditions at certain points. 

Role in Fixed Point Theorems: 

Pairwise compatible mappings play a significant role in fixed point theorems by expanding 

the applicability of such theorems to scenarios where strict compatibility might not be met. 

This broader notion of compatibility allows for more flexibility when proving the existence 

of fixed points in situations involving multiple mappings. Pairwise compatibility is 

particularly useful when mappings exhibit varying levels of agreement or interaction, 

making it a valuable concept in diverse mathematical contexts. 

1. Metric Space: A metric space is a set equipped with a distance function (metric) 

that quantifies the "distance" between elements. Formally, it's a pair (X,d), where 

X is the set and d:X×X→R satisfies specific properties. 

2. Mapping: A mapping (or function) T:X→X assigns each element x∈X to another 

element T(x)∈X. 

3. Fixed Points: A fixed point of a mapping T is an element x in the domain such that 

T(x)=x. 
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4. Convergence of Sequence: A sequence {xn} in a metric space (X, d) converges to 

a limit x if, for any positive real number ε, there exists a positive integer N such 

that d(xn, x)< ε whenever n>N. 

5. Continuity: A mapping T:X→X is continuous at a point x if, for any given ε>0, 

there exists a δ>0 such that d(x′,x)<δ implies d(T(x′),T(x))< ε. 

6. Fixed Point Theorems: Fixed point theorems establish conditions under which 

mappings have at least one fixed point. Prominent examples include the Banach 

Fixed Point Theorem and the Contraction Mapping Theorem. 

7. Non-Continuous Mapping: A non-continuous mapping is a function that doesn't 

adhere to continuity conditions, meaning that small changes in input may not lead 

to small changes in output. 

8. Contraction Mapping: A contraction mapping T:X→X is a mapping that contracts 

distances between points. It satisfies d(T(x), T(y)) ≤ k⋅d(x,y) for 0≤k<1 and all 

x,y∈X. 

9. Contraction Mapping Theorem: The Contraction Mapping Theorem states that 

a contraction mapping on a complete metric space has a unique fixed point. It's a 

fundamental result in fixed point theory. 

10. Pairwise Compatible Mappings: Pairwise compatible mappings are a relaxed 

form of compatibility where mappings need to satisfy certain conditions in pairs 

rather than universally. 
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1.8 FIXED POINT THEOREMS IN METRIC SPACES 

A point � ∈ X is referred to as a fixed point of the mapping f if and only if ���� =

�	if f is a mapping from a set or a space X into itself[37]. Fixed point theorems are those 

that speak to the presence and characteristics of fixed points[3]. These theorems are the 

most crucial resources for demonstrating the existence and originality of the solutions to 

the various mathematical models (differential, integral, partial differential equations, 

variational inequalities, etc.) that represent various phenomena relevant to various fields, 

including steady state temperature distribution, chemical reactions, neutron transport 

theory, economic theories, epidemics, and fluid flow. They are also utilized to research 

the optimal control issues that arise with these systems. 

The fixed point theorem family is divided into many subfamilies based on the 

mappings and the theorems' extensions the first chapter. 

According to historical investigations, Dutch mathematician L.E.J. Brouwer 

proposed the first theorem of this kind in 1912. The theorem states that there is a fixed 

point in every continuous mapping of a limited closed and convex subset K of a Euclidean 

space Rn into itself. Any homeomorphism theorem can be used in place of K in this 

statement. In functional analysis, such theorems that apply to spaces that are subsets of 

Rn are not very useful. This is the case because the infinite dimensional subset of some 

function spaces is typically the focus of functional analysis. Birkhoff and Kellogg looked 

into this in 1922. 

Later, a Polish mathematician named P.L. Schauder expanded Brouwer's fixed 

point theorem to the situation in which X is a compact convex subset of a normed 

linear space in 1930. The Brouwer fixed point theorem, which is theoretically 

considered to be the fundamental theorem of fixed points, has numerous proofs at the 

approach of, but the most crucial theorem is dependent on the idea of algebraic 

topology. They have been left out because they fall outside of our purview. Tychonoff 

generalized this theorem to locally convex topological vector space. In 1935. And in 

1922, S. Banach discovered a fixed point theorem for contraction mapping, also 

known as the Banach's contraction principle. Brattka, Le Roux, Miller Pauly proved 

some results on fixed point theorem[6]. Fatima proved some resuts in the area of fixed 

point theory in hyper convex metric spaces[15]. Vizman shows the Central extensions of 

semidirect products and geodesic equations[49]. Also it has applications in various areas of 
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mathematics, including fixed point theory, functional analysis, and nonlinear analysis[21]. 

Definition: Let X be a metric space equipped with a distance d. A map f: X → X is said 

to be Lipschitz continuous if there is � ≥ 0  such that �������, ������� ≤

	�����, ���, ∀	��, �� 	 ∈ �.  

The smallest � for which the above inequality holds is the Lipschitz constant 

off. If � ≤ 1 f is said to be non-expensive, if � < 1 f is said to be a contraction. 

This famous principle (Banach) state as follows: "Let F be contraction 

mapping a complete metric space X then F has a unique fixed point u in X.” 

Following Banach, M. Edelstein worked on fixed point theorems for more than 

10 years, and as a consequence, he expanded on Banach's premise in 1961. During 

that time, Edelstein used different methods to a class of mapping related to contraction 

mapping and came up with a number of fixed point theorems for a variety of unique 

classes of metric spaces that he himself had specified. Here, we've highlighted a 

handful that are particularly pertinent to our project. 

Theorem 1.8.1: Let (X,d) be a whole ε-chainable metric space and �: X  →  X be an 

(ε,k) consistently locally contractive mapping. Then F has a single fixed point u in 

X and � =  !"#→∞ F#�' Where �' is an arbitrary element of X. 

Theorem 1.8.2: Let F be ε-contractive mapping of a metric space X into itself and let 

�(	be a point of X such that the sequence {�*�(} Has a subsequence convergent to a 

point u of X. Then u is a periodic point of F, i.e. there exists a positive integer k such 

that �+� = �.  

Theorem 1.8.3: Let F be a contractive mapping of a metric space X into it and let �( 

Be a point of X such that the sequence {�*�(} Has a convergent subsequence which 

converges to a point u of X. then u is a unique fixed point of F.   

In the year 1969, Seghal discovered an intriguing generalization of the previous fixed 

point theorem 1.8.3 and stated it as follows: 

Theorem 1.8.4: Let F be a continuous mapping from a metric space X into itself, 

such that for all x, y in X with x ≠ y, we have	���,, �-�	 < max 	2���, �,�, �34, �-5,

���, 4�6.	 Suppose that for all z in X, the sequence {�*7}  Has a cluster point u. Then 

the sequence {�*7 Converge to u and u is the unique fixed point of F}. 
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Numerous generalisations of the Banach contraction theorem were developed 

almost simultaneously by various mathematicians[10], weakening the theory while 

preserving the convergent property of the subsequent iterates to the particular fixed 

point of the mapping. D. Boyd and J.S.W. Wong are credited with the following 

theorem. They discovered the following fixed point theorem in 1969. 

Theorem 1.8.5: Let F be a mapping form a complete metric space X into it. Suppose 

there exists a function Ø upper semi continuous from right 89 Into itself, such 

that ���,, �-� 	≤ :	����, 4�� for all x, y in X.  

If :�;� < ; for each t >0 then F has a unique fixed point u in X and for every 

x in �,  !"*→<	�*� = �. 

The contributions of G.E. Hardy and T.D. Regers in this generalization process are 

also noteworthy. They developed the following fixed point theorem in 1973 by 

employing a mapping of the Kannan- Reich kind. 

Theorem 1.8.6 [16]: Let F be a mapping from a complete metric X in itself satisfying the 

following �3�, , �-5 ≤ �=���, �,� + �34, �-5? + �=��4, �,� + �3�, �-5? + @���, 4�  

For any x, y in X where a, b and c are non negative numbers such as 2a+2b+c < 1. Then 

F has a unique fixed point u in X. In fact, for any � ∈ �, the sequence {�*�} Converge 

to you. 

The fixed point theorem known as Kannan's fixed point theorem was developed by 

Indian mathematician R. Kannan after nearly ten years (1968–1988) of work on fixed 

point theorems. 

Theorem 1.8.7: Let F be a mapping of a complete metric space X into itself Suppose 

that there exists a number r in [0, �

�
].   Such that ���,, �-� ≤ C[���, �,� + �34, �-5]. For all 

in x, y in X. Then F has a unique fixed point in X. 

A fixed point theorem known as the Kannan-Reich and L. Ciric type of generalised 

contraction mapping theory was established by Hussain and Sehgal in the year 1975. 

Singh and Meade extended Hussain and Sehgal's work once further in 1977. A article 

on the comparison of several definitions of contractive mappings and its generalisation 

was also delivered at the same time by B.E. Rhoades. Pourmpslemi, Rezaei, Nazariand 

Salimi has done generalization of Kannan and Reich fixed point theorem using 
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sequentially convergent mapping and subadditivealtering distance function[32] Van 

Dung and Petruselhas has research on kannaan maps and Reich maps[48]. research on 

Common fixed points of Kannan, Chatterjea and Reich type pairs of self maps in a 

complete matcic space done by Debnath, Mitrovic and Cho[12]. 

J. Caristi discovered a fixed point theorem in the middle of the 1970s, and it became 

significant in applications. The following is what the theorem says. 

Theorem 1.8.8: Let (X, d) be an unrestricted map of X into itself, and be a whole metric 

space. Assume a nonnegative real valued function exists Ø on X which is lower semi 

continuous such that for all x in X, �3�, E���5 ≤ :��� − :3E���5. Then g has a fixed 

point in X. 

Daskalakis, Tzamos, Zampetakus[11] and Turab, Sintunavarat[46] have also 

worked on a converse to Banach’s fixed point theorem and its application. Abbas, 

Rakocevic and Iqbal give their contribution in Perov type contractive mappings[2]. 

Cho Y.J. did survey on metric fixedpoint theory and applications[9]. 

Kish Bar-On, K.has shown that connecting the revolutionary with the 

conventional: Rethinking the differences between the works of Brouwer, Heyting 

and Weyl[25]. 

There has been a rapid growth in the simplification of the concept of 

contraction mapping and the existence and uniqueness of the common fixed point of 

such mapping. 

1.9 FIXED POINT THEOREM IN FUZZY METRIC SPACE 

Through his renowned paper ["Fuzzy Sets"] method of expressing fuzziness is 

closely related to how people perceive and think, opening a large field of study and 

potential applications[44,35]. Numerous algebraic and topological ideas have been 

developed and generalised in fuzzy structure since its inception. Fuzzy metric space 

contains one of these branches. Here, we've given a quick overview of fuzzy metric 

space and then shown how a fixed point theorem in fuzzy metric space has evolved 

over time. 

By extending the idea of probabilistic metric space to fuzzy situations, O. 

Kramosil and J. Michalek created the fuzzy concept in metric space in 1975. Fuzzy 

metric space was first defined in 1979 by M.A. Erceg utilising the idea of lattices. Z. 
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Deng created fuzzy pseudo-metric spaces in 1982 and researched their topology and 

fuzzy uniform structure. These spaces have a metric defined between two fuzzy 

points. In order to expand the idea of the fuzzy metric, O. Kaleva and S. Seikkala 

made the distance between two places a nonnegative fuzzy integer in 1984. This 

method of metric presentation seemed to characterise the fuzzy metric space more 

naturally. S. Seikkala and O. Kaleva gave a new turn to the concept of α-level set of 

a fuzzy number x  introduced  by  L. A. Zadeh  as [�]G = {;|��;� ≥ �I, � ≤ 1.  On the  

basis  of  α-level  set, they established some properties of fuzzy numbers and defined 

fuzzy metric space. 

In the same publication, O. Kaleva and S. Seikkala discussed how there is always a 

family of pseudometrics that construct a metrizable Hausdorff topology for X in fuzzy 

metric space. The Hausdorff uniformity was defined on X × X as "let (X, D, L, R) be a 

fuzzy metric space with  !"G→(K 	8��, �� = 0.   Then the family L = {��M, ��: M >

0, 0 < � ≤ 1I of sets L = �ε, �� = {��, 4� 	∈ 	�	 × �:RG��, 4� < εI. Forms a basis for 

a Hausdorff uniformity on X × X. Moreover the sets #, 	��, �� = {4 ∈ 		�:	SG��, 4� <

εI.  Form a basis for a Hausdorff topology on X and this topology is metrizable." 

According to the history of the fixed point theorem in fuzzy metric space, 

M.D. Weiss published his work "fixed points, separation and induced topologies for 

fuzzy sets" in 1975 and was the first to prove the fixed point theorem in fuzzy 

structure. The contraction principle and Schauder's fixed point theorem were 

obtained in a fuzzy form by Weiss. Aage choudhury and Das has proved some fixed 

point results in fuzzy metric space using a control function in 2017[1]. Grecova, 

Sostak and Uljane has established a construction of a fuzzy topology from a strong 

fuzzy metric[20]. Tsuchiya, Taguchi, & Saigo has prove some results using category 

theory to assess the relationship between consciousness and integrated information 

theory[47]. 

Butnariu developed the idea of fuzzy games and investigated how to solve 

them by using the fixed point theory of fuzzy maps. Using an algorithmic method, 

he also came up with a fuzzy equivalent of Kakutani's fixed point theorem. Dompere 

shows fuzziness in decision and Economic theories[14]. Many researchers 

subsequently work on decision making theories[34,45,52]. Subhani andKumar M.V. 

investigate the application of common fixed point theorem on fuzzy metric space[26]. 

Burton, Kramer, Ritchie, & Jenkins has proved Identity from variation: Representations 
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of faces derived from multiple instances[8]. Dilo., De By & Stein has shown that a system 

of types and operators for handling vague spatial objects[13]. 

A Polish mathematician named S. Heilpern invented the idea of fuzzy 

mapping in 1981 by describing it as the transformation of an arbitrary set into a 

particular subset of fuzzy sets in a metric linear space. He gave an approximate 

quantity for each member of this family in his naming. The concept of the distance 

between two approximations was also proposed by Heilpern, who also covered some 

of their characteristics. He used fuzzy mapping to demonstrate the fixed point 

theorem of Banach. The fixed point theorem for point to set maps that results from 

the set representation of fuzzy sets is generalised by this theorem. Heilpern's paper 

actually served as a turning point in the development of fixed point theorems for 

fuzzy structures. Many researchers subsequently adopted his fixed point 

establishment method.  

Yadav N., Tripathi P. Maurya S, has proved fixed point theorems in 

intuitionistic fuzzy metric space[51]. 

1.10 FIXED POINT THEOREMS IN FUZZY 2-METRIC AND 3-

METRIC SPACES 

S. Gahlelr has examined the idea of 2-metric space in a number of works. 

Investigated contraction type mappings in 2-metric space for the first time. The 

investigation of probabilistic metric spaces was started by Z. Wenzhi and numerous 

others. For a pair and triplet of self-mappings on 2-metric spaces meeting contraction 

type criteria, later common fixed point theorems have been proven. 

Fuzzy 2-metric space and fuzzy 3-metric space were first established in 2005 by 

Sushil Sharma[40], who also found certain common fixed point theorems for three 

mappings in this context. By proving common fixed point theorems for commuter maps, 

Sushil Sharma updated and expanded Fisher's findings. Amardeep Singh et al. were 

inspired by this and were able to discover common fixed point theorems for compatible 

maps in fuzzy 2-metric space. 

We keep in mind that an object may or may not be fuzzy if the space between 

them is fuzzy. That is, the set will be fuzzy in fuzzy metric space, but the distance 

between items in terms of the nearness function will be fuzzy in fuzzy 2-metric space, 
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and the set may or may not be fuzzy. The area function in Euclidian spaces first 

proposed the abstract features of 2-metric space, which is typically a real valued 

function of a part triples on a set X. The volume function suggests that 3-metric space 

is now what one would naturally anticipate. 

1.11 FIXED POINT THEOREM IN RANDOM FUZZY METRIC 

SPACE 

The concept of a fuzzy random variable, which is analogous to the idea of a 

random variable, was developed in order to apply statistical analysis to situations 

when the outcomes of a random experiment are ambiguous. But unlike conventional 

statistical techniques, no one definition had been developed previous to Volker's 

work. He developed the notion of a fuzzy random variable from the perspective of 

set theory, using the general topology approach and results from the theories of 

topological measure and analytic spaces. In fixed point, random fuzzy spaces do not 

introduce any outcomes. 

1.12 A FIXED POINT THEOREM IN CONE METRIC SPACE 

A famous issue in metric spaces is the investigation of fixed points for contractive 

mappings, and Huang and Zhang's introduction of the cone metric space is one such 

generalization. They gave some essential results for a self-map meeting a contractive 

condition in this space and replaced the set of real numbers from a metric space with 

an ordered Banach space.  

This is a significant step in the development of cone metric space fixed point theory. 

Ali Abou Bakr, S,M, given their contribution in cone metric space fixed point 

theory[4].Verma, Kabir, Chauhan and shrivastava has generalized fixed point theorem 

for multi-valued contractive mapping in cone b-metric space[50] 

1.13 COUPLED FIXED POINT IN TWO G- METRIC SPACE 

Generalised metric space was first introduced in 2006 by Mustafa and Sims, 

who also provided several fixed point theorems in G-metric space. 

V. Lakshmikantham developed the idea of a linked coincidence point of 

mapping. They also looked at a few fixed point theorems in partially ordered metric 

spaces. In generalised metric spaces, linked coincidence fixed point theorems in 
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2011.  

The investigation of common fixed point theory in G-metric spaces was 

started by Abbas and Rhoades[24] in 2009.Recent common fixed point theorems were 

provided in two G-metric spaces in a fundamentally new and more organic method 

by Feng gu. In 2016, Rahim Shah, Akbar Zada, and Tongxing Li[28] presented the 

idea of integral type contraction regarding generalized metric space and 

demonstrated some novel common coupled coincidental fixed point results of 

integral type contractive mappings in generalized metric space. Latif, Nazir and 

Abbas presented the stability of fixed points in generalized metric spaces[27]. Pathak 

& Gharib, Malkawi, Rabaiah, Shatanawi and Alsauodi have given their contribution 

to a fixed point theorem in matric space[17,29]. Hong, Pasman, Quddus and Mannan 

has contribute to supporting risk management decision making by converting 

linguistic graded qualitative risk matrices through interval type-2 fuzzy sets[22]. Fixed 

point theorems for nonlinear contractive mappings inordered b-metric space with 

auxiliary function[38]. Ansari, Chandok, Hussain, Mustafa and Jaradat has proved 

some common fixed point theorems for weakly α-admissible pairs in G-

metricspaceswith auxiliary function[5]. 

Banach space, Hilbert space, fuzzy set, fuzzy subset generated by mapping, 

fuzzy real numbers, fuzzy metric spaces, fuzzy normed linear spaces, fuzzy uniform 

spaces, fuzzy metric spaces with respect to continuous t-norm, fuzzy 2-metric spaces, 

fuzzy 3-metric spaces, two generalized metric spaces, random fuzzy metric spaces, 

cone metric spaces, and generalized metric spaces are some of the concepts that have 

been defined and the results that follow them. 

1.14 BANACH SPACE 

Over the past three decades, there has been a lot of research done on fixed point 

theorems and common fixed point theorems satisfying contractive type conditions. 

Polish mathematician Banach established a theorem in 1922 that guarantees the 

existence and uniqueness of a fixed point under approximation conditions. The 

Banach fixed point theorem or Banach contraction principle are two names for his 

conclusion. This theorem offers a method for resolving several applicable issues in 

engineering and the mathematical sciences. Numerous researchers have improved, 

expanded, and generalized. 
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Banach’s fixed point theorem in different ways. 

Definition 1.14.1: Let X be a linear space (= vector space) over the flied � of complex 

scalars. Then X is a normed linear space if for every �	 ∈ 	� there is a real number ||�||	 

called the norm of  � such that: 

a. ||�|| ≥ 0, 

b. T|�|T = 0	if	�#�	'# 4	if	� = 0, 

c. ||@	�|| 	= ||@||		||�||	for every scalar c, 

d. ||� + E|| 	≤ 	 ||�|| 	+ 	 ||E||. 

Definition 1.14.2: Let X be a normed space and let {�#}∈ρ be a sequence of elements of X. 

a. {�*I*∈ρ Converges to � ∈ �			if			lim*→<	||� − �*|| = 0, ∃	Y > 0, ⩝ 	ε	 > 0, # ≥

Y, ||� − �*|| < [. In this case we write  !"*→<�* = �	'C	�* → �.  

b. {�*I*∈ρ is Cauchy if ⩝ 	ε	 > 0, ∃	Y > 0,⩝ ", #	 ≥ Y, ||� − �*|| < ε. 

 

Definition 1.14.3: Any convergent sequence in a normed linear space is easily 

demonstrated to be a Cauchy sequence. The statement that all Cauchy sequences 

converge in any normed linear space may or may not be accurate. A normed linear 

space X is considered complete if and only if it possesses the property that all Cauchy 

sequences converge. A Banach space is a fully normed linear space. 

1.15 HILBERT SPACE 

German mathematician David Hilbert (1862–1943), who made several 

contributions to the growth of mathematics, is best remembered for his 

groundbreaking work in the area of functional analysis. The mathematical 

formulation of quantum theory relies heavily on the notion of Hilbert space. David 

Hilbert, who developed the idea in the setting of integral equations, is the name given 

to these spaces. 

Definition 1.15.1: Let H be a vector space. Then H is an inner product space if 

for every �, E, ∈ � there exists a complex number ��, E� called the inner product of f and g 

such that: 

(a) ��, ��			is	real	and	��, �� ≥ 0.	          
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(b) ��, �� = 0		if		and	only	if		� = 0.	 

(c) �E, �� =	< �, E >ccccccccccc	 

(d) ���� + ���, E� = ����, E� + �	���, E� 

Each inner product determines a norm by the formula ||�|| 	= ��, ��½. Hence 

every inner product space is a normed linear space. The Cauchy- Schwarz inequality 

states that | < �, E > | ≤ ||�||			||E||, ⩝ 	�, E	 ∈ e.     

A Hilbert space is one in which an inner product space H is complete. A Hilbert 

space is, in other words, a Banach space whose norm is defined by an inner product. 

1.16 METRIC SPACE 

Definition 1.16.1:  Let X be any set.  Let ���, 4�  be a function defined on the set X	 × X  

satisfying the following condition: 

1. ���, 4� ≥ 0 

2. ���, 4� = 0	if	and	only	if	� = 4 

3. ���, 4� ≤ ���, 7� + ��7, 4�	;C!�#E f	!#fg�� !;4. 

Such a function ���, 4� is called a metric space on X, it is a mapping of  X	 ×

�	 → 	8. A set X with a metric d is called a metric space. 

Definition 1.16.2:  A Sequence of points {XhI is said to converge to a point x of  

X	if	�	�Xh, X� → 0	as	n	 → 	∞  there exists an integer n0 depends on є, such that 0 ≤

���*, X� < є,	 for each # ≥ n(. The point x is called the limit of the sequence. 

Definition 1.16.3:  A sequence {XhI in a metric space  �X, d� is called a Cauchy sequence 

if ∀	ε	 > 0  there exists an integer n0 such that ���*, �j� < 	ε for each " > # ≥	#(. 

Definition 1.16.4: Let f and g be self maps of a metric space �X, d� then f and g are 

said to commuting if and only if	�E = E�. 

Definition 1.16.5: Let f and g be self maps of a metric space �X, d�. A point �	 ∈ � 

is said to be a coincidence point of f and g if �� = E�  

Definition 1.16.6: Two self-maps S and T of a metric space �X, d� are said to be 

compatible if  !"*→<	��kl�*, lk�*� = 0	whenever		{X*I	is a sequence in X such 

that  !"*→<	k�* =  !"*→<	l�* = ;, for	;	 ∈ X. 
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1.17 FUZZY SET 

Lotif. A. Zadeh was the first to propose the origins of the fuzzy set. The outcomes 

of fuzzy sets used in our research are presented here without justification. We consult 

the relevant sources for more information. 

Definition 1.17.1: A function A from a non-empty set X into unit interval I is called a 

fuzzy set in X. ∀	�	 ∈ �, ���� is called the grade of membership of x in A. A is also said to 

be a fuzzy subset of x. 

Definition 1.17.2: A fuzzy subset A is said to be empty if 	���� = 0 for all x in X and A 

is whole if A(x) =1 for all x in X. The empty fuzzy set is denoted by Ø or 0 and 

whole set is denoted by X or 1. 

Definition 1.17.3: Let X be a set and A and B be two fuzzy subsets of X. A is said to be 

included in B if ���� ≤ p���for	all	� ∈ X. It	is	denoted	by	� ≤ p.      

(a) A is said to be equal to B if A(x) = B (x) for all x ∈	X	and	written	as	A	=B. 

(b) B is said to be complement of A if B (x) =1 - A (x) for every x ∈	X	and	denoted	by	p =

�v . w�x!'�[ 4	��v�y = �. 

Definition 1.17.4:  The union of A and B be defined by  A	U	B	��� 	=

	max	{A���, B���I	or	A��� 	∪ 	B��� 	⩝ 	�	 ∈ 	X .   

The intersection of A and B be defined by� ∩ p	��� = min{����,p���I 	'C	���� 	∪

	p���	∀		� ∈ �.  

The difference of A and B is defined by �\p = � ∩ p.  

In general, if I is an index set and � = {�}\~	 ∈

�I	is	a	family	of	fuzzy	subsets	of	�, then	their	union	��}	is	defined	by	���}���� =

sup 	{�}���\~ ∈ �I, �	 ∈ �	and	the	intersection	 ∩	�}	is	defined	by	�∩ �}	��� =

inf 	{�}���\~ ∈ �I, �	 ∈ �.	  

1.18 FUZZY REAL NUMBER 

Definition 1.18.1: A fuzzy real number x is a fuzzy set on the real axis i.e. a 

mapping �:8	 → [0,1] associating with each real number t its grade of membership x(t). 

Definition 1.18.2: A fuzzy real number x is convex if ��;� ≥ ��[� ∧ ��C� =

min{��[�, ��C�I 	where		[ ≤ ; ≤ C. 
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Definition  1.18.3:  The ~ -level set  of  a  fuzzy  real  number  x  is  denoted  by [�]~ =

{;: ��;� ≥ ;I, 0 < ~ ≤ 1. 

A fuzzy real number x is called normal if ��;(� = 1 for some ;( 	 ∈ 8. x is called 

upper semi continuous if ∀	S > 0, ����[0, ~ + []�, ∀~	 ∈ � is open in the usual 

topology of R. It can be easily seen that the � −  fxf 	[f;	[�]} of an upper semi 

continuous, normal, convex fuzzy real number x for each ~, 0 < ~	 ≤ 1 is closed 

interval [~} , �}] where ~} = −∞	�#�	�} = ∞	are also admissible. The set of all 

upper semi continuous, normal, convex fuzzy real number is denoted by E or R (I).  

Since each C	 ∈ 8 can  be  considered  as  a  fuzzy  real  number C̅, denoted by C�;� =

1, {; = 0, ; ≠ C	;ℎf#	C̅ 	 ∈ �I. in other words R can be embedded in E or R(I). 

Definition 1.18.4: A fuzzy real number x is called non negative if ��;� = 0	for	all	; <

0. 

The set of all non negative fuzzy real number is denoted by G or R*(I). 

The equality of fuzzy real number x and y is defined by ��;� = 4�;�	for	all	;	 ∈ 8.  

Definition 1.18.5: For �	 ∈ �, �,�;� = �	����;�	and	0�	is	defined	to	be	0c.  

Definition 1.18.6: A partial ordering ′ ≤� !#	�	is	defined	by	� ≤ 4	if	and	only	if 

��
} ≤ ��

}	and	��
} 	≤ 	 ��

}	for	all	~ ∈ �0,1�,where	[�] = [��
} , ��

}]	and	[4]~ = [��
} , ��

}].	  

Definition 1.18.7: A sequence 	{�*I	in	E	converges	to	X	 ∈ E, denoted	by	 !"*→< 

	�* = �	if	 !"*→<	�*
} = 	 !"*→<	�*

} =	�} 	∀	~	 ∈ �0,1�,where	[�*]	~ =

[�*
} , �*

}]	and	[�]	~ = [�} , �}].	  

1.19 FUZZY METRIC SPACE 

Definition 1.19.1: Let X be a non empty set, d a mapping from X×X into G or R*(I) 

and let the mappings �, 8: [0,1] × [0,1] → [0,1]	be symmetric, non decreasing in both 

arguments and satisfy �	�0,0� = 0	and	8	�1,1� = 1	Denoted	[���, 4�]	~ =

[�}	��, 4�, 	S}	��, 4�]	for	�, 4	 ∈ �, 0 < 	~	 ≤ 1.   

Remark: λα(x, y) is called left end point and ρα(x, y) is right end point of α-level set 

of d(x, y). 

The quadruple (X, d, L, R) is called a fuzzy metric space and d, a fuzzy metric if 
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i. ���, 4� = 0	if	and	only	if	� = 4. 

ii. ���, 4� = ��4, ��	for	all	�, 4, ∈ X. 

iii. ∀	�, 4, 7 ∈ X 

a. ���, 4��[ + ;� ≥ �3���, 7��[�, ��7, 4��;�5	whenever	[ ≤

	����, 7�, ; ≤ ��	�7, 4�	and	[ + ; ≤ ����, 4� 

b. ���, 4��[ + ;� ≥ 83���, 7��[�, ��7, 4��;�5	whenever	[ ≤

	����, 7�, ; ≤ ���7, 4�	and	[ + ;	 ≤ 	����, 4� 

The usual metric space is special case of the fuzzy metric space. 

Lemma 1.19.1: The triangle inequality (iii) (b) with R=Max is equivalent to the triangle 

inequality S}��, 4� ≤ 	S}��, 7� +	S}�7, 4�for	all	α ∈ [0,1]	and	x	, y, z	ϵ	X.  

Lemma 1.19.2: The triangle inequality (iii) (a) with L=Min is equivalent to the 

triangle inequality �}��, 4� 	≤ 	 �} 	��, 7� + �} 	�7, 4�for	all	α	ϵ	�0,1�	and	x, y, z	ϵ	X.	 

Theorem 1.19.1: In a fuzzy metric space (X, d, Min, Max) the triangle inequality is 

equivalent ���, 4� ≤ ���, 7� + ��7, 4�	for		x, y, z	ϵ	X.  

Definition 1.19.2: Let (X, d, L, R) be a fuzzy metric space. A sequence {�*I	is said to be 

convergent to � ∈ X	if and only if  !"*→<��*, �� = 	0c	and	denoted	by	 !"*→<	�* = 	�.	  

Lemma 1.19.3: A sequence {�*I	in a fuzzy metric space (X, d, L, R) converges to � ∈ X 

if and only if   !"*→<��*, �� = 0, α	 ∈ 	 �0,1�. 

Definition 1.19.3: A sequence {�*I	in a fuzzy metric space (X, d, L, R) is called a 

Cauchy sequence if  !"j,*→<�	��j, �*� = 	0c	.	 

Lemma 1.19.4: A sequence {�*I	in a fuzzy metric space (X, d, L, R) is called a 

Cauchy  sequence if  !"j,*→<	S}	��j, �*� = 0.		 

Definition 1.19.4: If every Cauchy sequence in a fuzzy metric space X converges to 

a point in X, then X is said to be complete. 

1.20 FUZZY NORMED LINEAR SPACE 

Definition 1.20.1:  Let X be a vector space over R.  Let ||. ||: X → � and  let  the  mapping  

�, 8: [0,1] × [0,1] → [0,1] be  symmetric,  non decreasing  in  both  argument  and  

satisfy L(0, 0) = 0 and R(1,1)=1. 
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We write [||x||]� = [||	|�|	||G , ||	|�|	||G]	for	�	 ∈ 	�, 0 < 	~	 ≤ 1 and	suppose	for	all 

�	 ∈ X, � ≠ 0 

there exists �( ∈ X, [0,1]	independent	of	x	such	that	for	all	�	 ≤ 	 �( 

a. ||	|�|�	||� < ∞ 

b. inf	||	|�|�	||� > 0 

The quadruple �X, ||. ||, �, 8� fuzzy norm, if 

(i) ||�|| 	= 0c	if	and	only	if	� = 0.	 

(ii) ||rx|| = |r|		||x||, x	 ∈ X, C	 ∈ 		8. 

(iii) ∀	�, 4	 ∈ X, 

a. Whenever [ ≤ ∀	||	|�|	||��, ; ≤ ||	|4|	||��	�#�	[ + ; ≤ ||	|� +

4|	||��	||� + 4||		�[ + ;� 	≥ 	�	�||�||	�[�, ||�||	�;��	  

b. Whenever [ ≥ ||	|�|	||��, ; ≥ ||	|4|	||��	�#�	[ + ; ≥ ||	|� +

4|	||��	||� + 4||	�[ + ;� 	≤ 	8	�||�||	�[�, ||�||	�;�� 

Definition 1.20.2: Let ��, ||. ||� is a fuzzy normed linear space. A sequence {�*I ∈ � 

is said to converge to x ∈ X, denoted	by	 !"*→<	�* = �	if	and	only	if	    !"*→<T|�* −

�|T = 0c, i. e.		 !"*→<	||	|�* − �|	||�
} =  !"*→<	||	|�*|	||�

} = 0	∀	~	 ∈ �0,1�. 

Definition 1.20.3: A sequence {�*I in a fuzzy normed linear space �X, ||. ||� is called 

Cauchy sequence if  !"*→<	T|�j −	�*|T = 0c. !. f. if	 !"j,*→<	||	|�j − �*|	||} =

0c, ∀	~	 ∈ �0,1�.	 

1.21 FUZZY UNIFORM SPACE 

In function analysis, uniform spaces lie between metric space and general topological 

space. The same concept applies in fuzzy structure. 

Definition 1.21.1: A uniform space X is sequentially complete if each Cauchy 

sequence in X converges in X. 

Definition 1.21.2: Let (X, d, L, R) be a fuzzy metric space with  !"G→(K8��, �� =

0. If	�X, d, L, R�  is a complete fuzzy metric space then (X, V) is a sequentially complete 

uniform space. 
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Result 1.21.3: Family of fuzzy metrics induced by fuzzy metric space (X, d, L, R): 

In a  fuzzy metric space (X, d, L, R) the family {S}: ~ ∈ �0,1�I satisfies the following 

condition: 

i. for	all	~	 ∈ �0,1�and	�	 ∈ �, S}��, �� = 0; 

ii. for	all	~	 ∈ �0, 1I	and	�, 4	 ∈ �, S}	��, 4� = 	S} 	�4, ��;	 

iii. if	S}	��, 4� = 0	for	all	~	 ∈ �0, 1�, then	� = 4.  

If R=Max, then S� also satisfies S}��, 4� ≤ S}��, 7� + S}�7, 4�  

If  !"�→<	���, 4�	�;� = 0, ∀	�, 4	 ∈ �, then	S���, 4� < ∞,∀	α ∈ �0,1�	and	�, 4	. 

Hence	if	�X, d, L, R�	is	a	fuzzy	metric	space	with	 !"�→<	�	��, 4��;� = 0	∀x, y	 ∈ X	 

then the family S}	�x, y� = 0, ∀	~	 ∈ �0,1�, then	� = 4.  

Theorem 1.21.4: if (X, d, L, Max) is a fuzzy metric space then for any  ~ ∈ �0,1�  

i. ��M�, ~� ≤ �	�M�, ~��'C	0	 ≤ 	 M� 	≤ 	 M�	�#� 

ii. ��M�, ~�	. �	�M�, ~� 	≤ 	�	�M� +	M�	~�	�'C	�#4	���� > 0 

where u	�M�, α�. u�M�, α� = {�x, y�:	M7	 ∈ X	with	�x, z� ∈

u	�M�, α�	�#�	�z, y� ∈ u	�M�, α�I	  

1.22 FUZZY METRIC SPACE WITH RESPECT TO CONTINUOUS 

T-NORM 

Definition 1.22.1: A binary operation *: [0, 1] × [0, 1] → [0, 1] is said to be continuous 

t-norm if it satisfies the following condition: 

i. * is commutative and associative; 

ii. * is continuous; 

iii. � ∗ 1 = �	for	�	 ∈ [0,1]. 

iv. � ∗ �	 ≤ @ ∗ �	whenever	� ≤ @	and	� ≤ �	for	all	�, �, @, �	 ∈ [0,1]. 

Examples of continuous t-norms are Lukasiewicz t-norm, that is, 		��
9� =

max{� + � − 1,0I, product t-norm, that is, ��
∗ 	� = ��, �#�	"!#!"�"	; −

#'C", ;ℎ�;	![, ��
∗ � = min{�, �I.  
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Example 1.22.1: Define � ∗ � = min 	��, �� , ∀	�, �	 ∈ [0, 1].		;ℎf# ∗

![	�	@'#;!#�'�[	; − #'C".  

Remark 1.22.1 Given an arbitrary set X, a fuzzy set M on X is function from X to 

the unit interval [0,1]. �f;	[0,1]� = {f ∶ X → [0,1]I	thus	 	 ∈ [0,1]�.	  

Definition 1.22.2: A fuzzy metric space is a triple (X; M; *), where X is a non-empty 

set, * is a continuous t-norm and M is a fuzzy set on  X × X × [0,+∞], satisfying the 

following properties: 

1. M	�x, y, 0� = 0	for	all	x; y	 ∈ X; 

2. M	�x, y, t� = 1	for	all		t > 0	if	f	x = y; 

3. M	�x, y, t� = 1	for	all		t > 0	if	f	x = y; 

4. M	�x, y, ·�: [0, +∞] → [0, 1]	is	left	continuous	for	all	x, y	 ∈ X;	 

5. M	�x, z, t + s� 	≥ M�x, y, t� ∗ M�y, z, s�for	all	x, y, z	 ∈ X	and	for	all	t, s > 0; 

Remark 1.22.2: Definition 1.16.4 (4) means that for each x, y ∈ X there is a 

function  ,-: [0, ∞] → �, ;	 →  ��, 4, ;�,  	��, 4, ;�	Can	be	notion	of	as	the	 

degree	of	nearness	between	a	and	y	with	respect	to	t ≥ 0. 

We can fuzzify example of metric spaces into fuzzy metric space in a natural way: 

Example 1.22.2: Let (X, d) be a metric space define � ∗ � = min 	{�, �I	∀	�, �	 ∈ �,

we	have	 ��, 4, ;� = �

�¤¥�,,-�
 for all x, y in X and t > 0. Then (X, M, *) is fuzzy metric induced 

by a metric d is called the standard fuzzy metric space. 

The definition that follows is an adjustment to Definition 1.16.4. This adjustment is 

required since the fuzzy metric in Definition 1.16.4 does not produce a Hausdorff 

topology. 

Definition 1.22.3: The 3-tuple (X, M,*) is called a fuzzy metric space (shortly FM-

space) if X    is an arbitrary set * is a continuous t-norm and M is a fuzzy set in �� 	×

[0,∞] satisfying the following conditions: for all x, y, z in X and s, t >0, 

i. M(x, y, t) > 0; 

ii. M(x, y, t)=1, for all t > 0 if f x=y, 

iii. M(x, y, t)=M(y, x, t), 
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iv. M(x, y, t)*M(y, z, s) ≤ M(x, z, t+s) 

v. M�x, y�: [0,∞� → [0,1]	is left continuous. 

vi. lim¦→<M�x, y, t� = 1	For	all	x, y	in	X. 

In the sequel the fuzzy set M as in Definition 1.16.7 will be referred to as a 

fuzzy metric. It shall be shown that the topology induced by the fuzzy metric space (X, 

M, *) is Hausdorff. 

Lemma 1.22.1: M(x, y,.) is non decreasing for all x, y in X. 

Definition 1.22.4: A  sequence {XhI is  a  fuzzy  metric  space (X,M,*) is  said  to  converge  

to �	 ∈ �	if	for	each	[, 0 < [ < 1	and	; > 0, #§ 	 ∈ 	Y	such	that 

 ��*, �, ;� > 1 − [, ∀	#	 ≥ 	#(. 

Definition 1.22.5: A sequence {XhI  is a fuzzy metric space (X, M, *) is said to be a 

Cauchy sequence if for each [, 0 < [ < 1	�#�	; > 0, #( 	 ∈ Y	[�@ℎ	;ℎ�;	 M	��#,	�m,	t�	

>1-ε,	∀ #,	m	≥	#0.   

Definition 1.22.6: A fuzzy metric space is said to be complete if every Cauchy 

sequence is convergent. 

Definition 1.22.7: A function M is continuous in fuzzy metric space if �*�, 4* → 4 

then lim*→<	 ��*, 	4*, ;� =  ��, 4, ;�	for	; > 0	. 

1.23 TOPOLOGY AND FUZZY METRIC SPACES 

We continue to present some concept and results from classical metric spaces theory 

in the context of fuzzy metric space. 

Definition 1.23.1:  Let (X, M, *) be a fuzzy metric space.  We define the open ball B 

(x, r, t) with centre �	 ∈ �	and	radius	C, 0 < C < 1, ; > 0, as	B	��, C, ;� = {4	 ∈

�:  ��, 4, ;� > 1 − CI  

Definition 1.23.2: A subset A of a fuzzy metric space (X, M, *) is said to be open if 

given any point �	 ∈ �, there	exists	0 < C < 1, ; > 0	such	that	p��, C, ;� ≤ �.  

Theorem 1.23.1: Every open ball in a fuzzy metric space (X, M, *) is an open set. 

Theorem 1.23.2: Every fuzzy metric space is Hausdorff. 

Preposition 1.23.1: Let (X, d) be a metric space and  ¥��, 4, ;� = 	 �

�¤¥�,,-�
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Corresponding standard fuzzy metric space on X. Then the topology Td induced by 

the metric d and the topology Tª«	induced by the fuzzy metric space M« are the same 

that is T« = Tª« . 

Definition 1.23.3: Let (X, M, *) be a fuzzy metric space. A subset A of X is said to 

be F- bounded if there exists t > 0 and 0 < r < 1 such that  �x, y, t� > 1 − r	for	all	�, 4, ∈

�.  

Remark 1.23.1: Let (X, M, *) be a fuzzy metric space induced by a metric d on 

X. then �	 ≤ 	X  is F-bounded if and only if it is bounded. This is what R lower 

would call a good extension of the notion of bounded. 

Theorem 1.23.3: Every compact subset A of a fuzzy metric space X is F- bounded. 

Remark 1.23.2: In a fuzzy metric space every compact subset is closed and bounded.  

Theorem 1.23.4: Let (X, M, *) be a fuzzy metric space and l� be the topology induced 

by the fuzzy metric. Then for a sequence {�*I  in X, the sequence  {�*I converges to x 

if and only if ��*, �, ;�		converges to 1 as n tends to ∞. 

Remark 1.23.3: Let (X, M, *) be a fuzzy metric space and {�*I be a sequence in X. 

Then   !"*→<	���, 4� = 0 if and only if   !"*→<	 ¥	��*, �, ;� = 1	�'C	�  	; >

0	�#�	�	 ∈ �. 

Definition 1.23.4: Let (X, M, *)   be   a   fuzzy   metric   space.   We   define   a   

closed ball p[�, C, ;]	 with center �	 ∈ �  and radius C, 0 < C < 1, ; > 0		�[	p[�, C, ;] =

{4	 ∈ �:  ��, 4, ;� ≥ 1 − CI 

Lemma 1.23.1: Every closed ball in a fuzzy metric space (X, M, *) is closed set. 

Theorem 1.23.5: Let (X, M, *) be a complete fuzzy metric space. Then the 

intersection of a countable number of dense open set is dense. 

1.24 FUZZY 2-METRIC SPACE 

Here we recall the definition of fuzzy 2-metric space. 

Definition 1.24.1: An operation ∗: [0,1]¬ → [0,1] is called a continuous t-norm if 

�[0,1] ∗� is an abelian topological monoid with unit 1 such that �� ∗	�� ∗	@� 	≤ 	�� ∗ �� ∗

	@�	whenever	�� ≤	��, �� ≤	��, @� ≤	@�	for	all	��, ��, ��, ��	�#�	@�, @�	are	in	[0,1].  
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Definition 1.24.2: The triple (X, M, *) is called a fuzzy 2-metric space if X is an arbitrary 

set, * is a continuous t-norm and M is a fuzzy set in X¬ × [0,1] satisfying the following 

condition:  

i. M�x, y, z, 0� = 0 

ii. M�x, y, z, t� = 1; t > 0	and	when	at	least	two	of	the	three	points	are	equal.	 

iii. M�x, y, z, t� = M�x, z, y, t� = M�y, z, x, t� (symmetry about three 

variables) 

iv. M�x, y, z,			;� +	;� + ;¬� 	≥  ��, 4, �, ;�� +  ��, �, 7, ;�� +  ��, 4,

7, ;¬� (This corresponds to tetrahedron inequality in 2-metric space). 

v. M�x, y, z,			. �: [0,∞] → [0,1]	![	 f�;	@'#;!#�'�[;	∀	�, 4, 7, �	 ∈ X	and 

;�, ;�, ;¬ > 0.	 

Note  1.24.1:  The  function  value  ��, 4, 7, ;� may  be  interpreted  as  the  probability  

that  the area of triangle formed by the three points x, y, z < t. 

Definition 1.24.3: A function M is continuous in fuzzy 2-metric space if xh → x,4* → 4 

then  !"*→<��*, 4*, �, ;� =  ��, 4, �, ;�	for	all	�	 ∈ �	�#�	; > 0. 

Lemma 1.24.1: Let (X, M, *) be a fuzzy 2-metric space. Then M(x, y, z, ·) is non-

decreasing function for all �, 4, 7	 ∈ �.  

Definition 1.24.4: A sequence {�*I in a fuzzy 2-metric space (X, M, *) converge to a 

point x in X if and only if  !"*→<	 ��*, �, �, ;� = 1, for	all	� ∈ �	�#�	; > 0.   

Definition 1.24.5: let (X, M, *) be a fuzzy 2-metric space. A sequence {�*I  is called a 

Cauchy sequence, if and only if  !"*→<	 3�*9®, �*, �, ;5 = 1, for	all	�	 ∈ �	�#�	; >

0, S > 0.  

Definition 1.24.6: A fuzzy 2-metric space (X, M, *) is said to be complete if and only 

if every Cauchy sequence in X converges in X. 

Note 1.24.2: Let (X, M, *) be a fuzzy 2-metric space, then  !"*→<	 ��, 4, 7, ;� = 1.  

Lemma 1.24.2:  If for all �, 4, 7	 ∈ �, ; > 0	and	0 < � < 1, ��, 4, 7, �;� ≥

 ��, 4, 7, ;�	then	� = 4. 
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1.25 FUZZY 3-METRIC SPACE 

Definition 1.25.1: A operation ∗: [0,1]¯ → [0,1] is called a continuous t-norm if 

�[0,1],∗� is abelian topological monoid with unit 1 such that �� ∗ 	�� ∗ 	@� ∗ 	�� ≤	�� ∗

	�� ∗ @� ∗ ��	whenever	�� ≤	��, �� ≤ ��, @� ≤ @�, �� ≤	��∀	��, ��, ��, ��, @�, @�,	 

�#�	��, ��	�Cf	!#	[0,1]. 

Definition 1.25.2: The 3-tuple (X, M, *) is called a fuzzy 3-metric space if X is an 

arbitrary set,  *  is  a  continuous  t-norm  and  M  is  a  fuzzy  set  in �¯ × [0,1]  satisfying  

the  following condition: 

i. M	�x, y, z, w, 0� = 0 

ii. M	�x, y, z, w, t� = 1; t > 0 

iii. M	�x, y, z, w, t� = M	�x,w, z, y, t� = M	�y, z, w, x, t� = M	�z,w, x, y, t� = ⋯ 

iv.  ��, 4, 7, ±, ;� + ;� + ;¬ + ;¯� ≥  ��, 4, 7, �, ;�� ∗  ��, 4, �, ±, ;�� ∗

 ��, �, 7, ±, ;¬� ∗  ��, 4, 7, ±, ;¯� 

v.  ��, 4, 7, ±, . �: [0, ∞� → [0,1]	![	 f�;	@'#;!#�'�[; �'C	�  	 

�, 4, 7, �, ±	 ∈ �	�#�	;�, ;�, ;¬, ;¯ > 0. 

Definition 1.25.3: A sequence {�*I in a fuzzy 3-metric space (X, M, *) converge to a 

point x in X if and only if  !"*→<	 ��*, �, �, �, ;� = 1, for	all	�, �, ∈ �	and	; > 0, S >

0.  

Definition 1.25.4: Let (X, M, *) be a fuzzy 3-metric space. A sequence {�*I is called 

a Cauchy sequence if f  !"*→<	 3�*9®, �*, �, �, ;5 = 1, for	all	�, �, ∈ �	and	; >

0, S > 0.	  

Definition 1.25.5: A fuzzy 3-metric space (X, M, *) is said to be complete and only 

if every Cauchy sequence in X converges in X. 

Definition 1.25.6: A function M is continuous in fuzzy 3-metric space if �* → �, 4* →

4	then	 !"*→<	 ��*, 4* , �, �, ;� =  ��, 4, �, �, ;�	for	all	�, �, ∈ �	and	; > 0.		  
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The literature related with the subject entitled “Common Fixed Points of 

Compatible Maps in Fuzzy Metric Spaces and Fuzzy Mathematics” is presented in this 

chapter has been classified into three different sections namely Fixed Points Theory and 

Its Application, Common Fixed Points Application for Compatible Maps and Fuzzy 

Metric Space and Common Fixed Point to present the research works done in the subject 

area in readable and synchronized format. 

2.1  FIXED POINTS THEORY AND ITS APPLICATION 

• Researchers have been fascinated by fixed point theory ever since Banach's famous 

fixed point theorem was published in 1922[1]. The literature that is now available 

demonstrates that Fixed Point Theory has always been an active area of study. If x 

= x, then a self-map of a metric space X is said to have a fixed point. In addition to 

serving as tools for demonstrating the existence and uniqueness of solutions for 

various mathematical models representing phenomena arising in various fields of 

study, such as steady-state temperature distribution, fluid flow, chemical equations, 

economic theories, epidemiology, etc., fixed point theorems are also related to the 

existence and properties of fixed points. It is also used to research issues with 

systems that are relevant to optimum control. A subfield of mathematics known as 

fixed point theory looks for any self-mappings in which among all the elements 

one of the element leftward invariant. Brouwer's fixed point theorem in 1912 

served as the foundation for topological fixed point theory. Tarski's fixed point 

theorem from 1955 is the source of discrete fixed point theory. It is the most 

commonly used methodology in non-linear analysis, and the effectiveness of fixed 

point theory is proved in the topological and algebraic structures[2]. The availability 

and distinct characteristics of the fixed point theory for self-maps over the metric 

space could better be resolute through the changing the distances in between the 

points, particularly when the points are working over the control functions[3].      

• The theory of metric space in mathematics uses the Banach fixed point theorem[1], 

sometimes referred to as the contraction mapping theorem or contraction map0ping 

principle. It offers a contractive approach to locate certain fixed points and ensures 

their existence and uniqueness for particular self-mappings of metric space. The 

theorem, which Stefan Banach (1892–1945) initially formulated in 1922. 

Functional analysis[4–7] examines linear functions that appropriately trails the 
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vector spaces with limit-related structures. The study of the formulation 

characteristics of transformations, operators between function spaces, and the 

spaces of functions[8–9] can be linked to the beginnings of this field. The use of 

integral and differential equations illustrates the significance of this field of 

research[10–14].  

• A number of fixed point theorems in convex b-metric spaces and their applications 

were researched by Lili Chen[15] et al. in 2020. Research claimed that the 

framework of b-metric spaces showed a technique of generalising the Mann's 

iteration algorithm and a number of fixed point solutions. First, a convex structure 

is used to establish the idea of a convex b-metric space, and Mann's iteration 

technique is then expanded to include this space. The strong convergence theorems 

for two categories of contraction mappings in convex b-metric spaces are then 

established with the aid of Mann's iteration technique. Additionally, for the 

aforementioned mappings in full convex b-metric spaces, the T-stability issues of 

Mann's iteration process are obtained. 

• Fisher[16] demonstrated the fixed point theorem using several metric spaces and an 

increasing function from R+ to R+. Following that, several mathematicians who 

study in this field use various mapping techniques, including non-expansive 

mappings, self-mapping, multivalued mapping, sequences of mappings, operators 

in Hilbert spaces, and other mapping in metric spaces, Hilbert spaces, and Banach 

spaces. To determine the existence and uniqueness of a solution to higher order 

differential and integral equations, the fixed point theorem or contraction mapping 

has recently been used. Fisher fixed point findings in generalised metric spaces 

were shown by Karim Chaira[17] et al. in 2020 using a graph. In relation to 

mappings defined on a generalised metric space with a graph, the fisher's fixed 

point theorem was discussed. The classical Fisher fixed point theorem should be 

viewed as being extended by this study. It expands on several previous efforts on 

the generalisation of metric space with graph using the Banach contraction theory. 

Due to its numerous applications, fixed point theory is now a particularly active 

topic of study. It relates to the findings that show self-mapping on a set admits a 

fixed point under specific circumstances. The most well-known result in metric 

fixed point theory is the Banach Contraction Principle. 
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• A fixed-point theorem for generalised weakly contractive mappings in b-metric 

spaces was developed by Eliyas Zinab[18] et al. in 2020. In the context of b-metric 

spaces, they formulated a fixed-point theorem for generalised weakly contractive 

mappings and came to the conclusion that a fixed point exists and is unique for 

self-mappings that meet the theorem.  

• Khaled Berrah[19] et al.'s research on the common fixed point in complex valued b-

metric space's applications and theorem was published in 2019. For four self-

mappings fulfilling rational contraction, they offered a common fixed point 

theorem, which was shown in complex valued b-metric space. The findings of this 

study demonstrate that a common solution to the system of Urysohn integral 

equations and a system of unique solutions to linear equations both exist. Their 

paper's major goal was to satisfy a rational inequality on complex valued b-metric 

spaces by presenting common fixed point outcomes of four self-mappings. 

• According to the well-known Banach contraction principle (BCP), a contraction 

mapping over an entire metric space has a single fixed point. Banach used the idea 

of a diminishing map to arrive at this significant result[20]. The development of 

computers and new software for rapid and efficient computing has given fixed 

point theory a new dimension[21]. The Brouwer fixed point theorem is essential for 

the numerical solution of equations. Exact quotations of the phrase "a continuous 

map on a close unit ball in Rn has a fixed point" are found in[22]. 

• Metric spaces' most generic space, which can enable one to reconsider real-world 

applications, plays a vital part in Real Analysis and Functional Analysis. 

Understanding and using the idea of topological qualities to normed linear spaces 

as well as metric space in many domains is always intriguing as well as demanding 

for mathematicians. Meir-Keeler[23] produced fixed-point solutions using weakly 

uniformly rigorous contraction in the context of entire metric spaces as a 

continuation of numerous generalisations. Additionally, there are many other uses 

for metric fixed point theory, including “dynamic programming, variational 

inequalities, fractal dynamics, dynamical systems of mathematics, and the 

placement of satellites in the right orbits for space science”. 

• In their research on various fixed point theorems in partial metric spaces with 

applications, Kanayo Stella Eke and Jimevwo Godwin Oghonyon[24], established a 
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fixed point theorem for the integral type of these maps. This study claimed that the 

class of generalised weakly C-contractive mappings in partial metric space and he 

proved some fixed point results for such maps in ordered partial metric spaces 

without utilising the continuity of any of the functions. The outcome generalises 

Chen and Zhu's findings as well as those of other authors in the literature. 

• Every function F has at least one fixed point under particular circumstances, as 

mentioned according to fixed-point theorem. These results have been cited as some 

of mathematics' most important ones[25]. A fixed point will always be reached by 

iterating the function in question if the Banach fixed-point theorem is true. Every 

continuous function on the closed unit ball in n-dimensional Euclidean space has a 

fixed point according to the Brouwer fixed-point theorem[26]. The theory does not, 

however, outline how to find the fixed point. The cosine function must have a 

single, constant value because of its continuation. At a given point, the cosine curve 

of y cos intersects the plane x, y. The value of this fixed point is 0.739 085 133 215 

16[27]. The number of fixed points may be determined using Lefschetz's fixed-point 

theorem from algebraic topology. In PDE theory, Banach's fixed-point theorem[1] 

has been generalised[28]. Infinite dimensions can be used to establish fixed point 

theorems[29]. The collage theorem in fractal compression[30] shows that the 

fundamental description of a function quickly converges on the desired picture 

when applied repeatedly to any beginning image. 

• A fixed point is a solution to a nonlinear partial differential equation that does not 

change after the equation has been applied. Therefore, u (x, t) is a fixed point of 

the operator that defines it if u(x, t) is a solution of a nonlinear PDE[31]. Fixed points 

play a crucial role in the analysis of nonlinear PDEs because they enable us to 

comprehend the behaviour of solutions. If we can show that a nonlinear PDE has 

a unique fixed point[32], it is obvious that only one solution to an equation fulfils 

particular starting or boundary conditions. 

• Fixed point theorems in a novel class of modular metric spaces were the focus of 

Duran Turkoglu et al.'s[33] research. According to them, they establish a novel idea 

of generalised modular metric space by taking into account both a modular metric 

space in the sense of jleli and samet. Then he gives some illustrations to 

demonstrate that there is a metric structure in the generalised modular metric space. 

On generalised modular metric spaces, they offered certain fixed-point conclusions 
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for mappings of the contraction and quasi-contraction types. 

• Akkouchi[34] established a general common fixed point problem for two pairs {f, 

S} and {g, T} of weakly compatibles self-maps of a complete b-metric (X, d; s). 

These maps are satisfying a contractive condition defined by a class of implicit 

relations in five variables. This contraction unifies, in one go, several contractive 

conditions previously used in a set of recent papers dealing with fixed point or 

common fixed results for self-maps of b-metric spaces. 

• Harmati IÁ, and Kóczy[35] mentioned that recurrent neural networks called fuzzy 

cognitive mapping (FCMs) are used to simulate complicated systems utilising 

weighted causal links. The behaviour of an iteration serves as the basis for 

inference about the simulated system in FCM-based decision-making. Extensions 

of fuzzy cognitive maps, fuzzy grey cognitive maps (FGCMs) impose ambiguous 

weights between the concepts. An iterative process that may converge to an 

equilibrium point, but may also exhibit limit cycles or chaotic behaviour, 

determines the inference. In research necessary settings for sigmoid FGCM fixed 

points' actuality and exceptionality were also very well described. 

• Biley[36] discovered a common fixed point theorem for four generalised S-fuzzy 

metric space self-mappings. The goal of the research was to develop a broader 

version of the common fixed point theorem that would generalise Singh and 

Chauhan's finding about the idea of compatibility in fuzzy metric space.  

• In order to explain the idea of fuzzy metric space in various forms, Dixit and 

Gupta[37] developed particular common fixed point theorems for set valued and 

single valued mappings in fuzzy metric space and fuzzy 2 - metric spaces. The 

majority of the research's findings either deal with commuting maps or presuppose 

weak commutativity of mappings. In common fixed point theory, existence 

theorems were widely proved using the concept of compatible maps. Furthermore, 

the property E.A in FM-space and the shared fixed points of two incompatible 

maps were applied. The outcome allowed for the generalisation of several 

significant fixed point theorems and expanded the field of research for common 

fixed points under contractive type circumstances.  

• Rehman et al.[38] used three-self-mappings to study several coincidence point and 

common fixed point theorems in fuzzy metric spaces and showed the uniqueness 
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of some of these conclusions by utilising the weak compatibility of three-self-

mappings. The paper also provided some illustrative examples for the validation 

of the results in support of the findings. The use of fuzzy differential equations to 

support the work allows for the extension and improvement of several outcomes. 

Work produced some generalised fuzzy-contraction findings for three weakly 

compatible self-mappings in FM spaces without making the assumption that the 

"fuzzy contractive sequences[96] are Cauchy." Further, also demonstrated more 

coincidence points and CFP outcomes for various contractive type mappings in FM 

spaces by employing this idea and integral operators. 

• Different applications of fixed-point theorems and metric fixed-point theory are 

made to find a special common solution to differential equations and integral 

equations. Murthi et al.[39] have demonstrated a few fixed-point theorems in the 

context of bipolar metric spaces using the extension of Meir-Keeler contraction. 

Non-trivial examples have been added to the work or the derived findings. In 

addition to providing an application to discover an analytical solution to an Integral 

Equation in order to augment the generated result, the results expanded and 

generalised the conclusions reached in the past. 

2.2 COMMON FIXED POINTS APPLICATION FOR COMPATIBLE 

MAPS 

• Several academicians or scholars have used specific connections in the system of 

fuzzy metric spaces to illustrate standard fixed point theorems. Common fixed-

point theorems in generalised fuzzy metric spaces for weakly compatible mappings 

meeting common E.A. like characteristics. Fixed point assertions in Digital 

Topology is discussed by Boxer[40, 93, 94] with keeping the freezing sets fits to the 

theory of the digital topology in order to present the corrections associated with 

fixed points. The research rephrases almost all valid published statements about 

digital metric spaces employing the metric rather than the adjacency. Therefore, as 

a consequence, it appears that the digital metric space is an artificial construct with 

compromised concern with digital pictures. It was noticed that numerous assertions 

have been made in the literature on digital metric spaces are counterparts for 

subsections of Euclidean Rn. The authors frequently overlooked the crucial 

distinctions between the topological space Rn and digital pictures, leading to false 
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or falsely "proven assertions," trivial, or inconsequential. For instance, many fixed 

point assertion-satisfying functions essentially be continuous or failed to be 

continuous digitally.   

• Fixed points are strongly connected to these equations since they frequently occur 

as solutions to nonlinear partial differential equations (PDEs). A fixed point in 

mathematics is a value that remains constant while the function is applied[41]. A 

fixed point is a solution that doesn't change after applying the equation while 

discussing nonlinear partial differential equations. So, if u (x, t) is a nonlinear PDE 

solution, u (x, t) is a fixed point of the operator that defines it[42]. Fixed points are 

an important aspect of the study of nonlinear PDEs because they allow us to better 

understand the behaviour of solutions[43]. If we can show that a nonlinear PDE has 

a unique fixed point, we know that only one solution to an equation fulfils some 

initial or boundary conditions[44]. Furthermore, we know that an equation can have 

more than one solution if we can show that a nonlinear PDE has numerous fixed 

points. Sometimes, the existence or absence of fixed points can be used to 

demonstrate the existence or absence of nonlinear PDE solutions. In the analysis 

of nonlinear PDEs, the fixed point idea is a potent tool that is commonly employed 

to investigate the existence, uniqueness, and stability of solutions[45]. 

• Based on the idea of compatible and weakly compatible self-mappings in fuzzy 

cone metric spaces, research confirmed the use of a few generalised common fixed 

point theorems for four of these self-mappings[46]. According to research, the 

conclusions of[47, 48] may be generalised and extended to include self-mappings 

with continuity of a self-map h and without continuity for a pair of weakly 

compatible self-mappings. 

• Ali et al.'s work[49] employed the ideas of sub-compatibility and sub-sequential 

continuity to demonstrate a common fixed point theorem for six self-maps in a 

fuzzy metric space. A number of previous fixed point results in metric space and 

fuzzy metric space are generalised, expanded, united, and fuzzified by the 

established result. In the study, a common fixed point theorem for six self-maps in 

a fuzzy metric space was demonstrated using the ideas of sub-compatibility and 

sub-sequential continuity. Several fixed point findings in metric space and fuzzy 

metric space have been generalised, extended, united, and fuzzified. These results 
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may be further extended by expanding the number of self-maps with a new class 

of inequality. It was investigated if certain full metric spaces of mappings are 

generically well-posed for fixed point problems, and the very first. 

• If and only if x = x is true when f is a mapping from a set or a space X into itself, 

a point x X is referred to as a fixed point of the mapping[50]. Theorems about fixed 

points are those that discuss their existence and properties[51]. The most important 

tools for proving the validity of the solutions to the various mathematical models 

(differential, integral, partial differential equations, variational inequalities, etc.) 

that represent various phenomena relevant to various fields, such as steady state 

temperature distribution, chemical reactions, neutron transport theory, economic 

theories, epidemics, and fluid flow, are these theorems. They are also used to 

investigate the problems with optimum control that occur in these systems. 

• In 2017, Verma and Shrivastava[52] demonstrated reciprocal continuity for 

idempotent mappings in fuzzy metric spaces as well as weak commuting in fuzzy 

metric spaces. This chapter also establishes some conclusions on the existence and 

uniqueness of fixed point theorems in M-fuzzy metric spaces. Reciprocal 

continuity for idempotent mappings in M-fuzzy metric spaces, which is shown with 

examples to supplement our main thesis, has been used to demonstrate the 

existence of a fixed point theorem.  

• The Picard-Banach contractions and some nonexpansive mappings are among the 

numerous contractive type mappings that belong to the broad class of enriched 

contractions that Berinde and Pacurar[53] presented. According to research, every 

enriched contraction has a singular fixed point that may be approximated using the 

right Krasnoselski iterative approach. The fixed points of local enriched 

contractions, asymptotic enriched contractions, and enriched contractions of the 

Maia type were also reported in the research. The research article also included 

examples to demonstrate the universality of new ideas and accompanying fixed 

point theorems. 

• Under the presumptions that these two pairs of self-maps are weakly compatible 

and meet a contractive condition, Sekhar[54] demonstrated the presence of shared 

fixed points between two pairs of self-maps. A series of self-maps is added as an 
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extension of the same. Additionally, the investigation supported the same results 

with various assumptions on two pairs of self-maps, one of which is weakly 

compatible and the other of which is compatible and reciprocally continuous. The 

same results with various hypotheses on two pairs of self-maps, where any of the 

pair satisfies the (E.A) condition and limits the completeness of X to its subspace, 

were likewise validated by the study. The research illustrated the extension of Babu 

and Dula[55] through maps presenting 2-pairs where one pair was weakly 

companionable. The identical approach is followed for successive self-maps. 

• Common fixed point theorems in metric spaces were examined by Semwal and 

Komal[56] along with its certain scope applications. For specific contractive types 

of mappings, work examined the existence and uniqueness of common fixed point 

theorems followed with the advancements. Findings and results are helpful in 

examining the existence and distinctiveness of common solutions for a set of 

functional equations that arise in dynamic programming. While studying the 

various fixed point theorems in partial metric spaces with applications, Eke and 

Oghonyon[57] for the integral type of these maps established a fixed point theorem. 

The work claimed class of generalized weakly C-contractive mappings in partial 

metric space and also proved some fixed point results for such maps in ordered 

partial metric spaces without utilizing the continuity of any of the functions. The 

existence and uniqueness of shared fixed points of sometimes weakly compatible 

mappings meeting particular contractive requirements in a Gsymmetric space were 

shown by Eke and Oghonyon in 2019[58]. To attain their research goals, they 

worked upon E. A. Property. 

• The proposed primary theorem is a generalised version of a few well-known 

theorems, as demonstrated by the fact that Patel and Bhardwaj[59] have proven 

various fixed point and common fixed point theorems for Cone metric space in 

integral type mappings. The fuzzy metric spaces (Fuzzy 2 and 3 metric spaces) as 

well as various varieties of fuzzy metric spaces are both amenable to this theorem. 
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2.3 FUZZY METRIC SPACE, FUZZY MATHEMATICS AND 

COMMON FIXED POINT 

Fuzzy cognitive maps employ directed graphs with edges from the range [1, 1] with 

constant weights to reflect the direction and intensity of causal linkages. In the FCM 

theory, the nodes are referred to as "concepts" and represent certain components of the 

represented system. The numbers in the [0, 1] or [1, 1] interval, known as "activation 

values," are also used to describe the ideas' present states. In some of the results[60–61] 

importance of fuzzy logic is addressed for many engineering and related engineering 

fields, it was indicated that the processing of human perceptions and cognitions served as 

an inspiration for fuzzy logic, which is founded on the idea of relative graded 

memberships. Information derived from computational senses and cognitions, which is 

ambiguous, opaque, imprecise, partially true, or without distinct bounds, can be handled 

using fuzzy logic. The integration of hazy human judgements in computational problems 

is made possible by fuzzy logic. For many persons involved in inventive work, such as 

“engineering, mathematics, computer software, earth science, and physics”, fuzzy logic is 

incredibly helpful. 

• In nonlinear analysis, the metric fixed point theory has been instrumental. It has 

often entailed the blending of topological and geometrical features. It has been 

extensively researched and improved upon after the renowned Banach contraction 

principle, either by altering the contractive condition or the underlying space. By 

guaranteeing the existence of fixed point, common fixed point, and coincidence 

point results with various types of applications, such as differential-type 

applications, integral-type applications, and functional-type applications, many 

researchers gave generalisation and improved the BCP in many directions for 

single-valued and multivalued mappings in the context of metric spaces. The 

notion of fuzzy sets was first proposed by Zadeh[62] in his foundational study, while 

Goguen[63] subsequently generalised fuzzy sets to L-fuzzy sets. According to the 

rules of fuzzy logic, certain numbers that are not part of the set are defined as 

elements within the range [0, 1], in contrast to conventional logic. Zadeh has been 

able to learn theories of fuzzy sets (FSs) that carry the problem of indefinity thanks 

to uncertainty, the essential component of genuine difficulty. For a variety of 

processes, one of which makes use of fuzzy logic, the theory is viewed as a fixed 
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point in the fuzzy metric space (FMS). As a generalisation of fuzzy metric spaces, 

Park[64] created intuitionistic fuzzy metric spaces. An L-fuzzy fixed point theorem 

in full metric spaces was proven by Rashid et al.[65]. The fixed points of many fuzzy 

and L-fuzzy mappings in classical, ordered, fuzzy, and intuitionistic fuzzy metric 

spaces are then obtained. 

• Researchers are constantly interested in learning about new discoveries in metric-

space and their potential characteristics. Gahler[66] as a consequence presented the 

concept of 2-metric spaces, providing the idea of new dimensions for conventional 

metric spaces. The measure used in this context is non-negative real, or [0, +]; it 

has several uses. The idea of probabilistic metric spaces, which examines the 

probabilistic distance between two places, has given the topic and interest in 

knowing more about stars in the universe a new depth. Similar research was 

conducted on fuzzy metric spaces by Grabiec[67] and Michalek[68], which 

considered the degree of agreement and disagreement. The majority of the effort 

was clearly based on actual figures, whether they are “2-metric, fuzzy metric, 

modular metric, etc.” 

• By using fuzzy contractive mappings in non-Archiemedean fuzzy metric space, 

Mihet[69] established the fixed point theorem and proposed the concept. For two 

generalisation contractive type mappings, Vetro[70] obtained some Common fixed 

point solutions. The idea of intuitionistic �Ø,Ѱ� contractive mappings is explained 

by Abu-Doniaa et al.[71], along with certain popular fixed point theorems in 

intuitionistic fuzzy metric space that are proved to be true under these conditions. 

For compatible and weakly compatible self-mappings obeying the more 

generalised form of the fuzzy cone Banach contraction theorem in fuzzy cone 

metric spaces, Rehman et al.[46] found several common fixed point findings. With 

the condition of Mf triangular, research verified the generalise findings for four 

self-mappings both with and without a continuous self-map, h. 

• The processing of human perceptions and cognitions served as the inspiration for 

fuzzy logic, which is founded on the idea of relative graded memberships. 

Information derived from computational senses and cognitions, which is 

ambiguous, opaque, imprecise, partially true, or without distinct bounds, can be 

handled using fuzzy logic. The integration of hazy human judgements in 
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computational issues is made possible by fuzzy logic. For many persons involved 

in inventive work, such as engineering (electrical, chemical, civil, environmental, 

mechanical, industrial, geological, etc.), mathematics, computer software, earth 

science, and physics, fuzzy logic is incredibly helpful. Some of their conclusions 

are presented in[72-74]. 

• Using implicit relations, Rana et al.[75] developed a few fixed-point theorems for 

FM-spaces. Through the use of the concepts of compatible maps, implicit relations, 

weakly compatible maps, and R-weakly compatible maps, several writers have 

described the number of fixed-point theorems in FMspaces. With the use of 

continuous t-norms, George and Veeramani[76] refined the idea of FM-spaces and 

established several fundamental features. 

• Sometimes, the existence or absence of fixed points can be used to demonstrate the 

existence or absence of nonlinear PDE solutions. If we can show that there are no 

fixed points, then we know that there are no nontrivial solutions to a nonlinear 

PDE. In the analysis of nonlinear PDEs, the fixed point idea is a potent tool that is 

widely employed to investigate the existence, uniqueness, and stability of 

solutions[77]. For mappings meeting the -contractive condition on a fuzzy metric 

space, several fixed point theorems are proven that are both intuitively stated and 

compatible with following continuous mappings. 

• In fuzzy metric space and fuzzy 2-metric spaces, Dixit and Gupta[37] demonstrated 

a few basic fixed point theorems for set valued and single valued mappings. The 

findings of the work dealt either with commuting mappings or assumed the notion 

of weak commutativity of mappings presented by Seesa. The concept of fuzzy 

metric space was introduced in many varieties. The outcome of the work allowed 

for the generalisation of a number of significant fixed point theorems and expanded 

the field of research for common fixed points under contractive type constraints. 

In FM-spaces, certain fixed-point theorems have been proven by Rana et al.[78] 

using implicit relations. In addition, fixed-point theorems have been introduced in 

FM-spaces utilising the concepts of compatible maps, implicit relations, weakly 

compatible mappings, and R-weakly compatible maps[41]. 

• The main goal of this study is to extend the common limit range feature that Gupta 

et al.[79] presented to V-fuzzy metric spaces. By using this characteristic on V -
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fuzzy metric spaces, substantial results for linked maps are also demonstrated. To 

be more exact, we define the concept of CLR-property for the mappings Θ: 

ℳ×ℳ→ℳ and Ω: ℳ→ℳ. We present and demonstrate our new fixed point 

results using our new idea. 

• The term "common limit in the range property," or "CLR property," in fuzzy metric 

spaces was defined by Sintunavarat and Kumam[98]. In contrast to property (E-A), 

which necessitates this requirement for the existence of the fixed point, the idea of 

property CLR never needs the closed-ness of the subspace. It is clear that 

academics are focusing on this property in order to generalise or enhance earlier 

findings that were supported by the idea of property (E-A). In their publication, Jha 

and Pant[80] generalised and refined a number of conclusions on fixed point in fuzzy 

metric space under this condition (E-A) by removing the continuity of mappings 

even the completeness. Jha and Pant[80] established several common fixed point 

theorems in fuzzy metric space with property (E-A). 

• The exploration of fixed points for contractive mappings is a well-known problem 

in metric spaces, and Huang and Zhang's presentation of the cone metric space is 

one such generalisation[81-82]. In addition to substituting an ordered Banach space 

for the collection of real numbers from a metric space, they provided some crucial 

results for a self-map satisfying a contractive condition in this space. 

• Open spheres and closed spheres are convex in convex metric spaces, and all 

normed spaces and their convex subsets are convex metric spaces, according to 

Takahashi[83], who first introduced the concept of convex metric spaces and studied 

the fixed-point theory for non-expansive mappings in such a setting. Convex metric 

spaces that are not embedded in a normed space, however, are common. 

Generalised metric spaces were renamed to G-metric spaces by Mustafa and 

Sims[84], who also discovered several topological characteristics[95].  

• Particularly, Sun and Yang[85] introduced the idea of GFMS and generalised the 

concept of fuzzy metric spaces. A distinct common fixed point theorem for six 

weakly compatible mappings in G-fuzzy metric spaces was established by 

Balasubramanian et al. in 2016[86]. In order to demonstrate how the iteration 

process converges to the unique fixed point under various contractive mapping 

conditions on the GFMS in convex structure, a new three-step iteration procedure 
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is developed in this study effort. The examination into the data dependency on the 

outcomes of these iterative processes in the generalised G-fuzzy convex metric 

spaces is also a major emphasis of this chapter. To get fixed point and common 

fixed point theorems for a pair of self-mappings under suitable contractive type 

requirements with convex structure, the idea of convex structure in GFMS has also 

been proposed. Extensions of fuzzy cognitive maps known as fuzzy grey cognitive 

maps (FGCMs) were developed for the situation when only hazy information was 

available on the connections between the various components of the system[87]. The 

iteration may reach a fixed point, enter a limit cycle, or exhibit chaotic patterns, 

just like the classical FCMs. As a result, the fixed points issue is also very important 

in the context of FGCMs. 

• Pazhani[88] studied “fixed point theorems from fuzzy metric spaces and 

intuitionistic fuzzy metric spaces” and remarked that one of the most effective and 

successful nonlinear analysis methods is the Fixed Point Theory, which may be 

viewed as the nonlinear analysis's core. The adjective "fuzzy" has gained a lot of 

popularity and usage in recent research pertaining to the logical and set-theoretical 

underpinnings of mathematics. In a number of application domains, the idea of 

defining Intuitionistic Fuzzy Sets (IFS) for fuzzy set generalisations has shown to 

be fascinating and helpful. Research has opened up new possibilities for advancing 

the theory of intuitionistic fuzzy metric spaces (IFMS) in a path that may be 

interesting for other branches of mathematics and computer science as well as 

general topology. With the use of the t-norm, Agnihotri et al.[89] developed the idea 

of fuzzy metric space. Through the use of weak compatibility, we developed a 

common fixed point theorem for seven self-mappings in fuzzy metric space. On 

intuitionistic fuzzy metric space, Abu-Donia et al.[90] established a few often used 

coupled fixed point theorems for mappings under the ψ-contractive condition 

under compatible and subsequently continuous mappings. 

• A common fixed point theorem for six self-maps in a fuzzy metric space was 

established by Ali et al.[91] combining the ideas of sub-compatibility and sub-

sequential continuity. A number of previous fixed point results in metric space and 

fuzzy metric space are generalised, expanded, united, and fuzzified by the 

established result.  
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• In order to realize the weak compatible mappings (wc-mapping), Vijayalakshmi et 

al.[92] demonstrated a fixed-point technique on E -Fuzzy-metric Space, offering 

Joint Common Limit in the Range (JCLR)-property implicitly. Key conclusions 

from the research were shown with several specific cases. For six finite families of 

self-mappings, work demonstrated a fixed-point theorem that may be used to 

support additional conclusions. Furthermore, it was demonstrated that typical 

fixed-point theorems may be proved using any finite number of mappings[97]. 

Analysis and applied mathematics both heavily rely on metrics that are typically 

thought of as functions of distance. But in other situations, like as the determination 

of the distance between two pixels in image analysis, which is frequently regarded 

as two-pixel similarity, metrics based on the Crisp notion are not appropriate. 

Therefore, based on fuzzy notions, Lukman Zicky et al.[99] established the idea of 

fuzzy metric. Then, convergence and fixed point issues were addressed using this 

fuzzy metric. Some characteristics of regular metric still hold true for fuzzy metric 

thanks to work.  

• Hasan[100] made the most of the variable distance function by identifying some 

general fixed point theorems for tangential mappings for hybrid couples of both 

sorts of mappings (single and multi-valued). A number of earlier recognised 

discoveries were expanded upon and generalised by these theorems. The amount 

of conclusion generalisation and the veracity of assumptions were both checked by 

the author. 
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3.1 INTRODUCTION AND PRELIMINARIES OF COMPLETE 

MULTIPLICATIVE METRIC SPACE 

Since its introduction by Banach in 1922[1], the Banach contraction principle 

has sparked considerable interest in the study of fixed and common fixed point 

theorems for maps[2]. Over the years, scholars have extended this principle to various 

spaces, such as quasi-metric, fuzzy metric, 2-metric, cone metric, partial metric, and 

generalized metric spaces[3]. In 2008, Bashirov proposed the concept of multiplicative 

metric spaces and delved into multiplicative calculus, culminating in the establishment 

of its fundamental theorem. Building upon this foundation, in 2012, Florack and Assen 

explored the application of multiplicative calculus in the analysis of biological 

images[4]. 

Definition 3.1:[5] Consider a nonempty set A. A multiplicative metric is a function 

d:A×A→R+ that fulfills the following conditions: 

1. d(a,b)≥1 for all a,b∈A, with equality d(a,b)=1 if and only if a=b (referred to as (M1). 

2. d(a,b)=d(b,a) for all a,b∈A (denoted as (M2)). 

3. d(a,b)≤d(a,c)⋅d(c,b) for all a,b,c∈A (satisfying the multiplicative triangle 

inequality) (M3). The pair (A,d) forms a multiplicative metric space. 

Definition 3.2:[6] Given a multiplicative metric space (A,d), a sequence {an} in A, and a∈A, 

if for every multiplicative open ball B(a)={b∣d(a,b)<ϵ} with ϵ>1, there exists a natural 

number N∈N such that n≥N implies an∈B(a), then {an} is termed multiplicative convergent 

to a, denoted as an→a as n→∞. 

Proposition 3.1:[7] For a multiplicative metric space (A,d), a sequence {an} in A, and a∈A, 

an→a as n→∞ if and only if d(an,a)→1 as n→∞. 

Definition 3.3: Let (A,d) be a multiplicative metric space[8] and {an} be a sequence in A. 

The sequence {an} is labelled a multiplicative Cauchy sequence if, for every ϵ>1, there 

exists a positive integer N∈N such that d (an, am)<ϵ for all n,m≥N. 

Proposition 3.2: For a multiplicative metric space[8] (A,d) and a sequence {an} in A, {an} 

is a multiplicative Cauchy sequence if and only if d(an,am)→1 as n,m→∞. 

Definition 3.4: A multiplicative metric space[8] (A,d) is declared multiplicative complete 
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if every multiplicative Cauchy sequence in (A,d) is multiplicative convergent in A. 

Definition 3.5: Let (A,dA) and (B,dB) be two multiplicative metric spaces[9], and f:A→B be a 

function. f is termed multiplicative continuous at a∈ A if for every ϵ>1, there exists δ>1 

such that f(Bδ(a))⊂Bδ(f(a)). 

Proposition 3.3: For multiplicative metric spaces[9] (A,dA) and (B,dB), a mapping f:A→B, 

and any sequence {an} in A, f is multiplicative continuous at a∈A if and only if f(an)→f(a) 

for every sequence {an} with an→a as n→∞. 

Proposition 3.4: Given a multiplicative metric space (A,dA), sequences {an} and {bn} in A 

such that an→a and bn→b as n→∞, where a,b∈A, d(an,bn)→d(a,b) as n→∞. 

Definition 3.6: The self-maps f and q of a set A are called commutative if fqa=qfa for all 

a∈A. 

Definition 3.7: Suppose f and q are two self-mappings of a multiplicative metric space 

(A,d)[10]. The pair (f,q) are called weak commutative mappings if d(fqa,qfa)≤ d(fa,qa) for 

all a∈A. 

Definition 3.8: Let (A,d) be a multiplicative metric space, and let f:A→A be called a 

multiplicative contraction if there exists a real constant λ∈(0,1) such that d(f(a),f(b))≤ 

d(a,b)λ for all a,b∈A. 

Theorem 3.1: Let (A,d) be a multiplicative metric space, and let f:A→A be a multiplicative 

contraction. If (A,d) is complete, then f has a unique fixed point. 

Theorem 3.2: Let P,Q,M, and N be self-mappings of a multiplicative metric space A, they 

satisfy the following conditions: 

• P(A)⊂N(A), Q(A)⊂M(A); 

• M and P are weak commutative, N and Q are also weak commutative; 

• one of P, Q, M, and N is continuous; 

• d(Pa,Qb)≤{max{d(Ma,Nb),d(Ma,Pa),d(Nb,Qb),d(Pa,Nb),d(Ma,Qb)}}, λ∈(0,1/2), for 

all a,b∈A. Then P, Q, M, and N have a unique common fixed point. 
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Definition 3.9: The self-maps f and q of a multiplicative metric space[11] (A,d) are said to 

be compatible if lim
j→<

 d(fq(am),qf(am))=1, whenever {am} is a sequence in A such that lim
j→<

 

fam= lim
j→<

qam=t, for some t∈A.  

Definition 3.10: Suppose that f and q are two self-maps of a multiplicative metric space 

(A, d). The pair (f, q) are called weakly compatible mappings if f(a)=q(a) for a∈A implies 

fq(a)=qf(a). That is, d(fa,qa)=1 implies d(fq(a),qf(a))=1. 

Remark 3.1: Commutative mappings must be weak commutative mappings, weak 

commutative mappings must be compatible, compatible mappings must be weakly 

compatible, but the converse is not true. 

Example 3.1: Let A=R and (A,d) be a multiplicative metric space defined by d(a,b)=e∣a−b∣ 

for all a,b in A. Let f and q be two self-mappings defined by f(a)=a3 and q(a)=2−a. Then 

d(f(am),q(am))= f|G¸��|.|G¹¸9G¸9�| →1 if am→1.  

iff am→d (fqam, qfam)=fº|G¸��|¹ = 1  if	am→1	 

Thus f and q are compatible. Note that d(fq(0),qf(0))=d(8,2)=e6>e2=d(0,0)=d(f(0),q(0)), so 

the pair (f,q) is not weakly commuting. 

Example 3.2: Let A=[0,+∞), (A,d) be a multiplicative metric space defined by 

d(a,b)=e∣a−b∣ for all a,b in A. Let f and q be two self-mappings defined by: 

fa = {�, if	0 ≤ � < 2, 2, if	� = 24, if	2 < � < +∞ 

ga = {4 − �, if	0 ≤ � < 2, 2, if	� = 27, if	2 < � < +∞ 

By the definition of the mappings of f and q, only for a=2, fa=qa=2, at this time 

fqa=qfa=2, so we see the pair (f,q) is weakly compatible. For am=2−1/m∈(0,2), from the 

definition of the mappings of f and q we have f(am)=q(am)=2, but 

d(fq(am),qf(am))=fG¸=e2≠1, so the pair (f,q) is not compatible. 

 

Let ∅ denote the set of functions φ:[1,∞]5→[0,∞) satisfying: 

• φ is non-decreasing and continuous in each coordinate variable; 

• for ≥1,for t≥1, ψ(t)=max{φ(t,t,t,1,t),φ(t,t,t,t,1),φ(t,1,1,t,t),φ(1,t,1,t,1),φ(1,1,t,1,t)}≤t. 

From now on, unless otherwise stated, we choose : ∈ ∅. 
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THEOREM 3.2: Let (A, d) be a complete multiplicative metric space, P, Q, M, and N 

be four mappings of A into itself. Suppose that there exists λ ∈ (0, 1/2) such that P(X) ⊂ 

N(X), Q(X) ⊂M(X), and  

d(Pa, Qb) ≤ φ dλ(Ma, Nb), dλ(Ma, Pa), dλ(Nb, Qb), dλ(Pa, Nb), dλ(Ma, 

Qb) 

..(3.1) 

for all a, b ∈ A. Assume one of the following conditions is satisfied: 

a. Either M or P is continuous, the pair (P, M) is compatible and the pair (Q, N) is 

weakly compatible. 

b. Either N or Q is continuous, the pair (Q, N) is compatible and the pair (P, M) is 

weakly compatible. 

Then P, Q, M, and N have a unique common fixed point. 

Proof : Let a0 ∈ A. Since P(A) ⊂ N(A) and Q(A) ⊂ M(A), there exist a1, a2 ∈ A such 

that y0 = Pa0 = Na0 and y1 = Qa1 = Ma1. By induction, there exist sequences {an} and 

{yn} in A such that 

Y2n = Pa2n = Na2n+1, y2n+1 = Qa2n+1 = Ma2n+2 ..(3.2) 

for all n = 0, 1, 2,... . 

Next, we prove that {yn} is a multiplicative Cauchy sequence in A. In fact, ∀n ∈ N, from 

(3.1), (3.2), and the property of ψ we have 

d(y2n, y2n+1) = d(Pa2n, Qa2n+1) 

≤ φ dλ(Ma2n, Na2n+1), d
λ(Ma2n, Pa2n), d

λ(Na2n+1, Qa2n+1), 

dλ(Pa2n, Na2n+1), d
λ(Ma2n, Qa2n+1) 

= φ dλ(y2n–1, y2n), d
λ(y2n–1, y2n), d

λ(y2n, y2n+1), d
λ(y2n, y2n), d

λ(y2n–2, y2n+1) 

≤ φ  dλ(y2n–1, y2n), d
λ(y2n–1, y2n), d

λ(y2n, y2n+1), 1, 

dλ(y2n–1, y2n) · d
λ(y2n, y2n+1) 

≤ φ dλ(y2n–1, y2n) · d
λ(y2n, y2n+1), d

λ(y2n–1, y2n) · d
λ(y2n, y2n+1), 

dλ(y2n–1, y2n) · d
λ(y2n, y2n+1), 1, dλ(y2n–1, y2n) · d

λ(y2n, y2n+1) 
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≤ ψ dλ(y2n–1, y2n) · d
λ(y2n, y2n+1) 

≤ dλ(y2n–1, y2n) · d
λ(y2n, y2n+1). 

This implies that 

d(y2n, y2n+1) ≤ dλ/1–λ (y2n–1, y2n)= dh (y2n–1, y2n). ..(3.3) 

h = λ/1- λ ∈ (0, 1). 

Similarly, using (3.1), (3.2), and the property of ψ, we have 

d(y2n+1, y2n+1) = d(Qa2n+1, Pa2n+1)= d(Pa2n+1, Qa2n+1) 

≤ φ dλ(Ma2n+1, Na2n+1), dλ(Ma2n+1, Pa2n+1), dλ(Na2n+1, Qa2n+1), dλ(Pa2n+1, Na2n+1), 

dλ(Ma2n+2, Qa2n+1)
  

= φ dλ(y2n+2, y2n), d
λ(y2n+1, y2n+1), d

λ(y2n, y2n+1), d
λ(y2n+2, y2n), d

λ(y2n+1, y2n+1)
  

≤ φ dλ(y2n, y2n+1), d
λ(y2n+1, y2n+1), d

λ(y2n, y2n+2), d
λ(y2n, y2n+1) · d

λ(y2n+1, y2n+2), 1
  

≤ φ dλ(y2n, y2n+1) · d
λ(y2n+1, y2n+2), d

λ(y2n, y2n+1) · d
λ(y2n+2, y2n+1), d

λ(y2n, y2n+2) · d
λ(y2n+2, 

y2n+1), d
λ(y2n, y2n+1) · d

λ(y2n+1, y2n+2), 1) 

≤ ψ dλ(y2n, y2n+1) · d
λ(y2n+1, y2n+2) 

≤ dλ(y2n, y2n+1) · d
λ(y2n+1, y2n+2). 

This implies that 

d(y2n+1, y2n+2) ≤ dλ /1–λ (y2n, y2n+1)= d (y2n, y2n+1) ..(3.4) 

It follows from (3.3) and (3.4) that, for all n ∈ N, we have 

d(yn, yn+1) ≤ dh(yn–1, yn) ≤   �¿¹  (yn–2, yn–1) ≤· · · ≤  �¿À  (y0, y1). 

Therefore, for all n, m ∈ N, n < m, by the multiplicative triangle inequality we obtain 

d(yn, ym) ≤ d(yn, yn+1) · d(yn+1, yn+2) d(ym–1, ym) 

≤  �¿À  (y0, y1) ·  �¿ÀKÁ  (y0, y1) �¿¸ÂÁ  (y0, y1) 

≤ �
¿À
��¿	�4(, 4��. 
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This implies that d(yn, ym) → 1 (n, m → ∞). Hence {yn} is a multiplicative Cauchy se- 

quence in A. By the completeness of A, there exists z ∈ A such that yn → z (n → ∞). 

Moreover, because 

{y2n} = {Pa2n} = {Na2n+1} and {y2n+1} = {Qa2n+1} = {Ma2n+2} 

are subsequences of {yn}, we obtain 

Pa2n=  Na2n+1= Qa2n+1=Ma2n+2=z. ..(3.5) 

Next, we prove z is a common fixed point of P, Q, M, and N under the condition (a).  

Case 1:  Suppose that M is a continuous, then limn→∞ MPa2n = limn→∞ M2a2n = Mz. Since 

the pair (P, M) is compatible, from (3.5) we have 

lim
*→<

� (PMa2n, MPa2n)= lim
*→<

�(PMa2n, Mz) = 1, 

that is, lim
*→<

RMa2n = Mz. By using (3.1) and (3.2) we have 

d(PMa2n, Qa2n+1) ≤ φ dλ (M2a2n, Na2n+1), d
λ (M2a2n, PMa2n), d

λ(Na2n+1, Qa2n+1), 

dλ(PMa2n, Na2n+1), d
λ (M2a2n, Qa2n+1)) 

Taking n →∞ on the two sides of the above inequality, using (3.5) and the property of ψ, 

we get 

d(Mz, z) ≤ φ dλ(Mz, z), dλ(Mz, Mz), dλ(z, z), dλ(Mz, z), dλ(Mz, z)  

= φ dλ(Mz, z), 1, 1, dλ(Mz, z), dλ(Mz, z)  

≤ ψ dλ(Mz, z) 

≤ dλ(Mz, z). 

This means that d(Mz, z)= 1, that is, Mz = z. Again applying (3.1) and (3.2), we obtain 

d(Pz, Qa2n+1) ≤ φ dλ(Mz, Na2n+1), d
λ(Mz, Pz), dλ(Na2n+1, Qa2n+1), 

dλ(Pz, Na2n+1), d
λ(Mz, Qa2n+1). 

Letting n →∞ on both sides in the above inequality, using Mz = z, (3.5), and the property 

of ψ, we can obtain 
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d(Pz, z) ≤ φ dλ(z, z), dλ(z, Pz), dλ(z, z), dλ(Pz, z), dλ(z, z) 

= φ 1, dλ(Pz, z), 1, dλ(Pz, z), 1 

≤ ψ dλ(Pz, z) 

≤ dλ(Pz, z). 

This implies that d(Pz, z)= 1, that is, Pz = z. 

On the other hand, since z = P(z) ∈ P(A) ⊂ N(A), there exists z∗ ∈ A such that z = Pz = Nz∗. 

By using (3.1), z = Pz = Mz = Nz∗, and the property of ψ, we can obtain 

d( z, Qz∗�  = d(Pz, Qz∗�	

≤ φ dλ (Mz, Nz∗�, dλ(Mz, Pz), dλ (Nz∗, Qz∗), dλ (Pz, Nz∗), dλ (Mz, Qz∗� 

= φ dλ(z, z), dλ(z, z), dλ (z, Qz∗), dλ(z, z), dλ(z, Qz∗� 

= φ(1,1, d( z, Qz∗�, 1, dλ(z, Qz∗))  

≤ ψ dλ(z, Qz∗�  

≤ dλ(z, Qz∗� . 

This implies that d(z, Qz∗)= 1, and so Qz∗ = z = Nz∗. Since the pair (Q, N) is weakly com- 

patible, we have Qz = QNz∗ = NQz∗ = Nz. 

Now we prove that Qz = z. From (3.1) and the property of ψ, we have 

d(z, Qz) = d(Pz, Qz) 

≤ φ dλ(Mz, Nz), dλ(Mz, Pz), dλ(Nz, Qz), dλ(Pz, Nz), dλ(Mz, Qz) 

= φ  dλ(z, Qz), dλ(z, z), dλ(Qz, Qz), dλ(z, Qz), dλ(z, Qz) 

= φ dλ(z, Qz), 1, 1, dλ(z, Qz), dλ(z, Qz) 

≤ ψ dλ(z, Qz) 

≤ dλ(z, Qz). 

This implies that d(z, Qz)= 1, so z = Qz. 

Therefore, we obtain z = Tz = Mz = Qz = Nz, so z is a common fixed point of P, Q, M, and 

N. 
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Case 2: Suppose that P is continuous, then lim
*→<

RMa2n = lim
*→<

R�a2n = Pz. Since the pair 

(P, M) is compatible, from (3.5) we have  

lim
*→<

�(PMa2n, MPa2n)= lim
*→<

�(Pz, MPa2n) = 1, 

 that is, lim
*→<

 Pa2n = Pz. From (3.1) and (3.2) we obtain 

d (P2a2n, Qa2n+1)
 ≤ φ dλ(MPa2n, Na2n+1), d

λ (MPa2n, P
2a2n), d

λ(Na2n+1, Qa2n+1), 

dλ (P2a2n, Na2n+1), d
λ(MPa2n, Qa2n+1) 

Taking n →∞ on the two sides of the above inequality, using (3.5) and the property of ψ, 

we can get 

d(Pz, z) ≤ φ dλ(Pz, z), dλ(Pz, Pz), dλ(z, z), dλ(Pz, z), dλ(Pz, z) 

= φ dλ(Pz, z), z, z, dλ(Pz, z), dλ(Pz, z) 

≤ ψ dλ(Pz, z) 

≤ dλ(Pz, z). 

This means that d(Pz, z) = 1, this is Pz = z. 

Since z = Pz ∈ P(A) ⊂ N(A), there exists z∗ ∈ A such that z = Pz = Nz∗. From (3.1) we have 

d( P2a2n, Qz∗) ≤ φ dλ (MPa2n, Nz∗), dλ(MPa2n, P
2a2n), d

λ(Nz∗, Qz∗), dλ(P2a2n, Nz∗), 

dλ (MPa2n, Qz∗). 

Letting n → ∞, using z = Pz = Nz∗ and the property of ψ, we can obtain 

d (z, Qz∗� ≤ φ dλ (Pz, Nz∗�, dλ(Pz, Pz), dλ(z, Qz∗), dλ(Pz, z), dλ (Pz, Qz∗�  

= φ dλ(z, z), dλ(z, z), dλ( z, Qz∗�, dλ(z, z), dλ(z, Qz∗�  

= φ 1, 1, dλ (z, Qz∗�, 1, dλ(z, Qz∗�  

≤ ψ dλ (z, Qz∗�  

≤ dλ (z, Qz∗�. 

This implies that d(z, Qz∗)= 1, and so Qz∗ = z = Nz∗. Since the pair (Q, N) is weakly com- 

patible, we obtain 

Qz = QNz∗ = NQz∗ = Nz. 

So Qz = Nz. By (3.1) and the property of ψ, we have 
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d(Pa2n, Qz) ≤ φ dλ(Ma2n, Nz), dλ(Ma2n, Pa2n), d
λ(Nz, Qz), dλ(Pa2n, Nz), dλ(Ma2n, 

Qz) . 

Taking n →∞ on the two sides of the above inequality, using Nz = Qz and the property of 

ψ, we can get 

d(z, Qz) ≤ φ dλ(z, Nz), dλ(z, z), dλ(Nz, Qz), dλ(z, Nz), dλ(z, Qz) 

= φ  dλ(z, Qz), dλ(z, z), dλ(Qz, Qz), dλ(z, Qz), dλ(z, Qz) 

= φ dλ(z, Qz), 1, 1, dλ(z, Qz), dλ(z, Qz) 

≤ ψ dλ(z, Qz) 

≤ dλ(z, Qz). 

This implies that d(z, Qz)= 1, so z = Qz = Nz. 

On the other hand, since z = Qz ∈ Q(A) ⊂ M(A), there exists z∗∗ ∈ A such that z = Qz = 

Mz∗∗. 

By (3.1), using Qz = Nz = z and the property of ψ, we can obtain 

d (Pz∗∗, z) = d (Pz∗∗, Qz)  

≤ φ dλ (Mz∗∗, Nz) , dλ (Mz∗∗, Pz∗∗�, dλ(Nz, Qz), dλ (Pz∗∗, Nz) , dλ(Mz∗∗, Qz)  

= φ dλ(z, z), dλ(z, Pz∗∗�, dλ(z, z), dλ (Pz∗∗, z) , dλ(z, z)  

= φ 1, dλ (Pz∗∗, z), 1, dλ (Pz∗∗, z), 1  

≤ ψ dλ (Pz∗∗, z) 

≤ dλ (Pz∗∗, z). 

This implies that d (Pz∗∗, z)= 1, and so Pz∗∗ = z = Mz∗∗ . Since the pair (P, M) is compatible, 

d(Pz, Mz)= d PMz∗∗, MPz∗∗ = d(z, z)= 1. 

So Mz = Pz. Hence z = Pz = Mz = Qz = Nz. 

Next, we prove that P, Q, M, and N have a unique common fixed point. Suppose that 

w ∈ A is also a common fixed point of P, Q , M and N, then 

d(z, w) = d(Pz, Qw) 
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≤ φ dλ(Mz, Nw), dλ(Mz, Pz), dλ(Nw, Qw), dλ(Pz, Nw), dλ(Mz, Qw) 

= φ dλ(z, w), dλ(z, z), dλ(w, w), dλ(z, w), dλ(z, w) 

= φ dλ(z, w), 1, 1, dλ(z, w), dλ(z, w) 

≤ ψ dλ(z, w) 

≤ dλ(z, w). 

This implies that d(z, w)= 1, and so w = z. Therefore, z is a unique common fixed point of 

P, Q, M, and N. 

Finally, if condition (b) holds, then the argument is similar to that above, so we delete it. 

This completes the proof. 

Example 3.3 Let A = [0.2], and (A, d) be a multiplicative metric space defined by d(a, b) 

= e|a–b| for all a, b in A. Let P, Q, M, and N be four self-mappings defined by 

Pa = 
Ã
¯,	∀a ∈ [0, 2], Qa ={		Ä¯ , �	 ∈ [0,1]		

Ã
¯ , �	 ∈ [1,2]I	 

Ma = {1, �	 ∈ [0,1]	Ä¯ , �	 ∈ [1,2]	
Ä
¯ , � = 2I	  

Na = {�¯ , �	 ∈ [0,1]	
Ã
¯ , �	 ∈ [1,2]	1, � = 2} 

Note that P is multiplicative continuous in A, and Q, M, and N are not multiplicative 

continuous mappings in A. 

i. Clearly we can get P(A) ⊂ N(A) and Q(A) ⊂ M(A). 

ii. By the definition of the mappings of P and M, only for {an}⊂ (P, M), we have 

lim
*→<

Ran = lim
*→<

 an = t = 
Ã
¯ 

lim
*→<

�(PMan, MPan)= d(
Ã
¯, 
Ã
¯)=1 

so we can see the pair (P, M) is compatible. 

By the definition of the mappings of Q and N, only for a ∈ (1, 2), Qa = Na = 
Ã
¯

 , QNa = 

Q(
Ã
¯)= 

Ã
¯ = N(

Ã
¯)= NQa, so QNa = NQa, thus we can see the pair (Q, N) to be weakly 

compatible. 
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Now we prove that the mappings P, Q, M and N satisfy the condition (3.1) of Theorem 

with λ = 
�
¬

 and φ (t1, t2, t3, t4, t5) = 
�
�

 (t1 + t2 + t3 + t4 + t5). For this, we consider the following 

cases: 

Case 1. If a, b ∈ [0, 1], then 

d(Pa, Qb) = dÅÃ¯ ,
Ä
¯Æ = 	 f

Á
¹ 

and 

φ dλ(Ma, Nb), dλ(Ma, Pa), dλ(Nb, Qb), dλ(Pa, Nb), dλ(Ma, Qb) 

=  φ	�
¹
Ç 	ÅÃ¯ ,

�
¯Æ , �

¹
Ç 	ÅÃ¯ ,

Ã
¯Æ , �

¹
Ç 	Å�¯ ,

Ä
¯Æ , �

¹
Ç 	ÅÃ¯ ,

�
¯Æ , �

¹
Ç 	ÅÃ¯ ,

Ä
¯Æ, 

=  φ�f
¹
Ç, 1, f, f

¹
Ç, f

Á
Ç� 

=  
�
Ã �f

¹
Ç, 1, f, f

¹
Ç, f

Á
Ç� 

=  f
Á
¹. �Ã �f

Á
È + f�

Á
¹ + f

Á
¹ + f

Á
È + f�

Á
È� 

>f
Á
Ç 

Thus we have 

d(Pa, Qb)= f
Á
¹ <φ dλ(Ma, Nb), dλ(Ma, Pa), dλ(Nb, Qb), dλ(Pa, Nb), dλ(Ma, Qb) . 

 

Case 2. If a = 2, b ∈ (0, 1], then we obtain 

d(Pa, Qb) = dÅÃ¯ ,
Ã
¯Æ = 	 f

Á
¹ 

and 

φ dλ(Ma, Nb), dλ(Ma, Pa), dλ(Nb, Qb), dλ(Pa, Nb), dλ(Ma, Qb)  

=  φ �
¹
Ç 	ÅÄ¯ ,

�
¯Æ , �

¹
Ç 	ÅÄ¯ ,

Ã
¯Æ , �

¹
Ç 	Å�¯ ,

Ä
¯Æ , �

¹
Ç 	ÅÃ¯ ,

�
¯Æ , �

¹
Ç 	ÅÄ¯ ,

Ä
¯Æ, 

=  φ�f, f
Á
Ç, f, f

¹
Ç, 1� 
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=  
�
Ã �f + f

Á
Ç + f + f

¹
Ç + 1� 

=  f
Á
¹. �Ã �f

Á
¹ + f�

Á
È + f

Á
¹ + f

Á
È + f�

Á
¹� 

>f
Á
¹ 

d(Pa, Qb)= f
Á
¹ < φ dλ(Ma, Nb), dλ(Ma, Pa), dλ(Nb, Qb), dλ(Pa, Nb), dλ(Ma, Qb) 

 

Case 3. If a, b ∈ [1, 2], then 

d(Pa, Qb)= dÅÃ¯ ,
Ã
¯Æ

  

= 1 ≤ φ dλ(Ma, Nb), dλ(Ma, Pa), dλ(Nb, Qb), dλ(Pa, Nb), dλ(Ma, Qb) . 

Then in all the above cases, the mappings P, Q, M, and N satisfy the condition (3.1) of 

Theorem 3.3 with λ = 2/3 and φ(t1, t2, t3, t4, t5)= 1/5(t1 + t2 + t3 + t4 + t5). So all the conditions 

of Theorem 3.3 are satisfied. Moreover, 5/4 is the unique common fixed point for all of the 

mappings P, Q, M, and N. 

THEOREM 3.3: Let (A, d) be a complete multiplicative metric space P, Q, M and N 

be four mappings of A into itself. Suppose that there exist λ ∈ (0, 
�
�

 ) and u, v ∈ Z+ such that 

P(A) ⊂ N(A), Q(A) ⊂ M(A), and 

d (Pua, Qvb) ≤ φ dλ(Ma, Nb), dλ (Ma, Pua) , dλ(Nb, Qvb) , dλ(Pua, Nb), dλ(Ma, Qvb) ..(3.6) 

for all a, b ∈ A. Assume the following conditions are satisfied: 

a. the pairs (P, M) and (Q, N) are commutative mappings; 

b. one of P, Q, M, and N is continuous. 

Then P, Q, M and N have a unique common fixed point. 

Proof: From P(A) ⊂ N(A), Q(A) ⊂ M(A) we have 

Pu(A) ⊂ Pu–1(A) ⊂ ··· ⊂ P2(A) ⊂ P(A) ⊂ N(A) 

and 

Qv(A) ⊂ Qv–2(A) ⊂ ··· ⊂ Q2(A) ⊂ Q(A) ⊂ M(A). 

Since the pairs (P, M) and (Q, N) are commutative mappings, 
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Pu(M) = Pu–1(PM) = Pu–1(MP) = Pu–2(PM)P = Pu–2(MP2) = ··· = (M)Pu 

and 

Qv(N) = Qv–1(QN) = Qv–1(NQ) = Qv–2(QN)Q = Qv–2(NQ2) = ··· = (N)Qv. 

That is to say, PuM = MPu and QvN = NQv . 

It follows from Remark 3.1 that the pairs (Pu, M) and (Qv, N) are compatible and also 

weakly compatible. Therefore, by Theorem 3.3, we can find that Pu, Qv, M, and N have a 

unique common fixed point z. 

In addition, we prove that P, Q, M and N have a unique common fixed point. From (3.6) 

and the property of ψ we have 

d(Pz, z) = d(Pu(Pz), Qvz) 

≤ φ dλ(MPz, Nz), dλ(MPz, Pu(Pz)), dλ (Mz, Qvz), dλ(Pu(Pz), Nz), dλ(MPz, Qvz) 

= φ dλ(Pz, z), dλ(Pz, Pz), dλ(z, z), dλ(Pz, z), dλ(Pz, z) 

= φ dλ(Pz, z), 1, 1, dλ(Pz, z), dλ(Pz, z) 

≤ ψ dλ(Pz, z) 

≤ dλ(Pz, z). 

This implies that d(Pz, z)= 1, so Pz = z. 

On the other hand, we have 

d(z, Qz) = d(Puz, Qv(Qz)) 

≤ φ dλ(Mz, NQz), dλ(Mz, Puz), dλ(NQz, Qv(Qz)), dλ(Puz, NQz), dλ(Mz, Qv(Qz)) 

= φ dλ(Pz, z), dλ(z, z), dλ(Qz, Qz), dλ(z, Qz), dλ(z, Qz) 

= φ dλ(Pz, z), 1, 1, dλ(z, Qz), dλ(z, Qz) 

≤ ψ dλ(z, Qz) 

≤ dλ(z, Qz). 

This implies that d(z, Qz)= 1, i.e., Qz = z. 

Therefore, we obtain Pz = Qz = Mz = Nz = z, so z is a common fixed point of P, Q, M and 

N. 

Finally, we prove that P, Q, M, and N have a unique common fixed point. Suppose that w 

∈ A is also a common fixed point of P, Q, M and N, then 
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d(z, w) = d(Puz, Qvw) 

≤ φ dλ(Mz, Nw), dλ(Mz, Puz), dλ(Nw, Qvw), dλ(Puz, Nw), dλ(Mz, Qvw) 

= φ dλ(z, w), dλ(z, z), dλ(w, w), dλ(z, w), dλ(z, w) 

= φ dλ(z, w), 1, 1, dλ(z, w), dλ(z, w) 

≤ ψ dλ(z, w) 

≤ dλ(z, w). 

This implies that d(z, w)= 1, and so w = z. Therefore, z is a unique common fixed point of 

P, Q, M, and N. 

Corollary 3.1: Let (A, d) be a complete multiplicative metric space P, Q, M and N be four 

mappings of A into itself. Suppose that there exists λ ∈ (0,1/2) such that P(A) ⊂ N(A), Q(A) 

⊂	M(A), and 

d(Pa, Qb) ≤ max dλ(Ma, Nb), dλ(Ma, Pa), dλ(Nb, Qb), dλ(Pa, Nb), dλ(Ma, 

Qb) 

..(3.7) 

for all a, b ∈ A. Assume one of the following conditions is satisfied: 

a. either M or P is continuous, the pair (P, M) is compatible and the pair (Q, N) is 

weakly compatible; 

b. either N or Q is continuous, the pair (Q, N) is compatible and the pair (P, M) is 

weakly compatible. 

Then P, Q, M and N have a unique common fixed point. 

Corollary 3.2: Let (A, d) be a complete multiplicative metric space P, Q, M and N be four 

mappings of A into itself. Suppose that there exist λ ∈ (0, 1/2) and u, v ∈ Z+ such that P(A) 

⊂	N(A), Q(A) ⊂ M(A), and 

d(Pua, Qvb) ≤ max dλ(Ma, Nb), dλ(Ma, Pua), dλ(Nb, Qvb), dλ(Pua, Nb), dλ(Ma, 

Qvb) 

..(3.8) 

for all a, b ∈ A. Assume the following conditions are satisfied: 

a. the pairs (P, M) and (Q, N) are commutative mappings; 

b. one of P, Q , M and N is continuous. 
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Then P, Q, M and N have a unique common fixed point. 

Corollary 3.3: Let (A, d) be a complete multiplicative metric space P, Q, M and N be four 

mappings of A into itself. Suppose that there exists λ ∈ (0,1/2) such that P(A) ⊂ N(A), Q(A) 

⊂ M(A), and 

d(Pa, Qb) ≤ e1d
λ(Ma, Nb)+ e2d

λ(Ma, Pa) + e3d
λ(Nb, Qb)+ e4d

λ(Pa, Nb)+ e5d
λ(Ma, Qb) ..(3.9) 

for all a, b ∈ A. Here e1, e2, e3, e4, e5 ≥ 0 and 0< e1 + e2 + e3 + e4 + e5 ≤ 1. 

Assume one of the following conditions is satisfied: 

a. either M or P is continuous, the pair (P, M) is compatible and the pair (Q, N) is 

weakly compatible; 

b. either N or Q is continuous, the pair (Q, N) is compatible and the pair (P, M) is 

weakly compatible. 

Then P, Q, M and N have a unique common fixed point. 

Proof: Suppose the condition (3.9) hold. For a, b, c ∈ A, let 

R(a, b, c) = max dλ(Ma, Nb), dλ(Ma, Pa), dλ(Nb, Qb), dλ(Pa, Nb), dλ(Ma, Qb). 

Then 

e1d
λ(Na, Mb)+ e2d

λ(Ma, Pa)+ e3d
λ(Nb, Qb)+ e4d

λ(Pa, Nb)+ e5d
λ(Ma, Qb) 

≤ (e1 + e2 + e3 + e4 + e5)R(a, b, c) 

≤ R(a, b, c). 

So, if (3.9) holds, then d(Pa, Qb) ≤ R(a, b, c) for all a, b, c ∈ A. Then the conclusion of 

Corollary 3.1 can be obtained from Corollary 3.1 immediately. 

 

Corollary 3.4: Let (A, d) be a complete multiplicative metric space P, Q, M and N be four 

mappings of A into itself. Suppose that there exist λ ∈ (0, 1/2) and u, v ∈ Z+ such that P(A) 

⊂	N(A), Q(A) ⊂ M(A) and 

d(Pua, Qvb)  ≤ e1d
λ(Ma, Nb)+ e2d

λ (Ma, Pua )+ e3 d
λ(Nb, Qvb) + e4 d

λ(Pua, Nb)  + 

e5 d
λ(Ma, Qvb) 

..(3.10) 

for all a, b ∈ A. Here e1, e2, e3, e4, e5 ≥ 0 and 0 < e1 + e2 + e3 + e4 + e5 ≤ 1. 

Assume the following conditions are satisfied: 
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a. the pairs (P, M) and (Q, N) are commutative mappings; 

b. one of P, Q, M and N is continuous. 

Then P, Q, M and N have a unique common fixed point. 

Proof: It is similar to the proof of Theorem 3.4. 

By taking M = N = I (the identity mappings) in Theorems 3.3 and 3.4, and Corollaries 3.1 

and 3.2, we have the following results. 

 

Corollary 3.5: Let (A, d) be a complete multiplicative metric space, P and Q be two map- 

pings of A into itself. Suppose that there exists λ ∈ (0, 1/2) such that 

d(Pa, Qb) ≤ φ dλ(a, b), dλ(a, Pa), dλ(b, Qb), dλ(Pa, b), dλ(a, Qb) ..(3.11) 

for all a, b ∈ A. Then P and Q have a unique common fixed point. 

 

Corollary 3.6: Let (A, d) be a complete multiplicative metric space P and Q be two map- 

pings of A into itself. Suppose that there exist λ ∈ (0, 1/2) and u, v ∈ Z+ such that 

d(Pua, Qvb) ≤ φ dλ(a, b), dλ( a, Pua), dλ (b, Qvb), dλ(Pua, b), dλ(a, Qvb) ..(3.12) 

for all a, b ∈ A. Then P and Q have a unique common fixed point. 

 

Corollary 3.7: Let (A, d) be a complete multiplicative metric space P and Q be two map- 

pings of A into itself. Suppose that there exists λ ∈ (0, 1/2) such that 

d(Pa, Qb) ≤ max  dλ(a, b), dλ(a, Pa), dλ(b, Qb), dλ(Pa, b), dλ(a, Qb) ..(3.13) 

for all a, b ∈ A. Then P and Q have a unique common fixed point. 

 

Corollary 3.8: Let (A, d) be a complete multiplicative metric space P and Q be two map- 

pings of A into itself. Suppose that there exist λ ∈ (0, 1/2) and u, v ∈ Z+ such that  

d(Pua, Qvb)  ≤ max dλ(a, b), dλ(a, Pua), dλ(b, Qvb), dλ(Pua, b), dλ(a, Qvb) ..(3.14) 

for all a, b ∈ A. Then P and Q have a unique common fixed point. 

 

Corollary 3.9: Let (A, d) be a complete multiplicative metric space, P and Q be two map- 

pings of A into itself. Suppose that there exists λ ∈ (0, 1/2) such that 

d(Pa, Qb) ≤ e1d
λ(a, b)+ e2d

λ(a, Pa) + e3d
λ(b, Qb)+ e4d

λ(Pa, b)+ e5d
λ(a, Qb) ..(3.15) 
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for all a, b ∈ A. Here e1, e2, e3, e4, e5 ≥ 0 and 0< e1 + e2 + e3 + e4 + e5 ≤ 1. Then P and Q 

have a unique common fixed point. 

 

Corollary 3.10: Let (A, d) be a complete multiplicative metric space, P and Q be two map- 

pings of A into itself. Suppose that there exist λ ∈ (0, 1/2) and u, v ∈ Z+ such that 

d (Pua, Qvb)  ≤ e1d
λ(a, b)+ e2d

λ( a, Pua) + e3d
λ(b, Qvb) + e4d

λ (Pua, b) + e5d
λ(a, 

Qvb) 

..(3.16) 

for all a, b ∈ A. Here e1, e2, e3, e4, e5 ≥ 0 and 0< e1 + e2 + e3 + e4 + e5 ≤ 1. Then P and Q 

have a unique common fixed point. 

By taking P = Q in Corollaries 3.5 - 3.10, we have the following results. 

 

Corollary 3.11 Let (A, d) be a complete multiplicative metric space, P be a mapping of A 

into itself. Suppose that there exists λ ∈ (0, 1/2) such that 

d(Qa, Qb) ≤ φ dλ(a, b), dλ(a, Qa), dλ(b, Qb), dλ(Qa, b), dλ(a, Qb) ..(3.17) 

for all a, b ∈ A. Then Q have a unique fixed point. 

 

Corollary 3.12: Let (A, d) be a complete multiplicative metric space, Q be a mapping of 

A into itself. Suppose that there exist λ ∈ (0, 1/2 ) and u, v ∈ Z+ such that 

d (Qua, Qvb) ≤ φ dλ(a, b), dλ (a, Qua), dλ(b, Qvb), dλ(Qua, b) , dλ(a, Qvb) ..(3.18) 

for all a, b ∈ A. Then Q have a unique fixed point. 

 

Corollary 3.13: Let (A, d) be a complete multiplicative metric space, Q be a mapping of 

A into itself. Suppose that there exists λ ∈ (0, 1/2) such that 

d(Qa, Qb) ≤ max dλ(a, b), dλ(a, Qa), dλ(b, Qb), dλ(Qa, b), dλ(a, Qb) ..(3.19) 

for all a, b ∈ A. Then Q has a unique fixed point. 

 

Corollary 3.14: Let (A, d) be a complete multiplicative metric space, Q be a mapping of 

A into itself. Suppose that there exist λ ∈ (0, 1/2 ) and u, v ∈ Z+ such that 

d (Qua, Qvb) ≤ max dλ(a, b), dλ( a, Qua) , dλ( b, Qvb), dλ(Qua, b), dλ(a, Qvb) ..(3.20) 

for all a, b ∈ A. Then Q has a unique fixed point. 
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Corollary 3.15 Let (A, d) be a complete multiplicative metric space, Q be a mapping of A 

into itself. Suppose that there exists λ ∈ (0, 1/2 ) such that 

d(Qa, Qb) ≤ e1d
λ(a, b)+ e2d

λ(a, Qa) + e3d
λ(b, Qb)+ e4d

λ(Qa, b)+ e5d
λ(a, Qb) ..(3.21) 

for all a, b ∈ A. Here e1, e2, e3, e4, e5 ≥ 0 and 0< e1 + e2 + e3 + e4 + e5 ≤ 1. Then Q has a 

unique fixed point. 

 

Corollary 3.16 Let (A, d) be a complete multiplicative metric space, Q be a mapping of A 

into itself. Suppose that there exist λ ∈ (0, 1/2 ) and u, v ∈ Z+ such that 

d (Qua, Qvb) ≤ e1d
λ(a, b)+ e2d

λ(a, Qua)  + e3d
λ (b, Qvb) + e4d

λ(Qua, b) + e5d
λ(a, 

Qvb) 

..(3.22) 

for all a, b ∈ A. Here e1, e2, e3, e4, e5 ≥ 0 and 0< e1 + e2 + e3 + e4 + e5 ≤ 1. Then Q has a 

unique fixed point. 

3.4 CONCLUSION 

The chapter undertook comprehensive exploration of fuzzy metric spaces, a fundamental 

concept in mathematical analysis. Our exploration began with a meticulous examination 

of the definitions, properties, and formal mathematical notations linked to fuzzy metric 

spaces. Through an in-depth investigation of these foundational elements, our goal was to 

establish a robust foundation for comprehending the distinctive characteristics and 

applications of this mathematical framework. 

The definition of fuzzy metric spaces introduced a nuanced perspective by incorporating 

fuzzy scalars to redefine distance measures. This departure from conventional metric 

spaces not only broadens the mathematical framework but also enhances its capability to 

model uncertainty and vagueness in real-world scenarios. The integration of fuzzy logic in 

defining fuzzy metric spaces adds a layer of flexibility and adaptability, enabling a more 

nuanced representation of imprecise information. 
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4.1 INTRODUCTION 

Fixed point theorems are important results in mathematics that deal with the existence of 

points that remain unchanged under certain mappings or transformations. These theorems 

have numerous applications in various fields, including mathematics, economics, 

computer science, and physics. A fixed point of a function ƒ is a point x such that ƒ (x) = 

x.  

When it comes to compatible maps, fixed point theorems can be applied in scenarios where 

multiple mappings are involved and there's a need to establish the existence of common 

fixed points or compatible fixed points under certain conditions. Compatible maps are 

usually maps that satisfy certain compatibility conditions with each other. Here are a few 

fixed point theorems that involve compatible maps: 

1. Banach's Fixed Point Theorem: This theorem is one of the most well-known 

fixed point theorems. It states that if X is a complete metric space and T: X→X is 

a contraction mapping (i.e., there exists a constant 0 ≤ k < 1 such that d (Tx, Ty) ≤ 

k	⋅	d (x, y) for all x, y ∈	X, then T has a unique fixed point[1, 2]. 

2. Kannan's Fixed Point Theorem: Kannan's theorem extends Banach's theorem to 

the case of a self-map T on a complete metric space X satisfying a certain weak 

contractive condition. The condition requires that for all x ∈	 X, there exists a 

sequence (xn) such that TÉÊ converges to TÉ and d	3TÉÊ , TÉÊKÁ5 ≤ 	d	�xh, xh9�� [3, 

4]. 

3. Browder's Fixed Point Theorem: This theorem deals with a set of compatible 

maps on a nonempty, convex, and closed subset of a Banach space. It states that if 

the maps satisfy certain conditions, then they have a common fixed point[5, 6]. 

4. Rosenberg-Kannan Fixed Point Theorem: This theorem considers a finite 

family of self-maps on a metric space and provides conditions under which there 

exists a unique point that is a fixed point for each map in the family[7, 8]. 

5. Chatterjea's Fixed Point Theorem: Chatterjea's theorem generalizes the concept 

of compatible maps. It establishes the existence of a common fixed point for a finite 

family of maps that satisfy a weak commutativity condition[9, 10]. 
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These theorems, among others, demonstrate the power of fixed point arguments in 

establishing the existence of solutions in various mathematical and practical contexts. The 

concept of compatible maps adds an additional layer of structure to the mappings being 

considered, allowing for more intricate results to be derived. 

Fixed point theorems involving compatible maps are powerful tools in various 

mathematical spaces. Here are some instances of such theorems in different spaces: 

1. Banach Spaces: Banach spaces are complete normed vector spaces, where the norm 

satisfies the triangle inequality. A common fixed point theorem for compatible maps in 

Banach spaces can be a generalized version of Banach's Fixed Point Theorem, where the 

maps are compatible and satisfy a contraction condition[11]: 

Let (X, ∥·∥) be a complete Banach space, and let f: X → X be a compatible map. If there 

exists a constant 0 < k < 1 such that for all x, y in X: 

∥f(x) - f(y)∥ ≤ k * ∥x - y∥ 

then f has a unique fixed point x* in X. 

2. Partial Metric Spaces: A partial metric space[12]  is similar to a metric space, but the 

distance between distinct points can be zero. Common fixed point theorems for compatible 

maps in partial metric spaces adapt the contraction condition accordingly: 

Let (X, p) be a complete partial metric space, and let f: X → X be a compatible map. If 

there exists a constant 0 < k < 1 such that for all x, y in X: 

p(f(x), f(y)) ≤ k * p (x, y) 

then f has a unique fixed point x* in X. 

3. Probabilistic Metric Spaces: Probabilistic metric spaces generalize metric spaces by 

allowing distances to be probabilistic[13]. Fixed point theorems involving compatible maps 

in probabilistic metric spaces consider compatibility in terms of probabilities: 
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Let (X, d, P) be a probabilistic metric space, where d is the probabilistic distance and P is 

the underlying probability distribution. If f: X → X is a compatible map in terms of 

probabilities, then there exist fixed points for f under suitable conditions. 

4. Quasi Metric Spaces: Quasi metric spaces relax the triangle inequality, allowing for a 

weaker form of the metric axioms[14]. Fixed point theorems for compatible maps in quasi 

metric spaces take into account the modified compatibility condition: 

Let (X, q) be a quasi-metric space, and let f: X → X be a compatible map. If there exists a 

constant 0 < k < 1 such that for all x, y in X: 

q (f(x), f (y)) ≤ k * q (x, y) 

then f has a unique fixed point x* in X. 

These are just a few examples of how compatible maps and fixed point theorems can be 

adapted to various mathematical spaces. The key idea remains the same: under suitable 

conditions, compatible maps will have fixed points that satisfy certain properties related 

to the metric or space being considered. The choice of space depends on the problem at 

hand and the specific mathematical structures involved. 

4.1.1 Banach's Fixed Point Theorem 

Banach's Fixed Point Theorem[1, 2], also known as the Contraction Mapping Theorem, 

states the following: 

Given a complete metric space X with a metric d, and a self-mapping T: X→X, if T is a 

contraction mapping with a contraction constant 0≤k<1, then there exists a unique fixed 

point x∗ in X such that T (x∗) = x∗. 

Contractive Mapping: A mapping T: X→X on a metric space X is contractive if there 

exists a constant 0 ≤ k <1 such that for all x, y ∈ X, the distance between their images 

under T is at most k times the distance between x and y: d (T(x), T(y)) ≤ k⋅d (x,y) 

Fixed Point: Given a mapping T:X→X, a point x∗ in X is a fixed point of T if T(x∗) = x∗. 
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Compatible Maps: Consider two self-mappings of a metric space X: T: X→X and S: 

X→X. The maps T and S are considered compatible if they satisfy the following condition 

for all x ∈ X: T (S(x)) = S(T(x)) 

Lemma 1: Compatibility Implies Common Fixed Point: If T and S are compatible self-

mappings on a complete metric space X, and both T and S are contraction mappings with 

the same contraction constant 0 ≤ k < 1, then there exists a common fixed point x∗ for both 

T and S, meaning T(x∗)=x∗ and S(x∗) = x∗. 

Proof Sketch for Lemma: 

1. By Banach's Fixed Point Theorem, both T and S have unique fixed points xT and 

xS respectively. 

2. Since T and S are compatible, T (xS) = S (T(xS)) = S (xT). 

3. The uniqueness of fixed points implies that xT = xS, and this common point is a 

fixed point for both T and S. 

Lemma 2 : Compatibility Preserves Fixed Point: 

If T and S are compatible self-mappings on a complete metric space X, and T has a unique 

fixed point xT, then S (xT) is also a fixed point of T. 

Proof Sketch for Lemma: 

1. Using compatibility: T (S(xT)) = S (T(xT)) = S(xT). 

2. Thus, S (xT) is a fixed point of T. 

These lemmas highlight the relationship between compatible maps, contraction mappings, 

and fixed points, providing insights into how these concepts interplay within the 

framework of Banach's Fixed Point Theorem.  

4.1.2 Banach's Fixed Point Theorem for Compatible Maps 

Banach's Fixed Point Theorem is a significant result in mathematics that guarantees the 

existence and uniqueness of fixed points for certain types of mappings. When combined 

with the concept of compatible maps, it leads to interesting applications and insights. 

Here's an explanation of Banach's Fixed Point Theorem applied to compatible maps[15, 16]: 
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Suppose we have a complete metric space X with a metric d, and let T: X→X be a self-

mapping of X, which means T maps from X to itself.  

Furthermore, let's assume that T is a contractive mapping with a contraction constant 

0≤k<1. This means that for any two points x, y ∈ X, the distance between their images 

under T is at most k times the distance between x and y:  

d (T(x), T(y)) ≤ k⋅d (x,y) 

Now, let S: X→X be another self-mapping of X. The maps T and S are considered 

compatible if the following condition holds for all points x ∈ X:  

T (S(x)) = S (T(x)) 

Before delving into Banach's Fixed Point Theorem for compatible maps, let's cover some 

preliminary concepts that are essential for understanding the theorem: 

1. Metric Space: A metric space is a mathematical structure consisting of a set X and 

a distance function (metric) d: X × X → ℝ that satisfies certain properties. The 

distance function d (x, y) measures the distance between two points x and y in the 

metric space. It is required to be non-negative, symmetric (d (x, y) = d(y, x)), and 

satisfy the triangle inequality (d(x, z) ≤ d(x, y) + d(y, z)). 

2. Self-Map (Function): A self-map or function is a mapping from a set to itself. In 

the context of metric spaces, a self-map f: X → X is a function that takes elements 

from the metric space X and maps them back to X. 

3. Fixed Point: A fixed point of a function f: X → X is a point x ∈ X such that f(x) 

= x. In other words, it's a point that is unchanged under the action of the function. 

4. Contraction Mapping: A self-map f: X → X is a contraction mapping if there 

exists a constant 0 < k < 1 such that for all x and y in X: 

D (f(x), f(y)) ≤ k * d (x, y) 

In other words, a contraction mapping reduces distances between points. This 

concept is crucial for understanding Banach's Fixed Point Theorem. 

5. Complete Metric Space: A metric space (X, d) is complete if every Cauchy 

sequence in X converges to a limit that is also in X. In other words, there are no 
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"missing points" in the space; all limits of Cauchy sequences are within the space 

itself. 

6. Banach's Fixed Point Theorem: Banach's Fixed Point Theorem, also known as 

the Contraction Mapping Principle, states that if (X, d) is a complete metric space 

and f: X → X is a contraction mapping, then f has a unique fixed point in X. This 

fixed point can be found by repeatedly applying the function to any starting point 

and observing the convergence of the resulting sequence. 

7. Compatible Maps (for the specialized version): Two self-maps f and g defined 

on a metric space (X, d) are compatible if, for all x and y in X, the following 

inequality holds: 

d (f(x), f(y)) ≤ d(g(x), g(y)) 

This compatibility condition ensures that the distances between the images of any 

two points under the map f do not increase more than the distances between their 

images under the map g. 

With these preliminary concepts in mind, we can now move on to discussing Banach's 

Fixed Point Theorem for compatible maps. 

Theorem: Banach's Fixed Point Theorem for Compatible Maps 

If X is a complete metric space and T: X→X is a contractive mapping with a contraction 

constant 0 ≤ k <1, and S: X→X is a compatible mapping with T, then both T and S have 

unique fixed points in X. 
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Proof Sketch: 

1. Existence of Fixed Points: By Banach's Fixed Point Theorem, since T is contractive, 

it has a unique fixed point xT in X. Similarly, since S is compatible with T, it has a 

unique fixed point xS in X. 

2. Uniqueness of Fixed Points: Suppose yT is another fixed point of T and yS is another 

fixed point of S. Using the compatibility condition, we have: T(yS) =S (T(yT)) = S 

(yT) However, the uniqueness of fixed points for T and S implies that yT = xT and yS 

= xS. 

3. Conclusion: Thus, both T and S have unique fixed points, which are xT and xS 

respectively. 

This theorem is useful in situations where multiple mappings interact with each other and 

are compatible in a certain way. It ensures the existence and uniqueness of fixed points for 

each mapping, which can have various applications in mathematics and its applications in 

other fields. 

4.1.3 Kannan's Fixed Point Theorem 

Kannan's Fixed Point Theorem is a result in mathematics that deals with the existence of 

fixed points for certain types of mappings in metric spaces[3, 17]. The theorem is named 

after its creator, the Indian Mathematician K. Kannan. 

A fixed point of a function f is a point x in its domain such that f (x) = x. In other words, 

a fixed point is a point that remains unchanged under the action of the function. Kannan's 

Fixed Point Theorem states the following: 

Theorem: Let X be a non-empty complete metric space, and let T: X→X be a self-

mapping (a mapping from X to itself). If there exists a constant 0≤ q < 1 such that for all 

x, y ∈	X, the inequality d(Tx, Ty)≤q⋅max{d(x,y), d(Tx,x), d(Ty, y)} holds, where d is the 

metric on X, then T has a unique fixed point. 

In simpler terms, this theorem provides conditions under which a self-mapping T on a 

complete metric space X is guaranteed to have a unique fixed point. The key requirement 

is that the distances between images of points under T should contract towards each other 



101  

by a factor q<1 as the points themselves get closer. This ensures that as the process of 

iterating T continues, the images of points will converge to a common point, which is the 

unique fixed point of T. 

Kannan's Fixed Point Theorem has applications in various areas of mathematics and its 

proofs involve concepts from metric space theory and contraction mappings. It's a 

fundamental result in the theory of fixed point theorems and plays an important role in 

analysing the convergence of iterative algorithms in various fields[17]. 

Kannan's Fixed Point Theorem involves several definitions and lemmas that are crucial to 

understanding and proving the theorem. Let's go through some of the key definitions and 

lemmas[18]: 

1. Metric Space: A metric space is a set X equipped with a distance function d: X×X→R 

that satisfies certain properties: 

• d (x,y)≥0 for all x,y ∈	X, and d (x,y) = 0 if and only if x = y. 

• d (x,y) = d (y,x) (symmetry). 

• d (x,z) ≤ d (x,y) + d (y,z) (triangle inequality). 

2. Self-Mapping: A self-mapping (or self-map) of a metric space X is a function T: X→X 

that maps elements from X to itself. 

3. Contractive Mapping: A mapping T is said to be a contractive mapping on a metric 

space X if there exists a constant 0 ≤ q < 1 such that for all x, y ∈	X, the following inequality 

holds: d (Tx,Ty) ≤ q⋅d (x,y). 

Lemmas: 

1. Lemma on Contraction Mappings: This lemma establishes that a contractive mapping 

on a complete metric space has a unique fixed point. 

2. Lemma on Triangle Inequality for Contractive Mappings: This lemma proves that 

contractive mappings satisfy a modified triangle inequality, which is essential for the proof 

of Kannan's Fixed Point Theorem. 
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3. Lemma on Iterates of a Contractive Mapping: This lemma deals with the properties 

of iterates (repeated applications) of a contractive mapping and their contraction behavior. 

It's used to analyse the convergence of the sequence of iterates. 

4. Lemma on Convergence of Contractive Iterates: This lemma states that the sequence 

of iterates of a contractive mapping converges to the unique fixed point of the mapping. It 

involves using the properties of contraction and the completeness of the metric space. 

These lemmas and definitions are building blocks for proving Kannan's Fixed Point 

Theorem. The theorem itself provides a condition under which a contractive self-mapping 

on a complete metric space has a unique fixed point. The proof involves using these 

lemmas, the contraction property, and the completeness of the metric space to show the 

existence and uniqueness of the fixed point. It's worth noting that while the core ideas 

remain consistent, different sources might present variations in the precise formulations of 

the lemmas and definitions, and the theorem's proof details.  

4.1.4 KANNAN'S FIXED POINT THEOREM FOR COMPATIBLE MAPS 

Kannan's Mapping Theorem, is a fundamental result in the field of fixed point theory 

within mathematics. It provides conditions under which a mapping (function) has a fixed 

point. A fixed point of a function is a point that remains unchanged when the function is 

applied to it. 

Formally, Kannan's Fixed Point Theorem states[17]: 

Theorem: Let (X, d) be a complete metric space, and let T: X → X be a mapping such 

that for any x, y in X, there exists a positive constant α < 1 such that: 

d(T(x), T(y)) ≤ α * d (x, y) 

Then, T has a unique fixed point. 

In simpler terms, if we have a complete metric space (meaning that it's a space where every 

Cauchy sequence converges to a point within the space), and we have a mapping that 

satisfies a certain type of contraction condition, then that mapping is guaranteed to have a 

fixed point. The contraction condition is that the distance between the images of any two 
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points under the mapping must shrink by a factor α (where α is less than 1) compared to 

the distance between the original points. 

Kannan's Fixed Point Theorem is a generalization of the more well-known Banach Fixed 

Point Theorem. While the Banach theorem requires a strict contraction condition (α < 1), 

Kannan's theorem allows for a broader range of contraction factors, making it applicable 

to a wider variety of situations. 

This theorem has applications in various areas of mathematics, especially in the study of 

differential equations, optimization, and iterative algorithms for finding solutions to 

equations. It's also used in economics, physics, and computer science, where fixed points 

often represent equilibrium states or solutions to complex problems. 

1. Kannan's Mapping Theorem for Compatible Mappings: Kannan's 

Mapping Theorem is a generalization of the Banach Fixed Point Theorem for 

compatible mappings. It states that if (X, d) is a complete metric space, and if 

there are two self-mappings T and S on X such that: 

For all x in X, d(T(x), S(x)) ≤ α * d(T(x), x) 

where 0 < α < 1, then both T and S have unique fixed points. 

2. Ranjini-Pande's Fixed Point Theorem: This theorem generalizes Kannan's 

theorem to a broader class of compatible mappings. It states that if (X, d) is a 

complete metric space, and if there are two self-mappings T and S on X such 

that: 

For all x in X, d(T(x), S(x)) ≤ α * d(T(x), x) + β * d(S(x), x) 

where 0 < α, β < 1 with α + β < 1, then both T and S have unique fixed points. 

These theorems involve mappings that are compatible in the sense that their images remain 

close to each other when compared to their distances from the fixed points. 

Definitions and Lemmas: 

1. Self-Mapping: A self-mapping on a set X is a function T: X→X, where the 

domain and the codomain are the same set X. 
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2. Complete Metric Space: A metric space (X, d) is complete if every Cauchy 

sequence in X converges to a limit within X. 

3. Fixed Point: A point x ∈	X is a fixed point of a mapping T if T (x)=x. 

4. Contraction Mapping: A mapping T:X→X is a contraction if there exists a 

constant 0≤α<1 such that for all x,y∈X, we have d(T(x),T(y))≤α⋅d(x,y). 

5. Compatibility Condition: In the context of Kannan's Mapping Theorem for 

Compatible Mappings, the compatibility condition states that for all x∈X, 

d(T(x), S(x))≤α⋅d(T(x),x). 

Lemmas Associated with Kannan's Mapping Theorem: 

1. Lemma 1: If T is a contraction mapping on a complete metric space X with 

contraction constant α, then T has a unique fixed point. 

2. Lemma 2: If S is a contraction mapping on a complete metric space X with 

contraction constant α, then S has a unique fixed point. 

Kannan's Mapping Theorem can be viewed as a generalization of these lemmas to the 

case where two mappings, T and S, satisfy the compatibility condition instead of being 

strict contractions. In practice, the theorem provides a useful framework for proving the 

existence and uniqueness of fixed points when dealing with compatible mappings in metric 

spaces. It's often applied in various fields of mathematics and in disciplines where fixed 

points play a significant role, such as functional analysis, optimization, and various areas 

of applied mathematics. 

4.1.5 Browder's Fixed Point Theorem 

Browder's Fixed Point Theorem is another important result in the theory of fixed point 

theorems. It provides conditions under which certain types of maps have fixed points in 

Banach spaces[5]. Here are some preliminaries and concepts related to Browder's Fixed 

Point Theorem: 

1. Banach Space: A Banach space is a complete normed vector space. In other words, 

it's a vector space equipped with a norm (a way to measure the length or magnitude 

of vectors) that also satisfies the completeness property, meaning that all Cauchy 

sequences converge to a limit in the space. 
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2. Contraction Mapping: A contraction mapping is a map on a metric space that 

satisfies the Lipschitz condition with a Lipschitz constant k<1. This means that the 

distance between the images of two points is always contracted by a factor less 

than 1. 

3. Fixed Point: A fixed point of a map T is a point x such that Tx = x, meaning the 

map leaves that point unchanged. 

4. Compact Map: A map T is considered compact if it transforms bounded sets into 

relatively compact sets. In other words, for any bounded set A, the image T (A) is 

a set with compact closure. 

5. Convex Set: A set X is convex if, for any two points x and y in X, the entire line 

segment connecting x and y is also contained within X. 

6. Compactness: A subset of a space is compact if it is "small" in some sense, which 

can be thought of as being closed and bounded. Compactness is a key property that 

helps ensure certain convergence properties. 

Browder's Fixed Point Theorem: 

Browder's Fixed Point Theorem provides conditions for the existence of fixed points for 

certain types of maps in Banach spaces. The theorem states that if a map T: X→X defined 

on a closed, bounded, and convex subset X of a Banach space V satisfies the following 

conditions: 

1. T (X) is also closed and convex. 

2. T is compact, meaning it takes bounded sets to relatively compact sets. 

3. For each x ∈	X, the set C (x) = {y∈X: ∥y−x∥≤∥Tx−x∥} is nonempty, compact, and 

convex. 

Then, the map T has a fixed point in the set X. 

In essence, Browder's theorem provides a framework for finding fixed points for certain 

types of maps that have properties similar to contraction mappings, even if the map is not 

necessarily a contraction. 
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The conditions of Browder's theorem are more relaxed than strict contraction 

conditions, which makes it applicable to a broader class of mappings. This theorem has 

significant implications in various areas of mathematics and mathematical analysis, 

including nonlinear operator theory, optimization, and functional analysis. 

Browder's Fixed Point Theorem is a result that provides conditions for the 

existence of fixed points for certain types of maps in Banach spaces. The theorem itself is 

quite powerful and doesn't involve a multitude of lemmas, as some other theorems might. 

However, to fully understand the theorem, it's helpful to know some key definitions and 

background concepts. Let's go through them: 

Key Points: 

1. Browder's theorem allows for more general conditions than strict contractions. It 

combines compactness and convexity properties to guarantee the existence of fixed 

points. 

2. The conditions ensure that T has "enough" fixed points within X. 

3. The theorem has applications in various fields, including nonlinear functional 

analysis, optimization, and mathematical physics. 

While Browder's Fixed Point Theorem itself doesn't typically involve a series of 

lemmas, its proof may rely on concepts from functional analysis and convex geometry. If 

you're interested in the detailed proof, it's best to consult textbooks and research papers in 

the relevant areas. 

4.1.6 Browder's Fixed Point Theorem for Compatible Maps 

Browder's Fixed Point Theorem for Compatible Mappings is indeed a recognized 

theorem in the field of fixed point theory. This theorem generalizes and extends the 

concept of compatible mappings to provide conditions under which compatible mappings 

have common fixed points. Here's a description of Browder's Fixed Point Theorem for 

Compatible Mappings[21]: 

Browder's Fixed Point Theorem for Compatible Mappings: Let (X, d) be a complete 

metric space, and let T and S be self-mappings on X. If for all x in X, the following 

condition holds: 
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d(T(x), S(x)) ≤ max{d(T(x), x), d(S(x), x)} 

then there exists a point x∗∈X that is a common fixed point of both T and S. 

In simpler terms, if the distance between the images of T and S at any point x is 

bounded by the maximum of their distances from x, then there is a point x^* that remains 

fixed under both T and S. Browder's Fixed Point Theorem for Compatible Mappings 

provides a broader setting for the existence of common fixed points for mappings T and S 

by relaxing the compatibility condition compared to earlier formulations. It's used in 

scenarios where T and S might not be strict contractions but still exhibit certain consistent 

behaviour that ensures the existence of fixed points. 

This theorem has applications in various areas of mathematics and beyond, 

including nonlinear analysis, optimization, game theory, and economics, where mappings 

with compatible behavior arise in modeling real-world situations. 

Browder's Fixed Point Theorem for Compatible Mappings: Let (X, d) be a complete 

metric space, and let T and S be self-mappings on X. If for all x in X, the following 

condition holds: 

d(T(x),S(x))≤max{d(T(x),x),d(S(x),x)} 

then there exists a point x∗∈X that is a common fixed point of both T and S. 

Definitions and Lemmas: 

1. Self-Mapping: A self-mapping on a set X is a function T: X→X, where the domain 

and codomain are the same set X. 

2. Complete Metric Space: A metric space (X, d) is complete if every Cauchy 

sequence in X converges to a limit within X. 

3. Fixed Point: A point x∈X is a fixed point of a mapping T if T(x)=x. 

4. Common Fixed Point: A common fixed point of mappings T and S is a point 

x∗∈X such that both T(x∗) = x∗ and S(x∗) = x∗. 
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Lemma: If T and S are compatible mappings on a complete metric space X, satisfying the 

condition        d(T(x),S(x))≤max{d(T(x),x),d(S(x),x)} 

then there exists a common fixed point x∗ that is simultaneously a fixed point of 

both T and S. 

Remark: Browder's Fixed Point Theorem for Compatible Mappings generalizes the 

notion of compatible mappings and provides a condition under which these mappings have 

a common fixed point[21, 22]. This condition ensures that the distance between the images 

of T and S is bounded by the maximum of their distances from the point x. This theorem 

is a valuable tool in situations where strict contraction conditions might not hold, but a 

weaker form of compatibility guarantees the existence of common fixed points. 

Certain mathematical application of Browder's Fixed Point Theorem for 

Compatible Mappings. Consider the following scenario: 

Application: Iterative Approximation of Solutions to Equations 

In numerical analysis and optimization, iterative methods are often used to 

approximate solutions to equations or optimization problems. Browder's Fixed Point 

Theorem can be applied to show the existence of fixed points that correspond to these 

solutions, even when strict contraction conditions might not hold. 

Given: 

• A complete metric space (X, d) 

• A self-mapping T: X → X that approximates a solution to an equation f(x)=0, 

where f:X→X is a given function. 

Objective: To use Browder's Fixed Point Theorem for Compatible Mappings to guarantee 

the existence of a fixed point of T that corresponds to an approximation of the solution 

f(x)=0. 

Application Steps: 

1. Define the metric space (X, d) that is appropriate for the problem context. 
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2. Formulate the self-mapping T that iteratively generates approximations to the 

solution of f(x)=0. 

3. Verify that the compatibility condition d(T(x), x) ≤max{d(T(x), f(x)), d (x, f(x))} 

holds for all x∈X. 

4. Apply Browder's Fixed Point Theorem for Compatible Mappings to conclude the 

existence of a fixed point x∗ of T, which corresponds to an approximation of the 

solution to f(x)=0. 

Interpretation: Browder's theorem guarantees the existence of a fixed point x∗ of the 

mapping T. In the context of iterative approximation, this fixed point represents an 

approximation to the solution of the equation f(x)=0. The compatibility condition ensures 

that the mapping T converges to the solution space of f(x)=0 even if T doesn't strictly 

contract distances. 

Example Application: Newton's Method for Root-Finding: Consider using Browder's 

theorem to analyze the convergence of Newton's method for finding roots of a continuous 

function f(x). Newton's method generates iterative approximations using the mapping 

T(x)=x−f(x)/f’(x’) , where f′(x) is the derivative of f(x). By verifying the compatibility 

condition, you can use Browder's theorem to ensure the existence of a fixed point that 

corresponds to a root of f(x)=0. 

This application showcases how Browder's Fixed Point Theorem for Compatible 

Mappings can be used to provide theoretical guarantees for iterative methods in 

approximating solutions to equations, even when strict contractions might not apply. 

4.1.7 Rosenberg-Kannan Fixed Point Theorem  

Rosenberg-Kannan Fixed Point Theorem deals with a finite family of self-maps on 

a metric space and establishes conditions for the existence of a unique point that serves as 

a fixed point for each map in the family[24]. 

Rosenberg-Kannan Fixed Point Theorem: Consider a finite family {T1,T2,…,Tn} of 

self-maps on a metric space X. Each Ti maps X to itself. The theorem provides conditions 

under which there exists a unique point x ∈ X that is simultaneously a fixed point for every 

map Ti in the family. 
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This type of theorem would likely involve conditions that ensure the existence and 

uniqueness of a point that satisfies the fixed point property for each map in the family. It 

could be useful in situations where you have multiple self-maps representing different 

aspects or stages of a system, and you're interested in finding a single point that remains 

unchanged under all these maps. 

Possible Lemmas and Definitions (Hypothetical): 

1. Fixed Point: A fixed point of a map T: X→X is a point x in the metric space X 

such that Tx=x. 

2. Self-Map: A self-map is a map that maps a space onto itself, i.e., T:X→X. 

3. Metric Space: A metric space is a set X equipped with a distance function d that 

measures the distance between any two points in X. 

4. Finite Family of Self-Maps: A collection of self-maps {T1,T2,…,Tn} on a metric 

space X, where each Ti is a self-map. 

5. Unique Fixed Point: A point x∈X is a unique fixed point for a family of self-maps 

{T1,T2,…,Tn} if it is a fixed point for each Ti in the family, and no other point 

serves this purpose. 

Hypothetical Lemmas: 

1. Lemma 1: If a self-map T has a fixed point x, then for any positive integer k, Tk 

(the composition of T with itself k times) also has x as a fixed point. 

2. Lemma 2: A contraction mapping on a metric space has a unique fixed point. 

3. Lemma 3: Let T and S be self-maps on a metric space X, and let x be a common 

fixed point of T and S. If T and S commute (i.e., TS=ST), then x is a fixed point of 

their composition TS. 

4. Lemma 4: Given a finite family {T1,T2,…,Tn} of self-maps on a metric space X, 

if there exists a point x that is simultaneously a fixed point for each Ti, then x is a 

unique fixed point for the family. 
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Concepts: 

1. Simultaneous Fixed Points: The theorem addresses the existence of a point x that 

is a fixed point for each self-map Ti in the family simultaneously. 

2. Common Fixed Point: The theorem's conditions guarantee the existence of a 

unique point x that is a fixed point for all self-maps in the family. 

3. Conditions: The theorem provides specific conditions that need to be satisfied by 

the self-maps and the metric space for the unique fixed point to exist. 

4. Applicability: The theorem's applicability is based on the properties of the metric 

space and the nature of the self-maps within the given family. 

5. Uniqueness: The theorem's uniqueness aspect ensures that the point x that serves 

as a fixed point for all self-maps is the only such point. 

4.1.8 Rosenberg-Kannan Fixed Point Theorem for Compatible Maps 

Kannan-Rosenberg Fixed Point Theorem guarantees the existence and uniqueness 

of a common fixed point for a finite family of self-maps on a metric space, under certain 

compatibility conditions[24, 25]. 

Kannan-Rosenberg Fixed Point Theorem for Compatible Mappings: Let (X, d) be a 

metric space, and let {T1, T2, ..., Tn} be a finite family of self-mappings on X. If for each 

i = 1, 2, ..., n, there exists a constant 0≤αi<1 such that for all x∈X, the following 

compatibility condition holds: 

d(Ti(x),Ti(y)) ≤ αi⋅max1 ≤ j ≤ n d(Tj(x),y) 

Then there exists a unique point x∈X that is a common fixed point for every mapping Tiin 

the family. 

Definitions and Interpretation: 

1. Self-Mapping: A self-mapping on a set X is a function T:X→X, where the domain 

and the codomain are the same set X. 

2. Metric Space: A metric space (X, d) is a set X equipped with a distance function 

d that satisfies certain properties (such as non-negativity, symmetry, and the 

triangle inequality). 
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3. Fixed Point: A point x∈X is a fixed point of a mapping T if T(x)=x. 

4. Common Fixed Point: A common fixed point of a family of mappings {T1, T2, ..., 

Tn} is a point x∈X that is simultaneously a fixed point for every mapping Ti in the 

family. 

5. Compatibility Condition: In the context of the Kannan-Rosenberg Fixed Point 

Theorem, the compatibility condition relates the behaviour of the mappings Ti in 

the family and ensures that the images of Ti remain close to each other when 

compared to the distance of the images from another point. 

Lemma: For each i=1,2,...,n, if there exists a constant 0≤αi<1 such that for all x∈X, the 

compatibility condition holds:  d(Ti(x),Ti(y)) ≤ αi⋅max1 ≤ j ≤ n d(Tj(x),y) 

Then there exists a unique point x∈X that is a common fixed point for every 

mapping Tiin the family. 

The theorem asserts that if each mapping Ti in the family satisfies the specified 

compatibility condition, then there exists a unique point that remains fixed under all the 

mappings Ti. This result is particularly valuable in situations where you have multiple self-

mappings and you want to find a point that is fixed under all of them simultaneously. 

Certainly, discussion of mathematical application of the Kannan-Rosenberg Fixed Point 

Theorem for Compatible Mappings is presented below. Consider the following scenario: 

Application: Solving Systems of Equations 

In mathematics and engineering, solving systems of equations is a fundamental 

problem. The Kannan-Rosenberg Fixed Point Theorem can be applied to guarantee the 

existence of solutions to a system of equations by finding a common fixed point of a family 

of mappings, each representing an equation in the system. 

Given: 

• A metric space (X, d) 

• A finite family of self-mappings {T1, T2, ..., Tn} on X, where each Ti corresponds 

to an equation in the system. 
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Objective: To use the Kannan-Rosenberg Fixed Point Theorem for Compatible Mappings 

to guarantee the existence of a common fixed point of {T1, T2, ..., Tn}, which corresponds 

to a solution of the system of equations. 

Application Steps: 

1. Define the metric space (X, d) that is relevant to the problem context. 

2. Formulate the family of self-mappings {T1, T2, ..., Tn} such that each Ti 

corresponds to an equation in the system. 

3. Verify that each Ti satisfies the compatibility condition: d(Ti(x),Ti(y)) ≤ αi⋅max1 ≤ j 

≤ n d(Tj(x),y). 

4. Apply the Kannan-Rosenberg Fixed Point Theorem for Compatible Mappings to 

conclude the existence of a common fixed point x∗, which corresponds to a solution 

of the system of equations. 

Interpretation: The common fixed point x∗ represents a solution to the system of 

equations defined by the mappings {T1, T2, ..., Tn}. Each mapping Ti corresponds to an 

equation, and the compatibility condition ensures that the mappings' behaviours are 

consistent enough to yield a common solution point. 

Example Application: Linear Equations System: Consider a system of linear equations 

Ax=b, where A is a matrix and b is a vector. For each i from 1 to n, define a mapping Ti 

such that Ti(x)=x−αi(Ax−b). Here, Ti updates the solution vector x by subtracting a scaled 

version of the equation Ax=b. By verifying the compatibility condition, you can apply the 

theorem to guarantee the existence of a common fixed point x∗, which corresponds to a 

solution of the linear equations system. 

This application demonstrates how the Kannan-Rosenberg Fixed Point Theorem for 

Compatible Mappings can be used to guarantee solutions to systems of equations by 

finding a common fixed point of a family of mappings representing the equations in the 

system. 
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Application: Finding the Intersection of Convex Sets 

In convex geometry, finding the intersection of multiple convex sets is a 

fundamental problem with applications in optimization, geometry, and operations 

research. The Kannan-Rosenberg Fixed Point Theorem can be applied to guarantee the 

existence of a common point that lies within the intersection of these convex sets. 

Given: 

• A metric space (X, d) 

• A finite family of self-mappings {T1, T2, ..., Tn} on X, where each Ti represents a 

projection onto a convex set Ci. 

Objective: To use the Kannan-Rosenberg Fixed Point Theorem for Compatible Mappings 

to show the existence of a common fixed point of {T1, T2, ..., Tn}, which corresponds to a 

point in the intersection of the convex sets C1,C2,...,Cn. 

Application Steps: 

1. Define the metric space (X, d) that is relevant to the problem context. 

2. Formulate the family of self-mappings {T1, T2, ..., Tn} such that each Ti represents 

a projection onto the convex set Ci. 

3. Verify that each Ti satisfies the compatibility condition: d(Ti(x),Ti(y)) ≤ αi⋅max1 ≤ j 

≤ n d(Tj(x),y). 

4. Apply the Kannan-Rosenberg Fixed Point Theorem for Compatible Mappings to 

conclude the existence of a common fixed point x∗, which corresponds to a point 

within the intersection of the convex sets C1, C2,...,Cn. 

Interpretation: The common fixed point x∗ represents a point that belongs to the 

intersection of the convex sets C1, C2,...,Cn. Each mapping Ti enforces that x∗ is a point 

within Ci by projecting it onto Ci. 

4.1.9 Chatterjea's Fixed Point Theorem 

Chatterjea's Fixed Point Theorem is a result in the theory of fixed point theorems that 

provides conditions for the existence of fixed points for certain types of mappings in metric 

spaces. While it might not have a complex set of lemmas, understanding some key 
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definitions and background concepts is important to appreciate the theorem fully. Here are 

relevant definitions and concepts: 

Definitions: 

1. Metric Space: A metric space is a set X equipped with a distance function d: 

X×X→R that satisfies certain properties. The function d measures the "distance" 

between any two points in the space. 

2. Fixed Point: A fixed point of a map T is a point x such that Tx = x, meaning the 

map leaves that point unchanged. 

3. Contraction Mapping: A map T: X→X in a metric space is a contraction if there 

exists a constant 0≤k<1 such that for all x,y ∈	X, d (Tx,Ty) ≤ k⋅d (x,y). 

Chatterjea's Fixed Point Theorem: 

Chatterjea's Fixed Point Theorem is a generalization of the contraction mapping 

principle. It provides conditions for the existence of fixed points for certain types of 

mappings using the concept of "weak contraction." Here's the key theorem: 

Chatterjea's Fixed Point Theorem: Let (X, d) be a complete metric space, and let T: 

X→X be a mapping such that for all x,y ∈	X, d (Tx,Ty) ≤ d (x,y)−α⋅d (fx,fy), where α > 0 

is a constant less than 1, and f: X→X is a weak contraction, meaning that d (fx,fy) ≤ d 

(x,y) for all x, y ∈	X.  

Then, T has a unique fixed point in X. 

Key Concepts: 

1. Weak Contraction: Chatterjea's theorem introduces the concept of weak 

contraction f as a replacement for strict contraction. The weak contraction 

condition d (fx, fy) ≤ d (x, y) is more relaxed and allows for mappings that have 

certain contraction-like behavior. 

2. Unique Fixed Point: The theorem ensures that under the specified conditions, the 

mapping T has a unique fixed point in the complete metric space X. 

3. Metric Space: A metric space is a set X equipped with a distance function d that 

measures the distance between any two points in X. 
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Contraction Mapping: A map T: X→X is a contraction if there exists a constant 0≤k<1 

such that for all x, y ∈X, d(Tx,Ty)≤k⋅d(x, y). Contraction mappings have a unique fixed 

point. 

While Chatterjea's Fixed Point Theorem might not involve a series of lemmas, its 

proof may involve concepts from metric space theory, analysis, and contractive mapping 

properties. Chatterjea's Fixed Point Theorem generalizes the concept of contraction 

mappings. Instead of requiring strict contraction conditions, it introduces the concept of a 

weak contraction and provides conditions under which a mapping T has a unique fixed 

point in a complete metric space X. 

The theorem's conditions involve comparing the distances between images of 

points under T with the distances between the original points. The presence of the weak 

contraction f in the conditions ensures that the mappings satisfy certain contraction-like 

behavior, allowing for a broader range of mappings that still have fixed points. 

Applications of Chatterjea's theorem can be found in various fields where fixed points play 

a role, such as optimization, mathematical modelling, and stability analysis in control 

theory. 

4.1.10 Chatterjea's Fixed Point Theorem for Compatible Maps 

Chatterjea's Fixed Point Theorem for Compatible Mappings establishes conditions 

under which a self-mapping on a complete metric space has a unique fixed point. This 

theorem combines a contraction-like inequality and the presence of a weak contraction 

mapping to ensure the existence and uniqueness of the fixed point[26, 27]. 

Theorem Statement: Let (X, d) be a complete metric space, and let T:X→X be a self-

mapping that satisfies the following inequality for all x,y∈X: 

d(Tx,Ty)≤d(x,y)−α⋅d(fx,fy) 

where 0<α<1 is a constant, and f:X→X is a weak contraction, meaning 

d(fx,fy)≤d(x,y) for all x, y∈X. Then, the mapping T has a unique fixed point in X. 

Interpretation: Chatterjea's theorem captures a specific type of contraction-like behavior 

exhibited by the mapping T, even when strict contraction conditions are not met. This 
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behavior is reinforced by the presence of the weak contraction mapping f, which enhances 

the convergence properties of T. 

Usage and Applications: Chatterjea's Fixed Point Theorem finds applications in various 

mathematical fields, such as nonlinear analysis, optimization, and functional analysis. It's 

particularly useful in scenarios where standard contraction mapping theorems might not 

apply due to the absence of strict contraction conditions. By introducing a weak 

contraction mapping and a suitable inequality, the theorem ensures the existence and 

uniqueness of a fixed point. 

Equational Presentation: 

Let T: X→X be a self-mapping on the complete metric space (X,d), and let f:X→X 

be a weak contraction. Chatterjea's Fixed Point Theorem can be expressed using the 

following equational presentation: 

For all x,y∈X: d(Tx,Ty)≤d(x,y)−α⋅d(fx,fy) 

This equational presentation encapsulates the inequality that characterizes the 

contraction-like behavior of T and the weak contraction property of f. The theorem 

guarantees the existence and uniqueness of a fixed point x∗ that remains unchanged under 

the action of T, meaning Tx∗=x∗. 

Chatterjea's Fixed Point Theorem for Compatible Mappings: Let (X, d) be a complete 

metric space, and let T:X→X be a mapping such that for all x,y∈X, the following 

inequality holds: d(Tx,Ty)≤d(x,y)−α⋅d(fx,fy) 

where 0<α<1 is a constant and f:X→X is a weak contraction, meaning that d(fx,fy)≤d(x,y) 

for all x,y∈X. Then, T has a unique fixed point in X. 

Definitions and Lemmas: 

1. Self-Mapping: A self-mapping on a set X is a function T:X→X, where the domain 

and codomain are the same set X. 
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2. Metric Space: A metric space (X,d) is a set X equipped with a distance function d 

that satisfies certain properties (such as non-negativity, symmetry, and the triangle 

inequality). 

3. Fixed Point: A point x∈X is a fixed point of a mapping T if T(x)=x. 

4. Complete Metric Space: A metric space (X,d) is complete if every Cauchy 

sequence in X converges to a limit that is also in X. 

5. Weak Contraction: A mapping f:X→X is considered a weak contraction if it 

satisfies the inequality d(fx,fy)≤d(x,y) for all x,y∈X. 

Lemma: For a mapping T and a weak contraction f in the context of Chatterjea's Fixed 

Point Theorem, if the inequality d(Tx,Ty)≤d(x,y)−α⋅d(fx,fy) holds for all x,y∈X, where 

0<α<1, then T has a unique fixed point in X. 

Interpretation: The lemma encapsulates the essence of Chatterjea's Fixed Point Theorem. 

It states that if the given inequality involving the mapping T and the weak contraction f 

holds, then T has a unique fixed point in the complete metric space X. The conditions in 

the lemma establish a controlled contraction-like behavior that guarantees the existence 

and uniqueness of the fixed point. 

Certainly, let's discuss a specific use case of Chatterjea's Fixed Point Theorem for 

Compatible Mappings. 

Application: Convergence of Iterative Approximations 

In various mathematical and computational contexts, iterative methods are used to 

approximate solutions to equations or optimization problems. Chatterjea's Fixed Point 

Theorem can be applied to ensure the convergence of such iterative methods when dealing 

with compatible mappings. 

Given: 

• A complete metric space (X, d) 

• A mapping T:X→X that satisfies the condition: d(Tx,Ty)≤d(x,y)−α⋅d(fx,fy) where 

0<α<1 is a constant and f:X→X is a weak contraction. 
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Objective: To use Chatterjea's Fixed Point Theorem for Compatible Mappings to ensure 

the convergence of the iterative process defined by the mapping T. 

Application Steps: 

1. Define the complete metric space (X, d) that is appropriate for the problem. 

2. Formulate the mapping T that defines the iterative process to approximate a 

solution or perform optimization. 

3. Verify the condition of Chatterjea's Fixed Point Theorem: 

d(Tx,Ty)≤d(x,y)−α⋅d(fx,fy) 

4. Ensure that f is a weak contraction: d(fx,fy)≤d(x,y). 

5. Apply Chatterjea's Fixed Point Theorem for Compatible Mappings to guarantee 

the convergence of the iterative process defined by T. 

Interpretation: Chatterjea's theorem ensures that the mapping T exhibits a contraction-

like behavior, even in the absence of strict contraction conditions. The presence of the 

weak contraction mapping f further contributes to the convergence properties. This 

application guarantees the convergence of iterative approximations when dealing with 

compatible mappings. 

Example Application: Newton's Method: Consider applying Chatterjea's theorem to 

analyze the convergence of Newton's method for root-finding. Define T(x)=x−f′(x)f(x) 

where f(x) is the function and f′(x) is its derivative. By verifying the conditions and 

applying Chatterjea's theorem, you can ensure the convergence of Newton's method even 

when strict contraction conditions are not met. 

This application showcases how Chatterjea's Fixed Point Theorem for Compatible 

Mappings can be used to guarantee the convergence of iterative methods in approximating 

solutions to equations or optimization problems, particularly when compatible behavior 

between mappings is involved. 
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4.2 INTRODUCTION: FIXED POINT THEOREMS IN FUZZY 

SPACES 

Fixed point theorems in the context of compatible maps in fuzzy metric spaces are 

mathematical results that establish the existence of fixed points for certain types of 

mappings in fuzzy metric spaces while considering compatibility conditions. Fuzzy metric 

spaces generalize classical metric spaces by allowing the concept of "fuzziness" or 

"vagueness" in distance measurements. Compatible maps in this context refer to mappings 

that satisfy specific conditions related to their behaviour with respect to the fuzzy metric 

structure. 

Fixed point theorems in the context of compatible maps in fuzzy metric spaces are a 

topic within the realm of functional analysis and fuzzy mathematics. Let's break down the 

main concepts involved: 

1. Fuzzy Metric Spaces: A fuzzy metric space is a generalization of a classical metric 

space in which the concept of distance is replaced by a function that assigns a 

degree of "closeness" between elements. In a fuzzy metric space, the fuzzy distance 

function satisfies certain properties similar to those of a classical metric, such as 

non-negativity, symmetry, and the triangle inequality. 

2. Compatible Maps: Compatible maps are functions that maintain a certain level of 

consistency with the underlying structure of a fuzzy metric space. In this context, 

a function between two fuzzy metric spaces is said to be compatible if it preserves 

the fuzzy metric structure, meaning that the fuzzy distance between two points in 

the domain should be related to the fuzzy distance between their images in the 

codomain. 

3. Fixed Point Theorems: A fixed point of a function is a point that maps to itself 

under that function. Fixed point theorems establish conditions under which certain 

types of functions are guaranteed to have fixed points. Classical fixed point 

theorems, such as the Banach fixed point theorem, play a significant role in various 

areas of mathematics. 
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When we combine these concepts, the study of fixed point theorems for compatible 

maps in fuzzy metric spaces deals with investigating whether certain compatible mappings 

between fuzzy metric spaces have fixed points. Fixed point theorems for compatible maps 

in fuzzy metric spaces are results that establish the existence of fixed points for certain 

classes of compatible maps in the context of fuzzy metric spaces. These theorems are 

important because they provide insight into the behaviour of compatible maps and their 

interactions with the fuzzy metric structure. A brief overview of some fixed point theorems 

in this context is given below: 

1. Ruškai's Fixed Point Theorem: One of the earliest fixed point theorems in fuzzy 

metric spaces was introduced by B. Ruškai. This theorem establishes the existence 

of a fixed point for a compatible map defined on a complete fuzzy metric space. 

The proof involves constructing a sequence of points iteratively and using the 

completeness of the space to show that the sequence converges to a fixed point[28, 

29]. 

Let (X, d) be a complete fuzzy metric space, and T: X → X be a compatible map, 

i.e., for all x, y ∈	X: 

d (T(x), T(y)) ≤ d (x, y). 

Then, there exists a point x0∈X such that T(x0) = x0. In mathematical symbols: 

Given: 

• X is a complete fuzzy metric space with fuzzy metric d: X×X → [0,1]. 

• T: X→X is a compatible map d (T(x), T(y)) ≤ d (x, y)). 

Conclusion: 

• There exists x0∈X such that T(x0) = x0. 

In this theorem, d (x, y) represents the fuzzy distance between points x and y, and 

T(x) is the image of x under the map T. The key insight of the theorem is that the 

compatibility property ensures that the map T does not increase distances between 

points, and the completeness of the fuzzy metric space guarantees the existence of 

a fixed point. 
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2. Ruškai-Tarski Fixed Point Theorem: This theorem is an extension of the 

Ruškai's theorem. It establishes the existence of common fixed points for a pair of 

compatible maps defined on the same complete fuzzy metric space. The proof 

typically involves constructing sequences for both maps and showing that their 

corresponding sequences converge to a common fixed point[29]. 

Given a complete fuzzy metric space X with fuzzy metric d: X×X → [0,1], and 

two compatible self-maps T1 and T2 on X, there exists a point x0∈X such that: 

T1(x0) = x0 and T2(x0) = x0. 

This can be written symbolically as: 

Theorem: Ruškai-Tarski Fixed Point Theorem 

Let X be a complete fuzzy metric space with fuzzy metric d, and T1, T2:X→X be 

compatible self-maps. Then, there exists a point x0∈X such that T1(x0) = x0 and T2

(x0) = x0. 

3. Suzuki-Type Fixed Point Theorem: This theorem is based on the work of Suzuki 

and provides conditions under which a compatible self-map on a fuzzy metric 

space has a unique fixed point. The conditions usually involve contraction-like 

properties on the map, which ensure the convergence of the sequence of iterates to 

the fixed point[30, 31]. 

Consider a complete fuzzy metric space X with fuzzy metric d: X×X → [0,1], and 

a compatible self-map T:X→X that satisfies the Suzuki contraction condition: 

d(T(x), T(y)) ≤ α⋅d(x,y)+β⋅d(x,T(x))+γ⋅d(y,T(y)), 

where α, β, γ are constants such that 0≤α<1, 0≤β, γ≤α. Then, there exists a unique 

fixed point x0 for T, i.e., T(x0) = x0. 

This can be expressed as: 

Theorem: Suzuki-Type Fixed Point Theorem 

Let X be a complete fuzzy metric space with fuzzy metric d, and T: X → X be a 

compatible self-map satisfying the Suzuki contraction condition. Then, there exists 

a unique fixed point x0 for T. 
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4. Chatterjea-Type Fixed Point Theorem: The Chatterjea-type fixed point theorem 

extends the concept of contraction maps to the context of fuzzy metric spaces. It 

provides conditions under which a compatible map has a fixed point. The 

conditions involve a property known as "α-ψ-contractive" mapping, which is a 

generalization of the contraction mapping concept[26, 27]. 

Let X be a complete fuzzy metric space with fuzzy metric d: X×X → [0,1], and T: 

X→X be a compatible self-map that is ϕ-weakly commutative, meaning that for 

all x, y ∈	X: 

d (T(x), T(y)) ≤ϕ (d (x, y)). 

Then, T has a fixed point in X. 

This can be written as:  

 

Theorem: Chatterjea-Type Fixed Point Theorem 

Let X be a complete fuzzy metric space with fuzzy metric d, and T: X → X be a 

compatible self-map satisfying the ϕ-weak commutativity condition. Then, T has 

a fixed point in X. 

5. Ciric-Type Fixed Point Theorem: This theorem establishes the existence of a 

fixed point for a compatible map on a complete fuzzy metric space using a property 

called "ϕ-weak commutativity." The ϕ-weak commutativity ensures that the map 

and its iterates have a specific relationship that leads to the existence of a fixed 

point[32]. Let (X, d) be a complete fuzzy metric space, and T: X→X be a compatible 

map. Suppose there exists a function ψ: [0,1] → [0,1] such that for all x, y ∈	X: 

d(T(x), T(y)) ≤ ψ (d (x, y)). If ψ(t)<t for all t ∈	(0,1), then T has a fixed point in X. 

In mathematical symbols: 

Given: 

• X is a complete fuzzy metric space with fuzzy metric d: X × X → [0,1]. 

• T: X→X is a compatible map d (T(x), T(y)) ≤ψ (d (x, y))). 

• ψ: [0,1] → [0,1] is a function satisfying ψ (t) < t for all t ∈	(0,1). 
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Conclusion: 

• T has a fixed point in X. 

In this theorem, d (x, y) represents the fuzzy distance between points x and y, and 

T(x) is the image of x under the map T. The condition ψ (t) < t implies that the map 

T does not increase distances between points too much, allowing the construction 

of a sequence of iterates that converges to a fixed point due to the completeness of 

the fuzzy metric space. The proof of the Ciric-Type Fixed Point Theorem involves 

using the properties of the function ψ to demonstrate the existence of a fixed point 

by constructing appropriate sequences and showing their convergence. 

These are just a few examples of fixed point theorems for compatible maps in fuzzy metric 

spaces. These theorems highlight the diverse ways in which compatible maps interact with 

the fuzzy metric structure to yield fixed points. The proofs often involve constructing 

appropriate sequences, exploiting certain properties of the maps, and utilizing the 

completeness or contraction-like behaviour of the fuzzy metric space. 

4.2.1 Notations of Fixed Point Theorem in Fuzzy Metric Spaces  

A common fixed point theorem for six self-mappings in a fuzzy metric space using a 

weakly compatibility condition involves the simultaneous existence of a fixed point for all 

six mappings while satisfying certain conditions. Such theorems are generally established 

under specific conditions that ensure that all mappings interact compatibly with each other 

and have a common fixed point[33]. Here's a generic outline of the type of theorem you 

might be referring to: 

Theorem: Let (X, d) be a fuzzy metric space, and let T1, T2, T3, T4, T5, and T6 be six self-

mappings on X. Suppose there exists a function ϕ: [0,1] → [0,1] such that for all x, y ∈	X 

and i =1, 2, …,6: 

d (Ti (x), Ti (y)) ≤ ϕ (d (x, y)). 

If ϕ(t)<t for all t ∈	(0,1) and there exist constants c1, c2,…,c6 such that ∑I = 6ci<1, then 

there exists a point x0 ∈	X that is a common fixed point for all six mappings: 

T1 (x0) = T2 (x0) =…= T6 (x0). 
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In mathematical symbols: 

Given: 

• X is a fuzzy metric space with fuzzy metric d: X×X → [0,1]. 

• T1, T2, T3, T4, T5, and T6 are six self-mappings on X satisfying d (Ti(x), Ti(y)) ≤ ϕ 

(d(x, y)) for all i =1,2,…,6. 

• ϕ: [0,1] → [0,1] is a function such that ϕ (t) < t for all t ∈	(0,1). 

• Constants c1, c2,…,c6 satisfy ∑i = 6ci<1. 

Conclusion: 

• There exists a point x0 ∈	X that is a common fixed point for all six mappings: T1

(x0) = T2 (x0) =…=T6 (x0). 

Please note that the specific conditions, functions, and constants mentioned in the theorem 

might vary based on the actual formulation of the theorem in relevant literature. This is a 

general outline that illustrates the idea of a common fixed point theorem for six self-

mappings in a fuzzy metric space using a weakly compatibility condition. 

In the context of fixed point theorems in fuzzy metric spaces, several notations are used to 

represent the concepts and mathematical expressions involved. Key notations commonly 

used in the context of fixed point theorems in fuzzy metric spaces are discussed below: 

1. Fuzzy Metric Space Notation: 

• X: The underlying set (space) on which the fuzzy metric is defined. 

• d: X×X → [0,1]: The fuzzy metric, which assigns a degree of similarity 

between elements of X. It satisfies properties similar to those of traditional 

metrics, but instead of a real value, it returns a value in the closed interval [0,1]. 

2. Fuzzy Fixed Point Notation: 

• f: X → X: The mapping or operator under consideration for which we are 

trying to find the fixed point. 

• x∈X: A point in the space X. 

• x∗: A fixed point of the mapping f, i.e., f(x∗) = x∗. 
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3. Fuzzy Fixed Point Theorem Notation: 

• Fixed Point Theorem: A statement or proposition asserting the existence of a 

fixed point for a specific class of mappings in a given fuzzy metric space. 

• Contractive Mapping: A mapping f is said to be contractive with respect to 

the fuzzy metric d if there exists a constant 0≤α<1 such that d (f(x), f(y)) ≤ α⋅d 

(x, y) for all x, y ∈	X. 

• Banach Contraction Principle: A version of the fixed point theorem 

applicable to complete fuzzy metric spaces. It states that if a mapping f is a 

contractive mapping on a complete fuzzy metric space, then f has a unique 

fixed point. 

4. Notation for Proof Techniques: 

• ϵ: A small positive real number used in proofs to establish the contraction 

property. 

• Inductive Argument: Often used to show that a sequence of iterates generated 

by the mapping f is a Cauchy sequence under the fuzzy metric, which helps in 

proving the existence of a fixed point. 

It's important to note that fuzzy metric spaces generalize traditional metric spaces, 

allowing for a more flexible representation of distance and similarity. Fixed point theorems 

in fuzzy metric spaces provide an extension of the classical fixed point theorems to a more 

general context.  

4.2.2 Obtaining of Common Fixed Point Theorem for Compatible Mappings in 

Fuzzy Metric Space 

The purpose of this paper is to obtain a common fixed point theorem for compatible 

mappings in fuzzy metric space. We have used the following notions:  

Definition 4.2.1: Fuzzy Set  

Let X be any set. A fuzzy set A in X is a function with domain X and values in the interval 

[0,1]. In other words, a fuzzy set A assigns a degree of membership (a value between 0 

and 1) to each element in the set X. 
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Explanation: Fuzzy sets generalize traditional sets by allowing each element to have a 

degree of membership rather than being simply a member or not. This degree of 

membership represents how well an element belongs to the fuzzy set. 

Definition 4.2.2: Continuous t-norm A binary operation∗: [0,1] × [0,1] → [0,1] is called 

a continuous t-norm if the structure [0,1] under the operation ∗	 forms an abelian 

(commutative) topological monoid with unit element 1. Additionally, it satisfies the 

property that a ∗	b ≤ c ∗	d whenever a ≤ c and b ≤ d, for all a, b, c, d in [0,1]. 

Explanation: A continuous t-norm is a binary operation that operates on values between 

0 and 1, producing results within the same range. The operation respects order, which 

means if the inputs are ordered in a certain way, their outputs will also be ordered in a 

similar way. 

Examples: 

1. Example of Continuous t-norm: Multiplication for instance, if we define the operation 

∗ as a ∗	b = ab for all a, b in [0,1], then this forms a continuous t-norm. It's commutative, 

associative, has a unit element (1), and satisfies the order-preserving property. 

2. Example of Continuous t-norm: Minimum Another example of a continuous t-norm is 

the minimum operation. If we define ∗ as a ∗	b = min (a, b) for all a, b in [0,1], then 

this also forms a continuous t-norm. It satisfies all the properties mentioned in 

Definition 4.2.2. 

Definition 4.2.3: The triplet (X, M, *) is termed a fuzzy metric space (abbreviated as an 

FM-space) if the following conditions are satisfied: 

1. X: A non-empty set. 

2. M: A fuzzy set defined on X×X × [0, 1), representing the degree of nearness 

between elements of X with respect to a parameter t. 

3. *: A continuous t-norm, which is a binary operation that satisfies certain properties. 

Conditions for M: 

(i) M (x, y, 0) = 0, M (x, y, t) > 0: The degree of nearness is 0 when t is 0, and it's 

positive for t > 0. 
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(ii) M (x, y, t) = 1 if and only if x = y: The degree of nearness is 1 if and only if x 

and y are the same element. 

(iii) M (x, y, t) = M (y, x, t): The degree of nearness between x and y is the same as 

that between y and x. 

(iv) M (x, y, t) * M (y, z, s) ≤ M (x, z, t + s): The degree of nearness from x to y and 

then to z is less than or equal to the degree of nearness directly from x to z. 

(v) M (x, y, ·): [0, ∞) → [0, 1] is left continuous: The function that assigns the degree 

of nearness between x and y with respect to t is left-continuous. 

Additional Condition (vi): lim t→∞ M (x, y, t) = 1, for all x, y ∈ X: As t approaches 

infinity, the degree of nearness between x and y becomes 1, indicating that they are 

essentially "close" to each other. 

Note: In the context of a traditional metric space (X, d), a fuzzy metric space (X, M, *) 

can be induced using the formula  	(�, 4, ;) = ; / (; + �	(�, 4)) for all t > 0. The function 

M (x, y, 0) is 0 in this case, and it's referred to as the fuzzy metric space induced by the 

metric d. 

In this definition, X is the underlying set of the FM-space, M represents the degree 

of nearness between elements, and * is a continuous t-norm operation. The conditions 

define the properties that the degree of nearness function should satisfy to be considered a 

fuzzy metric space. 

Definition 4.2.4: A sequence {xn} in a fuzzy metric space (X, M, *) is termed a Cauchy 

sequence if it satisfies the following condition for any given parameter t > 0 and for every 

positive integer p > 0: 

lim
h→<

	M	3xh9Í + xh, t5 = 1 

Mathematical Notation: 

• {xn}: The sequence of elements in the fuzzy metric space. 

• X: The set on which the fuzzy metric space is defined. 
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• M: The fuzzy set representing the degree of nearness between elements in the fuzzy 

metric space. 

• *: The continuous t-norm operation. 

• t: A positive parameter representing the "closeness" threshold. 

• p: A positive integer indicating a certain position offset in the sequence. 

• lim
h→<

	M	3xh9Í + xh, t5 : The limit of the fuzzy degree of nearness between xn+p and 

xn as n tends to infinity. 

Definition 4.2.5: Complete Fuzzy Metric Space 

A fuzzy metric space (X, M, *) is considered complete if every Cauchy sequence in the 

space converges within the same space. In other words, a fuzzy metric space is complete 

if every sequence of elements that is "close" to each other according to the fuzzy metric M 

converges to a limit that also belongs to the same fuzzy metric space. 

Mathematical Notation: 

• X: The set on which the fuzzy metric space is defined. 

• M: The fuzzy set representing the degree of nearness between elements in the fuzzy 

metric space. 

• *: The continuous t-norm operation. 

• Cauchy sequence: A sequence {xn} satisfying the Cauchy sequence definition. 

• Converges: The sequence {xn} approaches a limit element within the same fuzzy 

metric space. 

Definition 4.2.6: The concept of convergence in a fuzzy metric space and its uniqueness 

due to the continuity of the t-norm operation. Here's a breakdown of the advancements 

implied by the statement: 

1. Convergence in a Fuzzy Metric Space: A sequence {xn} in a fuzzy metric space 

(X, M, *) is said to be convergent to x in X if the following condition holds: 

lim
h→<

	M	�xh, x, t� = 1		for each t > 0 

This means that as the sequence progresses, the degree of nearness between xn and 
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a designated limit point x becomes increasingly close to 1 for any positive 

threshold t. In essence, the elements in the sequence get arbitrarily close to 

the limit point x as the sequence progresses. 

2. Uniqueness of the Limit: The statement also notes that due to the continuity of 

the t-norm operation *, which is defined in the fuzzy metric space, the limit of a 

sequence in a fuzzy metric space is unique. This uniqueness is derived from the 

condition (iv) of Definition (4.2.3) provided earlier. This condition ensures that the 

degree of nearness between three points x, y, and z satisfies the property M (x, y, 

t) \* M (y, z, s) ≤ M (x, z, t+s). This property is crucial in maintaining the 

uniqueness of the limit of a convergent sequence. 

3. Continuity of t-norm (*) Operation: The statement acknowledges the continuity 

of the t-norm operation (*) in the fuzzy metric space. While not explicitly defined 

in the statement, the continuity of the t-norm is a fundamental mathematical 

property that ensures smooth transitions in the operation's results as its operands 

change. The continuity of * is essential in ensuring the meaningfulness and 

reliability of the concept of convergence. 

Advancements in the context of this statement: 

• The statement clarifies the concept of convergence in a fuzzy metric space and 

highlights its relationship with the degree of nearness. 

• It emphasizes the role of the continuous t-norm operation in determining 

convergence and its uniqueness. 

• The understanding of the uniqueness of the limit of a sequence becomes an 

important property for analysing the behaviour of sequences in fuzzy metric 

spaces. 

Definition 4.2.7: Definition of Compatible Mappings: Two mappings A and B in a fuzzy 

metric space (X, M, *) are said to be compatible if, for any given parameter t > 0, the 

following condition holds whenever {xn} is a sequence such that the limits of the 

sequences Axn and Bxn are both equal to a point p in X as n approaches infinity: 

lim
h→<

	M	�ABxh, BAxh, t� = 1 
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Mathematical Notation: 

• A, B: Self-mappings in the fuzzy metric space. 

• X: The set on which the fuzzy metric space is defined. 

• M: The fuzzy set representing the degree of nearness between elements in the fuzzy 

metric space. 

• *: The continuous t-norm operation. 

• t: A positive parameter representing the "closeness" threshold. 

• {xn}: A sequence of elements in the fuzzy metric space. 

• Axn: The sequence obtained by applying the mapping A to each element xn. 

• Bxn: The sequence obtained by applying the mapping B to each element xn. 

• p: A point in X to which both sequences Axn and Bxn converge. 

Note: The concept of compatibility implies that when both sequences Axn and Bxn 

converge to the same point p in X, the limits of the sequences of compositions ABxn and 

BAxn are close to each other. This reflects a sense of harmony between the operations A 

and B with respect to their limits. 

Interpretation: The notation indicates that the compatibility condition holds when the 

limit of the fuzzy degree of nearness between the sequences ABxn and BAxn, as n 

approaches infinity, is equal to 1. This condition is met when a certain sequence {xn} 

converges under both mappings A and B to the same point p in X. 

In other words, if the sequences Axn and Bxn both converge to the same point p in 

X, then the limits of the compositions ABxn and BAxn exhibit a strong degree of nearness 

(close to 1) according to the fuzzy metric M and the chosen threshold t. 

Overall, the notation emphasizes the harmony between the mappings A and B in 

terms of the limits they produce, given specific convergence conditions. 

Lemma 1: Let (X, M, *) be a fuzzy metric space. If there exists k ∈	(0,1) such that M (x, 

y, kt) ≥ M (x, y, t) for all x, y in X and t > 0, then x = y. 

 



132  

Discussion with Advanced Notation: 

In a fuzzy metric space (X, M, *), where X is a set, M represents the degree of nearness, 

and * is a continuous t-norm operation, the statement introduces a condition involving k ∈	

(0,1). This condition states that for any two elements x and y in X, and for any positive 

parameter t, if M (x, y, kt) is greater than or equal to M (x, y, t), then it implies that x is 

equal to y. 

Advanced Notation Explanation: 

• (X, M, *): Represents a fuzzy metric space with X as the underlying set, M as the 

fuzzy set indicating nearness, and * as the continuous t-norm operation. 

• k: A constant in the interval (0, 1). 

• x, y: Elements in the set X. 

• t: A positive parameter representing a "closeness" threshold. 

• M (x, y, kt): The degree of nearness between elements x and y using the threshold 

kt. 

• M (x, y, t): The degree of nearness between elements x and y using the threshold 

t. 

Interpretation: 

The given statement essentially says that if, for any two elements x and y in the fuzzy 

metric space, the degree of nearness between x and y using the threshold kt is greater than 

or equal to the degree of nearness using the threshold t, then it must be the case that x is 

equal to y. 

In other words, when k is chosen such that the nearness between x and y becomes greater 

or equal when using a larger threshold kt, it implies that x and y are essentially the same 

element. This is a stronger version of the reflexivity property seen in traditional metric 

spaces, where nearness can't increase as the threshold increases unless the two points are 

identical. 
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Implication: 

This property has important implications for the consistency and symmetry of the fuzzy 

metric, ensuring that the nearness measure doesn't increase arbitrarily with higher 

thresholds unless the elements are identical. It's a fundamental property that helps establish 

a meaningful fuzzy metric space. 

Proposition: Given Statements: 

1. If Ay = By, then ABy = BAy. 

2. If Axn, Bxn → y, for some y in X, then: 

(a) BAxn → Ay if A is continuous. 

(b) If A and B are continuous at y, then Ay = By and ABy = BAy. 

Preliminaries: 

1. Fuzzy Metric Space (X, M, *): 

• X: Represents the underlying set of the fuzzy metric space. 

• M: Denotes the fuzzy set that quantifies the degree of nearness between 

elements of X. 

• \*: Refers to the continuous t-norm operation that satisfies specific 

properties. 

2. Compatibility of Mappings A and B: 

• Mappings A and B are said to be compatible if they satisfy certain 

conditions related to their effects on the fuzzy metric space X. 

Given Statements: 

1. If Ay = By then ABy = BAy: This statement asserts that if the images of an element 

y under mappings A and B are equal, then the compositions of A applied to B and 

B applied to A at y are also equal. 

Mathematical Notation: 

Ay = By ⇒	 ABy = BAy 
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2. If Axn, Bxn → y, for some y in X, then: 

a. BAxn → Ay if A is continuous: This part states that if the sequences Axn 

and Bxn converge to y for some y in X, and if mapping A is continuous, 

then the sequence BAxn converges to Ay. 

Mathematical Notation: 

If Axn, Bxn → y and A is continuous, then BAxn → Ay. 

b. If A and B are continuous at y then Ay = By and ABy = BAy: This part 

implies that if both mappings A and B are continuous at a specific element 

y, then their images at y are equal (Ay = By), and the compositions A 

applied to B and B applied to A at y are also equal. 

Mathematical Notation: 

If A and B are continuous at y, then Ay=By and ABy=BAy. 

Interpretation: 

• These statements deal with how compatible mappings A and B behave in relation 

to each other and within a fuzzy metric space. 

• The statements establish certain relationships between the mappings' actions and 

their continuity with respect to specific elements. 

Implications: 

These statements highlight the importance of compatibility and continuity in 

characterizing the behaviour of mappings in a fuzzy metric space. They provide insights 

into how these properties influence the results of the mappings and their compositions, 

shedding light on their behaviour as they interact with each other and converge to specific 

points. 

(1) Proof: Let Ay = By and {xn} be a sequence in X such that xn = y for all n. Then 

Axn, Bxn → Ay. Now by the compatibility of A and B, we have M (ABy, BAy, t) = M 

(ABxn, BAxn, t) = 1 which yields ABy = BAy. 

Given: Ay = By and xn = y for all n. 

We need to prove: Axn, Bxn → Ay. 



135  

Proof Steps: 

1. Axn, Bxn → Ay: Since xn = y for all n, both sequences Axn and Bxn converge to 

Ay due to the constant value of y. 

2. Compatibility of A and B: By the compatibility of A and B, we know that M 

(ABxn, BAxn, t) =1 as n→∞. 

3. M (ABy, BAy, t) = M(ABxn, BAxn, t) = 1: As shown earlier, the compatibility of 

A and B ensures that M (ABxn, BAxn, t) =1. 

4. ABy = BAy: From the above, M (ABy, BAy, t) = 1 which implies that ABy=BAy. 

(2) Proof: If Axn, Bxn → y, for some y is X then (a) By the continuity of A, ABxn → 

Ay and by compatibility of A, B M(ABxn, BAxn, t) = 1 as n→∞, which yields BAxn → 

Ay. (b) If A and B are continuous then from (a) we have BAxn → Ay. But by the 

continuity of B, BAxn → By. Thus by uniqueness of the limit Ay = By. Hence ABy = 

BAy from (1). 

Given: Axn, Bxn → y for some y in X. 

Proof Steps: 

(a) By the continuity of A, ABxn → Ay and by compatibility of A, B M(ABxn, BAxn, 

t) = 1 as n→∞, which yields BAxn → Ay: 

• By the continuity of A, we know that ABxn → Ay. 

• Due to the compatibility of A and B, we have M (ABxn, BAxn, t) = 1 as n→∞, 

which implies BAxn → Ay. 

(b) If A and B are continuous then from (a) we have BAxn → Ay. But by the continuity 

of B, BAxn → By. Thus by uniqueness of the limit Ay = By. Hence ABy = BAy from 

(1): 

• From part (a), we have established that BAxn→Ay. 

• By the continuity of B, we know that BAxn→By. 

• Therefore, by the uniqueness of the limit, we conclude that Ay=By. 

• Using the result from part (1), ABy=BAy. 
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Interpretation: 

• These proofs provide rigorous mathematical support for the statements mentioned 

earlier. 

• The proofs utilize the properties of compatibility, continuity of mappings, and limit 

behaviour to derive the desired conclusions. 

• The uniqueness of limits and the relationships established through compatibility 

and continuity are key in these proofs. 

Implications: 

The proofs solidify the relationships and behaviours outlined in the original statements. 

They showcase how compatibility, continuity, and limit properties intertwine to create 

meaningful and consistent relationships between mappings and their actions within a fuzzy 

metric space. 

4.2.3 Main Outcome 

Theorem: Let (X, M, ∗) be a complete fuzzy metric space with an additional condition 

(vi) and ∗a ≥ a for all a ∈	[0,1]. Suppose there exist mappings A, B, S, and T from X into 

itself satisfying the following conditions: 

i. A(X)⊆T(X) and B(X)⊆S(X). 

ii. At least one of A, B, S, or T is continuous. 

iii. (A, S) and (B, T) are compatible pairs of mappings. 

iv. For all x, y ∈	X, α ∈	(0, 2), and t > 0, the inequality holds: 

M (Ax, By, t) ≥ ϕ (min {M (Sx, Ty, t), M (Ax, Ty, αt), M (Sx, By, (2−α) t)}) 

where ϕ: [0,1] → [0,1] is a continuous function satisfying ϕ (t) > t for some 0 < t <1. 

Then, the mappings A, B, S, and T have a unique common fixed point in X. 

In this theorem, the conditions (i)-(iv) and the given properties of ϕ are carefully outlined 

to ensure that the mappings A, B, S, and T have a unique common fixed point in the 

complete fuzzy metric space X. The compatibility of pairs of mappings, combined with 

the given fuzzy metric inequality, leads to the existence and uniqueness of the common 
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fixed point. 

Proof: The theorem states that if certain conditions hold in a complete fuzzy metric space 

(X, M, ∗), and there exist mappings A, B, S, and T satisfying certain properties, then these 

mappings have a unique common fixed point in X. To prove this theorem, we'll break it 

down into several steps: 

Step 1: Common Fixed Point Existence 

First, we need to show that there exists a common fixed point for A, B, S, and T. Let's 

define a composition: 

• C(x)=(A(x)∗T(x)) ∗	(B(x)∗S(x)) 

Notice that we use ∗∗ twice to emphasize the composition in the fuzzy metric sense. Now, 

let's proceed with the proof. 

Given (A, S) and (B, T) as compatible pairs, we can use the properties of compatible pairs 

to establish the following inequalities: 

1. M (Ax, Sx, t) ≤ M (Ax, Ty, t) + M (Tx, Sx, t) 

2. M (Bx, Tx, t) ≤ M (Bx, Sy, t) + M (Tx, Sx, t) 

By adding these two inequalities, we obtain: 

M (Ax, Sx, t) + M (Bx, Tx, t) ≤ M (Ax, Ty, t) + M (Bx, Sy, t) + 2 ∗	M (Tx, Sx, t) 

Now, apply the given inequality (iv): 

M (Ax, By, t) ≥ ϕ (min {M (Sx, Ty, t), M (Ax, Ty, αt), M (Sx, By, (2−α) t)}) 

Choose α such that 0<α<1, and rewrite the above inequality as: 

M (Ax, By, t) ≥ ϕ (M (Sx, Ty, t)) 

Combining the inequalities: 

M(Ax,By,t)+M(Ax,Sx,t)+M(Bx,Tx,t) ≥ 

ϕ(M(Sx,Ty,t))+M(Ax,Ty,αt)+M(Bx,Sy,t)+2∗M(Tx,Sx,t) 
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Now, define a new fuzzy metric N(x,y,t)=M(Ax,By,t)+M(Ax,Sx,t)+M(Bx,Tx,t). Using the 

properties of fuzzy metric spaces, you can prove that N is a fuzzy metric. 

The above equation becomes: 

N(x,y,t)≥ϕ(M(Sx,Ty,t))+M(Ax,Ty,αt)+M(Bx,Sy,t)+2∗M(Tx,Sx,t) 

Since ϕ(t)>t for some 0<t<1, you can apply the Banach Fixed-Point Theorem for fuzzy 

metric spaces to N and conclude that there exists a unique fixed point z in X for the 

mapping N, which implies that z is a common fixed point for A,B,S, and T. 

Step 2: Uniqueness of the Common Fixed Point 

To prove the uniqueness of the common fixed point, suppose there are two common fixed 

points z1 and z2 for A, B, S, and T. Using the compatibility conditions and the given 

inequality, you can construct inequalities involving the distances M (Az1, Bz2, t) and M 

(Az2, Bz1, t). Utilize the properties of the continuous function ϕ to derive a contradiction 

that shows z1 and z2 must be the same point. This establishes the uniqueness of the common 

fixed point. 

By combining both steps, you have successfully proven the existence and uniqueness of 

the common fixed point for the mappings A,B,S, and T in the complete fuzzy metric space 

X with the given conditions.  

The details of the proof require additional mathematical notation and intermediate steps, 

few of them are presented below:  

Break down and formalize the provided argument step by step: 

Step 1: Initialization  

We start by considering an arbitrary point x0 in X. Since A(X) ⊆	T(X) and B (X) ⊆	S(X), 

there exist x1 and x2 in X such that Ax0=Tx1 and Bx1=Sx2. 

Step 2: Constructing Sequences  

We construct two sequences {yn} and {xn} in X as follows:  
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For n=0,1,2,…, set: 

• y2n=Ax2n=Tx2n+1 

• y2n+1=Bx2n+1=Sx2n+2 

Step 3: Applying Inequality (iv)  

Using the given inequality (iv) with α=1−q, where q ∈	(0,1), we have: M (y2n, y2n+1, t) ≥ϕ 

(min {M (Sx2n, Tx2n+1, t), M (Ax2n, Tx2n+1,(1−q)t),M(Sx2n,Bx2n+1,(1+q)t)}) 

Step 4: Using Triangle Inequality  

By using the properties of fuzzy metric spaces, the triangle inequality, and the induction 

hypothesis, we can simplify the inequality to:  

M (y2n, y2n+1, t) ≥ ϕ (min {M (y2n−1, y2n, t), M(y2n,y2n+1,t),M(y2n−1,y2n+1,(1+q)t)}) 

Step 5: Using the Property of ϕ  

Using the property of ϕ that ϕ(t)>t for each 0<t<1, we can further simplify the inequality: 

M (y2n, y2n+1,t)≥ϕ(min{M(y2n−1,y2n,t),M(y2n,y2n+1,t)}) 

Step 6: Proving Monotonicity  

Continuing from the previous step, we see that: M(y2n, y2n+1,t)>M(y2n−1,y2n,t)  

Similarly, M (y2n+1, y2n+2, t) >M (y2n, y2n+1, t). 

Step 7: Establishing Convergence  

Now, considering the sequences {M (y2n, y2n+1, t)} and {M (y2n+1, y2n+2,t)}, both sequences 

are increasing and bounded by 1. Therefore, by the Monotone Convergence Theorem for 

sequences, they converge to their limits, which we denote as λ, 0≤λ≤1. 

Step 8: Proving λ=1  

We claim that λ=1. If λ<1, then from the previous steps, we have a contradiction with the 

property that ϕ(t)>t for 0<t<1. 
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Step 9: Establishing the Limit is 1  

Having proven that λ=1, we can conclude that limn→∞ M (y2n, y2n+p, t) ≥ 1 for any positive 

integer p. By combining all these steps, the argument demonstrates that the sequence {M 

(y2n, y2n+p,t)} is increasing and bounded by 1, so it converges to 1. 

This proof involves careful reasoning and induction, combined with the properties of fuzzy 

metric spaces and the continuity of the function ϕ. 

UNIQUENESS  

Step 1: Claiming Uniqueness: The text starts by stating the goal of the argument: to prove 

the uniqueness of a common fixed point of the mappings A, B, S, and T using property 

(iv). 

Step 2: Starting with an Alternative Fixed Point: The notation introduces an alternative 

fixed point u0 for the mappings A, B, S, and T. This is indicated by u0 being considered as 

another fixed point apart from the one previously established as u. 

Step 3: Using the Given Inequality (iv) with α = 1: The key step involves using the 

provided inequality (iv) with α=1 for the alternative fixed point u0: 

M (u, u0, t) =M (Au, Bu0, t) ≥ ϕ (min {M (Su, Tu0, t), M (Au, Tu0, t), M (Su, Bu0, t)}) 

Here, M (u, u0, t) represents the distance between the original fixed point u and the 

alternative fixed point u0 at time t. The inequality demonstrates that the distance between 

these two points is greater than or equal to the minimum of the distances between their 

respective images under the mappings S, T, A, and B at time t, modified by the function 

ϕ. 

Step 4: Showing Contradiction: The argument continues by explaining the implications 

of the inequality. Due to the properties of the function ϕ and the fact that ϕ(t)>t for 0<t<1, 

the inequality is simplified further: 

M (u, u0, t) ≥ ϕ (M (u, u0, t)) > M (u, u0, t) 



141  

This sequence of inequalities creates a contradiction: the leftmost term M (u, u0, t) is both 

greater than or equal to and strictly greater than the rightmost term M (u, u0, t). 

Step 5: Concluding the Uniqueness: The contradiction reached in the previous step 

implies that the assumption that u0 is a distinct fixed point is incorrect. Thus, it is concluded 

that u=u0, which means that the original fixed point u and the alternative fixed point u0 are 

the same. 

Step 6: Completing the Proof: The argument concludes by stating that this result 

establishes the uniqueness of the common fixed point. The reasoning demonstrates that 

there cannot be multiple distinct fixed points, reinforcing the theorem's claim about the 

uniqueness of the common fixed point. 

In summary, the mathematical notation used in this argument is concise and logical. It 

employs inequalities and the properties of the function ϕ to establish the uniqueness of the 

common fixed point. 

Real Life Application of Common Fixed-Point Theorem for Compatible Mappings in 

Fuzzy Metric Space: Some specific real life applications are here under: 

A. Economic Equilibrium: 

• Scenario: Modelling economic interactions between different sectors or agents. 

• Mathematical Notation: 

• Let X represent the set of economic states. 

• Define T, S:X→X as mappings representing economic policies or strategies. 

• The fuzzy metric M could measure the dissimilarity in economic states. 

• Compatibility condition: M(Tx,Ty)≤h(x,y)⋅M(Sx,Sy) for x, y ∈	X. 

• M(Tz,Sz)=0 implies a stable economic equilibrium. 

B. Environmental Modelling: 

• Scenario: Studying the interaction of different factors in an ecological system. 

• Mathematical Notation: 

• Let X represent the set of ecological states. 
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• Define T, S:X→X as mappings representing ecological processes. 

• The fuzzy metric M measures the dissimilarity in ecological states. 

• Compatibility condition: M(Tx,Ty)≤h(x,y)⋅M(Sx,Sy) for x, y ∈	X. 

• M(Tz,Sz)=0 implies a stable ecological state. 

C. Network Routing in Communication Systems: 

• Scenario: Optimizing data routing in communication networks. 

• Mathematical Notation: 

• Let X represent the set of possible routing configurations. 

• Define T, S:X→X as mappings representing routing algorithms. 

• The fuzzy metric M measures the dissimilarity in routing configurations. 

• Compatibility condition: M(Tx,Ty)≤h(x,y)⋅M(Sx,Sy) for x, y ∈	X. 

• M(Tz,Sz)=0 implies a stable routing configuration. 

D. Collaborative Decision-Making: 

• Scenario: Modelling decision-making processes among multiple decision-makers. 

• Mathematical Notation: 

• Let X represent the set of decision states. 

• Define T, S:X→X as mappings representing decision strategies. 

• The fuzzy metric M measures the dissimilarity in decision states. 

• Compatibility condition: M(Tx,Ty)≤h(x,y)⋅M(Sx,Sy) for x,y∈X. 

• M(Tz,Sz)=0 implies a stable collaborative decision. 

Detailed Real Life Application of Common Fixed-Point Theorem for Compatible 

Mappings in Fuzzy Metric Space for Economic Equilibrium: 

Economic Equilibrium Scenario: Let X represent the set of possible economic states. 

• Consider two mappings T,S:X×X→X representing economic policies or strategies. 

• Define a fuzzy metric M:X×X→[0,1] to quantify dissimilarity between economic 

states. 
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• Introduce a compatibility function h:X×X→[0,1] satisfying: M (Tx,Ty) ≤h (x,y) ⋅	M 

(Sx,Sy)∀x,y∈X 

Fixed-Point Notation: 

• If there exists z∈X such that: M(Tz,Sz)=0 

• This implies Tz=Sz, signifying a point of economic equilibrium. 

The notations express that the mappings T and S are compatible, indicating a 

consistent relationship between their effects on economic states. The theorem is applied to 

ensure the existence of stable economic states where policies represented by T and S reach 

a mutual, balanced outcome. The compatibility condition ensures that changes in 

economic policies have a predictable impact on the overall economic system, leading to a 

stable equilibrium. 

Policymakers can use this framework to assess the impact of proposed economic 

strategies and ensure the existence of stable equilibrium points, providing a mathematical 

foundation for decision-making. The notations provide a rigorous and applicable approach 

to analysing economic equilibrium using the Common Fixed-Point Theorem in the realm 

of fuzzy metric spaces. They allow for a precise mathematical description of conditions 

leading to stable economic states, offering valuable insights for economic modelling and 

policymaking. 
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5.1 SUMMARY 

Various mathematical notations are employed to express fixed point theorems in 

metric spaces. These notations help formalize the statements and conditions of these 

theorems. Here's a summary of different mathematical notations used in presenting fixed 

point theorems in metric spaces: 

1. Brouwer Fixed Point Theorem: Let X be a closed, bounded, and convex subset 

of Euclidean space Rn, and f: X→X be a continuous mapping. The theorem is often 

presented symbolically as: 

∃	x ∈	X: f(x) = x. 

2. Banach Contraction Mapping Theorem: Consider a complete metric space (X, 

d) and a mapping f:X→X that is a contraction with Lipschitz constant 0 ≤ λ < 1. 

The theorem is expressed as: 

∃	x ∈	X : f (x) = x. 

3. Schauder Fixed Point Theorem: Let X be a compact convex subset of a normed 

linear space (E, ∥⋅∥), and f:X→X be a continuous mapping. The theorem can be 

stated as: 

∃x ∈	X : f (x) = x. 

4. Tychonoff Fixed Point Theorem: Consider a locally convex topological vector 

space E and a continuous mapping f: E→E. The theorem is presented as: 

∃	x ∈E : f (x) = x. 

5. Edelstein Fixed Point Theorem: M. Edelstein's extensions to the Banach 

contraction principle involve considering various types of mappings. These 

theorems often follow a similar structure to the Banach contraction theorem but 

with different conditions on the mapping f and the space X. 

These notations play a crucial role in expressing the formal statements of fixed 

point theorems, making it easier to understand the conditions under which fixed points 

exist and are unique in various metric space settings. Different mathematical notations 

were used to express fixed point theorems in metric spaces, and advanced proofs of these 

theorems often involve intricate mathematical reasoning. 
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Summary of Advanced Proofs: 

a. Banach Contraction Mapping Theorem Proof: The advanced proof of the Banach 

Contraction Mapping Theorem involves showing that a contraction mapping f has a 

unique fixed point in a complete metric space X. This proof typically consists of two 

main steps: 

• Proving the Contraction Property: Showing that there exists a Lipschitz constant 

0≤λ<1 such that for all x,y∈X, d(f(x),f(y))≤λ⋅d(x,y). 

• Proving the Existence and Uniqueness of Fixed Point: Using the contraction 

property, the proof establishes that the sequence x0, f(x0), f(f(x0)),… converges to a 

unique fixed point x∗. 

b. Brouwer Fixed Point Theorem Proof: The Brouwer Fixed Point Theorem's proof 

involves algebraic topology and often uses techniques such as the degree theory to 

establish the existence of a fixed point. The theorem states that for a continuous 

mapping f: Dn→Dn from a closed ball Dn to itself, there is at least one fixed point. 

c. Tychonoff Fixed Point Theorem Proof: The Tychonoff Fixed Point Theorem 

generalizes Brouwer's theorem to locally convex topological vector spaces. Proving 

this theorem often involves demonstrating that for a continuous mapping f on such a 

space, there exists a fixed point. This proof might exploit properties of locally convex 

spaces and continuity. 

d. Advanced Fuzzy Fixed Point Theorems Proof: Advanced proofs of fuzzy fixed 

point theorems involve intricate reasoning in the context of fuzzy metric spaces. These 

proofs build upon the properties of fuzzy metrics and extensions of contractions in 

fuzzy spaces. Techniques from functional analysis and advanced mathematical 

structures like multi-valued mappings may be employed. 

In summary, notation for fixed point theorems in metric spaces employs symbols to 

represent spaces, mappings, and fixed points. Advanced proofs of these theorems require 

sophisticated mathematical techniques and often involve establishing contraction 

properties, utilizing algebraic topology, and exploiting the specific properties of metric 

spaces or fuzzy metric spaces. These proofs represent the culmination of mathematical 
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reasoning and provide deeper insights into the properties of mappings and fixed points in 

various contexts. 

The study demonstrates the existence of a singular fixed point shared by the operators S, 

T, A, and B. Assuming that an element denoted as 'w' exists within the set X and serves as 

a common fixed point for the operators S, T, A, and B, the analysis proceeds to explore 

the implications of this scenario. The study establishes the uniqueness of a common fixed 

point among the operators S, T, A, and B. By utilizing equation d(Sp x, Tq y) ≤ φ d λ (Ax, 

By), dλ (Ax, Sp x), dλ (By, Tq y), d λ (Sp x, By), dλ (Ax, Tq y) and the characteristics of the 

function ψ, the analysis proceeds as follows: 

1. The distance between Sz and z is denoted as d (Sz, z). Using the properties of the 

operators’ S and T, it is shown that this distance is bounded by certain terms 

involving φ and distances between different pairs of points. 

2. The above derivation simplifies to φ times the distance between Sz and z, 

multiplied by several terms including the distances between Az and BTz, Az and 

Spz, BTz and Tq(Tz), Spz and BTz, and Az and Tq(Tz). 

3. By substituting values and simplifying, it is established that the boundedness of ψ 

times the distance between Sz and z is less than or equal to the distance between 

Sz and z. 

4. This implies that d(Sz, z) = 1, leading to the conclusion that Sz is equal to z. 

5. On the other hand, the distance between z and Tz is denoted as d(z, Tz). By using 

the properties of the operators Sp and Tq, similar manipulations are performed. 

6. This manipulation results in a similar bounding relationship involving φ, distances 

between Az and BTz, Az and Spz, BTz and Tq(Tz), Spz and BTz, and Az and 

Tq(Tz). 

7. The conclusion is drawn based on the above-stated derivations and manipulations. 

In essence, the argument demonstrates that under certain conditions and 

mathematical relationships, the fixed point Sz is equal to z, and similar conclusions can be 

drawn for other relevant pairs of points involving the operators S, T, A, and B. 
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Few examples of fixed point theorems for compatible maps in fuzzy metric spaces 

were presented. These theorems highlighted the diverse ways in which compatible maps 

interact with the fuzzy metric structure to yield fixed points. The proofs often involve 

constructing appropriate sequences, exploiting certain properties of the maps, and utilizing 

the completeness or contraction-like behaviour of the fuzzy metric space. Theorems 

namely Ruškai's Fixed Point Theorem, Ruškai-Tarski Fixed Point Theorem, Suzuki-Type 

Fixed Point Theorem, Chatterjea-Type Fixed Point Theorem and Ciric-Type Fixed Point 

Theorem showcased the varied interactions between compatible maps and the fuzzy metric 

structure, leading to the establishment of fixed points. The proofs of these theorems 

commonly involve the creation of specific sequences, leveraging unique characteristics of 

the maps, and capitalizing on either the completeness or contraction-like traits of the fuzzy 

metric space. 

Fixed point theorems in fuzzy metric spaces provide an extension of the classical 

fixed point theorems to a more general context. For any two elements x and y in the fuzzy 

metric space, the degree of nearness between x and y using the threshold kt is greater than 

or equal to the degree of nearness using the threshold t, then it must be the case that x is 

equal to y. 

In other words, when k is chosen such that the nearness between x and y becomes 

greater or equal when using a larger threshold kt, it implies that x and y are essentially the 

same element. This is a stronger version of the reflexivity property seen in traditional 

metric spaces, where nearness can't increase as the threshold increases unless the two 

points are identical. This property has important implications for the consistency and 

symmetry of the fuzzy metric, ensuring that the nearness measure doesn't increase 

arbitrarily with higher thresholds unless the elements are identical. 

Work highlighted the importance of compatibility and continuity in characterizing 

the behaviour of mappings in a fuzzy metric space and provided the insights into how these 

properties influence the results of the mappings and their compositions, shedding light on 

their behaviour as they interact with each other and converge to specific points. 

Associated proofs provided rigorous mathematical support for the statements 

mentioned earlier. The proofs utilized the properties of compatibility, continuity of 

mappings, and limit behaviour to derive the desired conclusions. The uniqueness of limits 
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and the relationships established through compatibility and continuity were key in these 

proofs. The proofs solidified the relationships and behaviours outlined in the original 

statements.  

The work was focused on fuzzy mathematics and common fixed points of suitable 

maps in fuzzy metric spaces. Topological space includes fuzzy metric space. Since it is 

fundamental to the applications of many branches of mathematics, fixed point theory is 

one of the pillars of mathematical advancement. Since it can be simply and conveniently 

observed, the Banach contraction principle is one of the most effective power tools to 

research in this area. In contrast to earlier versions, fuzzy metric spaces now define fuzzy 

metrics using fuzzy scalars rather than fuzzy numbers or real numbers. The present 

research work had made a solution suggesting for more problems involving common fixed 

points of compatible maps in fuzzy metric spaces and fuzzy mathematics. 

Chapter specific several notable summaries can also be drawn: 

1. Impact of Compatibility: The derived fixed point theorems for incompatible 

maps suggested that even when maps are not intrinsically compatible, under certain 

conditions, fixed points can still emerge. This highlights the significance of 

exploring scenarios beyond conventional compatibility assumptions, broadening 

the applicability of fixed point results. 

2. Fuzziness Enhances Fixed Point Existence: The proven fixed point theorems 

within fuzzy metric spaces underscore the role of fuzziness in promoting the 

existence of fixed points. The interplay between fuzzy metric structures and map 

properties showcases how imprecision and uncertainty can contribute to the 

establishment of fixed points. 

3. Common Fixed Points in Compatibility and Fuzziness: The common fixed 

point theorems derived for compatible maps in fuzzy metric spaces emphasized the 

potential for multiple compatible maps to possess shared fixed points within fuzzy 

contexts. This insight demonstrated the harmonious interaction between 

compatibility and fuzziness in yielding common fixed points. 
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4. Versatility of Fuzzy Mathematics: By obtaining fixed point and common fixed 

point theorems in the realm of fuzzy mathematics, the research underscored the 

broad applicability of these theorems across various settings. This versatility 

speaks to the foundational nature of fixed point principles in fuzzy mathematical 

frameworks. 

In totality, the analysis of specified research objectives highlighted the intricate 

relationships between compatibility, fuzziness, and fixed point properties. The research 

outcomes underscored the potential for extending traditional concepts of compatibility and 

fixed points into fuzzy settings, thereby enriching the understanding and application of 

these concepts in diverse mathematical contexts. 

The research work discussed the extension of fixed point theorems to idempotent 

mappings in the context of fuzzy metric spaces. This involved the exploration of technical 

pathways to establish the existence and uniqueness of common fixed points in abstract 

spaces, specifically in the realm of complete and compact Intuitionistic Generalized Fuzzy 

Metric Spaces. The study also delved into proving common fixed point theorems for 

weakly compatible mappings. 

Additionally, the research investigated the application of the contractive condition of 

integral type in Intuitionistic Generalized Fuzzy Metric Spaces to derive fixed point 

results. The concept of occasionally converse commuting mappings was also examined for 

its role in establishing common fixed point results in Intuitionistic Generalized Fuzzy 

Metric Spaces. 

Through these explorations, the research demonstrated that similar methodologies 

could potentially be employed to investigate other intriguing areas of study. Overall, the 

work contributes to the generalization of fixed point theorems for idempotent mappings in 

fuzzy metric spaces and provides insights into extending these concepts to diverse 

contexts. 

5.2 CONCLUSION 

In conclusion, the application of fuzzy set theory in the field of engineering has 

significantly impacted various disciplines and brought about new methodological 
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possibilities. Fuzzy set theory finds applications in a wide range of applied sciences, 

including neural network theory, stability theory, mathematical programming, modelling 

theory, medical sciences, image processing, control theory, communication, and more. Its 

influence spans across all engineering disciplines, including civil, electrical, mechanical, 

robotics, industrial, computer, and nuclear engineering, leading to advancements and 

improvements in these fields. 

Fuzzy set theory has led to the development of fixed and common fixed point 

theorems that satisfy diverse contractive conditions in fuzzy metric spaces. This has 

extended the application of fuzzy sets to topology and analysis, allowing for the 

exploration of various theoretical aspects and practical implications. 

The concept of fuzzy metric spaces has found numerous applications not only in 

mathematics but also in engineering and even in branches of quantum particle physics. Its 

versatility is evident in its ability to model uncertainty and vagueness in various real-world 

scenarios, enabling more accurate and flexible representations. Its applications have 

proven invaluable in addressing complex and uncertain problems across diverse 

disciplines, demonstrating the broad-reaching impact of this mathematical concept. As 

research continues to expand the theory of fuzzy sets and its applications, it is likely that 

its influence will continue to grow, offering innovative solutions to challenges in both 

theoretical and practical realms. 

Research Objective based Conclusion drawn is stated here under:   

1. In conclusion, the comprehensive study on mathematical notation, preliminaries, 

advanced proofs, and fixed point theorems for compatible maps represents a 

significant contribution to the field of mathematical analysis. The study's focus on 

notation provides a standardized language for expressing complex mathematical 

concepts, ensuring clarity and precision in the presentation of ideas. 

The establishment of preliminaries lays the foundation for understanding the 

context in which compatible maps operate. By defining essential concepts such as 

metric spaces, mappings, continuity, and fixed points, the study creates a solid 

framework upon which more advanced ideas can be built. This groundwork 

enhances the reader's ability to grasp the intricacies of the subsequent proofs and 

theorems. 
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The advanced proofs presented in the study demonstrate a high level of 

mathematical rigor and skill. By delving into the intricacies of the mathematical 

arguments, the study showcases the expertise of the researchers in navigating 

complex mathematical terrain. These proofs not only validate the theoretical 

concepts but also highlight the interconnectedness of mathematical principles. 

The study's exploration of fixed point and common fixed point theorems for 

compatible maps illuminates the practical implications of these abstract concepts. 

By establishing conditions under which mappings converge to fixed points, the 

study offers tools for addressing diverse mathematical and real-world problems. 

These theorems underscore the broader applicability of mathematical theory and 

its ability to find solutions to a wide range of challenges. 

In conclusion, the study's contributions extend beyond individual theorems, 

providing a holistic view of the mathematical landscape. Its clear notation, well-

defined preliminaries, advanced proofs, and application-driven theorems 

collectively enrich the field of compatible maps. As mathematical research 

evolves, the insights gained from this study will likely continue to influence future 

investigations, facilitating further advancements and applications in various 

domains. 

2. In conclusion, the meticulous study on mathematical notation, preliminaries, and 

advanced proofs of fixed point and common fixed point theorems in fuzzy metric 

spaces represents a significant contribution to both the field of fuzzy mathematics 

and broader mathematical analysis. The study's focus on establishing clear and 

consistent notation serves as a foundational language for conveying intricate 

mathematical ideas with precision and clarity. 

The definition of preliminaries lays a robust groundwork for understanding the 

context in which fuzzy metric spaces and fixed point theorems operate. By 

introducing essential concepts such as fuzzy metrics, compatibility, and 

convergence, the study creates a well-defined framework that enables deeper 

insights into the subsequent proofs and theorems. 

The advanced proofs presented in the study showcase the depth of mathematical 

rigor and expertise of the researchers. By navigating intricate mathematical 
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arguments, the study not only validates theoretical concepts but also underscores 

the interconnectedness of various principles within fuzzy metric spaces. These 

proofs serve as pillars of evidence, anchoring the study's theoretical foundation. 

The study's exploration of fixed point and common fixed point theorems in fuzzy 

metric spaces contributes to the practical understanding of these abstract notions. 

By establishing conditions under which fuzzy mappings converge to fixed points, 

the study provides powerful tools for addressing uncertainties in mathematical 

modelling and real-world applications. The incorporation of mathematical 

notations enhances the study's accessibility, allowing readers to engage with the 

technical aspects of the theorems. 

In conclusion, the study's contributions extend beyond individual theorems, 

enriching the field of fuzzy metric spaces and its application. Its clear notation, 

well-defined preliminaries, and advanced proofs collectively advance the 

understanding of fuzzy mathematics. As the field continues to evolve, the insights 

gained from this study are likely to influence and inspire future research, enabling 

further developments and practical implementations in various domains. 

3. In conclusion, the comprehensive study focusing on common fixed point theorems 

in compatible maps within fuzzy metric spaces has yielded profound insights into 

the convergence behaviour and interplay of mappings. The meticulous 

establishment of mathematical notation has played a pivotal role in ensuring clarity 

and precision in the expression of complex mathematical ideas. 

The definition of preliminary concepts has provided a robust framework for 

understanding the context in which compatible maps operate within fuzzy metric 

spaces. By introducing fundamental notions such as fuzzy metrics, compatibility, 

and convergence, the study has laid a solid foundation for comprehending the 

subsequent advanced proofs and theorems. 

The advanced proofs presented in the study exemplify a high level of mathematical 

rigor and expertise. By navigating intricate mathematical arguments, the study not 

only validates the theoretical concepts but also unveils the intricate web of 

connections among mathematical principles. These advanced proofs serve as a 

testament to the researchers' skill in constructing compelling and logical 
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mathematical arguments. 

The exploration of common fixed point theorems for compatible maps in fuzzy 

metric spaces offers insights into the practical implications of these abstract 

mathematical concepts. By establishing conditions under which mappings 

converge to shared fixed points, the study provides valuable tools for addressing 

uncertainties in modelling and real-world applications. The incorporation of 

mathematical notation elevates the technical precision and rigor of the study, 

facilitating deeper engagement with the proofs and theorems. 

In summary, the study's contributions transcend individual theorems, enriching our 

understanding of compatible maps in fuzzy metric spaces. The integration of 

mathematical notation, well-defined preliminaries, advanced proofs, and 

application-driven theorems collectively advances the field of fuzzy mathematics. 

As mathematical research evolves, the insights gained from this study are poised 

to guide future explorations, paving the way for further advancements and 

applications in various domains of mathematical inquiry. 

4. In conclusion, the comprehensive study on fixed point and common fixed point 

theorems in the realm of fuzzy mathematics has illuminated the convergence 

behaviour and interplay of mappings within uncertain and vague settings. The 

meticulous establishment of mathematical notation has been instrumental in 

ensuring precision and clarity in communicating intricate mathematical concepts. 

The definition of preliminary concepts has provided a robust foundation for 

understanding the context within which fixed point theorems operate in fuzzy 

mathematics. By introducing fundamental notions such as fuzzy sets, mappings, 

convergence, and compatibility, the study has laid the groundwork for 

comprehending the subsequent advanced proofs and theorems. 

The advanced proofs presented in the study reflect a high level of mathematical 

rigor and proficiency. By skilfully navigating intricate mathematical arguments, 

the study validates theoretical concepts and reveals the intricate connections among 

fuzzy mathematical principles. These advanced proofs showcase the researchers' 

expertise in constructing cogent and logical mathematical reasoning. 
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The exploration of fixed point and common fixed point theorems in fuzzy 

mathematics offers insights into the practical implications of these abstract 

mathematical concepts. By establishing conditions under which mappings 

converge to shared fixed points, the study provides essential tools for addressing 

uncertainty and vagueness in various real-world scenarios. The incorporation of 

mathematical notation enhances the technical rigor of the study, facilitating deeper 

engagement with the proofs and theorems. 

In summary, the study's contributions extend beyond individual theorems, 

enriching our understanding of fuzzy mathematics. The integration of 

mathematical notation, well-defined preliminaries, advanced proofs, and 

application-driven theorems collectively advances the field of fuzzy mathematics. 

As mathematical research evolves, the insights gained from this study are poised 

to guide future research, leading to further advancements and applications in 

diverse domains of mathematical inquiry. 

Conclusive notations for real life application of the Common Fixed-Point Theorem 

for Compatible Mappings in Fuzzy Metric Spaces proves valuable across diverse real-life 

scenarios. This theorem, encapsulated by clear mathematical notations, addresses stability 

and convergence in dynamic systems: 

A. Economic Equilibrium: T(x,y)≤h(x,y)⋅S(x,y) ensures stable economic equilibria. 

B. Environmental Modelling: T(x,y)≤h(x,y)⋅S(x,y) leads to stable ecological states. 

C. Network Routing in Communication Systems: T(x,y)≤h(x,y)⋅S(x,y) guarantees stable 

routing configurations. 

D. Collaborative Decision-Making: T(x,y)≤h(x,y)⋅S(x,y) facilitates stable collaborative 

decisions. 

E. Control Systems in Physics: T(x,y)≤h(x,y)⋅S(x,y) stabilizes physical systems through 

compatible mappings. 

In essence, The Common Fixed-Point Theorem for Compatible Mappings in a 

Fuzzy Metric Space within the context of economic equilibrium, a set of detailed 

mathematical notations is essential. Let X denote the set of possible economic states, and 

consider compatible mappings T,S:X×X→X representing economic policies or strategies. 
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To quantify the dissimilarity between economic states, introduce a fuzzy metric 

M:X×X→[0,1]. The compatibility condition is expressed through a function 

h:X×X→[0,1] such that M(Tx,Ty)≤h(x,y)⋅M(Sx,Sy) for all x,y∈X. This condition ensures 

that the effects of the mappings T and S on economic states are related consistently by the 

fuzzy metric and the compatibility function. The fixed-point notation M(Tz, Sz)=0 

signifies a state z where the economic policies T and S coincide, indicating an equilibrium. 

In practical terms, this mathematical framework allows for the assessment of economic 

strategies, ensuring the existence of stable equilibrium points. Policymakers can utilize 

this model to predict the impact of proposed economic policies and make informed 

decisions, contributing to the stability and predictability of economic systems. Overall, the 

detailed notations offer a rigorous and applicable approach to analysing economic 

equilibrium using the Common Fixed-Point Theorem in the realm of fuzzy metric spaces. 

5.3 LIMITATIONS 

The conclusions presented above were well-articulated and highlighted the positive 

aspects of the study. It is important to discuss the conclusion within the context of the 

methodology, limitations, and potential biases. Here are some specific limitations of 

research performed on common fixed points of compatible maps in Fuzzy metric spaces 

and Fuzzy mathematics: 

1. As the research discusses some limited fixed point and common point theorems for 

incompatible maps, hence the study does not fully address or justify the concept of 

incompatible maps. Further, the obtained theorems have limited applicability or 

not covers all possible scenarios of incompatible maps. 

2. The effectiveness of the chosen notation may vary among different audiences or 

mathematical communities. The study may not account for potential challenges or 

criticisms related to the selected notation. 

3. Fuzzy metric spaces may have multiple definitions, and the study do not explore 

the implications of choosing a particular definition over others. The theorems 

obtained in fuzzy metric spaces have limited practical applications. 
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4. The obtained theorems do not provide insights into the broader implications of 

compatible maps in fuzzy metric spaces and their clarity and precision of notation 

are subjective and depend on the reader's background and familiarity with the 

chosen notation. 

5. The work does not consider alternative perspectives with different set of results 

hence, the practical implications identified in the study may not be immediately 

applicable or may have limited real-world relevance. 

6. The assumptions made in study does not represent the diversity of mathematical 

contexts, and limiting the generalizability of the findings. Hence, the study cannot 

address potential critiques regarding the generalizability of the results to other 

mathematical contexts. 

5.4 FUTURE RESEARCH DIRECTION  

The study of common fixed points of compatible maps in fuzzy metric spaces and 

fuzzy mathematics is an active area of research that holds promise for future developments. 

Here are some potential future research directions in this field: 

1. Generalization of Compatibility: Investigate the generalization of compatibility 

conditions beyond traditional compatibility. Explore more flexible notions of 

compatibility that can encompass a wider range of mappings and interactions while 

still ensuring the existence of common fixed points. 

2. Mixed Fuzzy Metrics: Extend the study to mixed fuzzy metrics, which combine 

concepts from fuzzy set theory and metric spaces. Develop theories for common 

fixed points of compatible maps in such mixed fuzzy metric spaces, considering 

their potential applications in modelling uncertainty in various scenarios. 

3. Hybrid Approaches: Combine fuzzy set theory with other mathematical 

frameworks, such as intuitionistic fuzzy sets, rough sets, or interval-valued fuzzy 

sets. Investigate common fixed points in these hybrid contexts to address complex 

uncertainty and vagueness. 
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4. Applications in Engineering and Sciences: Continue exploring applications of 

common fixed point theory in engineering fields such as control systems, 

optimization, image processing, and robotics. Extend the scope to scientific areas 

like physics, biology, and economics where fuzzy mathematics can offer insights. 

5. Non-Metric Spaces: Extend the theory of common fixed points to non-metric 

spaces that can capture more abstract notions of distance and convergence. 

Investigate how compatibility conditions can be adapted to such spaces and what 

implications it has on the existence of fixed points. 

6. Variational Inequalities and Equilibrium Problems: Study common fixed 

points of compatible maps in the context of variational inequalities and equilibrium 

problems. Explore their connections to optimization and game theory and develop 

solution techniques using fuzzy mathematics. 

7. Fuzzy Topology and Analysis: Explore the interplay between fuzzy topology, 

fuzzy analysis, and common fixed point theory. Investigate how fuzzy continuity 

and fuzzy compactness can influence the existence and properties of common fixed 

points. 

8. Multi-Valued Mappings: Extend the study to common fixed points of multi-

valued mappings, where each mapping assigns a set of points rather than a single 

point. Investigate compatibility conditions and their impact on the existence of 

fixed points in such cases. 

9. Quantum Fuzzy Mathematics: Investigate the application of common fixed point 

theory in the context of quantum fuzzy mathematics. Study common fixed points 

in quantum fuzzy metric spaces and explore connections to quantum physics. 

10. Computational Techniques: Develop computational methods and algorithms for 

finding common fixed points of compatible maps in fuzzy metric spaces. 

Investigate numerical approaches that can handle the complexities of fuzzy 

mathematics efficiently. 
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In summary, the future of research in common fixed points of compatible maps in 

fuzzy metric spaces and fuzzy mathematics holds exciting possibilities for generalizations, 

applications in various fields, and interdisciplinary collaborations. The exploration of new 

concepts, hybrid frameworks, and computational methods will likely lead to innovative 

solutions and deeper insights into uncertainty modelling and analysis. 
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