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3.1 INTRODUCTION AND PRELIMINARIES OF COMPLETE
MULTIPLICATIVE METRIC SPACE

Since its introduction by Banach in 1922!!], the Banach contraction principle
has sparked considerable interest in the study of fixed and common fixed point
theorems for maps!?!. Over the years, scholars have extended this principle to various
spaces, such as quasi-metric, fuzzy metric, 2-metric, cone metric, partial metric, and
generalized metric spaces!. In 2008, Bashirov proposed the concept of multiplicative
metric spaces and delved into multiplicative calculus, culminating in the establishment
of its fundamental theorem. Building upon this foundation, in 2012, Florack and Assen
explored the application of multiplicative calculus in the analysis of biological

images!*.
Definition 3.1:) Consider a nonempty set 4. A multiplicative metric is a function
d:AxA—R+ that fulfills the following conditions:
1. d(a,b)>1 for all a,b€A, with equality d(a,b)=1 if and only if a=b (referred to as (M1).
2. d(a,b)=d(b,a) for all a,b€A (denoted as (M2)).

3. d(a,b)<d(a,c)d(c,b) for all ab,cEA (satisfying the multiplicative triangle
inequality) (M3). The pair (4,d) forms a multiplicative metric space.

Definition 3.2:(%! Given a multiplicative metric space (4,d), a sequence {a,} in 4, and a€4,
if for every multiplicative open ball B(a)={bld(a,b)<c} with e>1, there exists a natural
number NEN such that »>N implies a,€B(a), then {a,} is termed multiplicative convergent

to a, denoted as a,—a as n—oo.

Proposition 3.1:!7 For a multiplicative metric space (4,d), a sequence {a,} in 4, and a€4,

anp—a as n—oo if and only if d(a,,a)—1 as n—o.

Definition 3.3: Let (4,d) be a multiplicative metric space!® and {a,} be a sequence in A4.
The sequence {a,} is labelled a multiplicative Cauchy sequence if, for every e>1, there

exists a positive integer NEN such that d (a., am)<e for all n,m>N.

Proposition 3.2: For a multiplicative metric space!® (4,d) and a sequence {a,} in 4, {a,}

is a multiplicative Cauchy sequence if and only if d(an,an)—1 as n,m—oo.

Definition 3.4: A multiplicative metric spacel®! (4,d) is declared multiplicative complete
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if every multiplicative Cauchy sequence in (4,d) is multiplicative convergent in 4.

Definition 3.5: Let (4,d4) and (B,ds) be two multiplicative metric spaces™), and £ 4—B be a
function. f'is termed multiplicative continuous at a€ A4 if for every e>1, there exists 0>1

such that f{Bs(a))cBs(f(a)).

Proposition 3.3: For multiplicative metric spaces' (4,d,) and (B,dg), a mapping f:A— B,
and any sequence {a,} in A4, fis multiplicative continuous at a€4 if and only if fla,)—fa)

for every sequence {a,} with a,—a as n—o.

Proposition 3.4: Given a multiplicative metric space (4,d4), sequences {a,} and {b,} in 4

such that a,—a and b,—b as n—oo, where a,b€A, d(an,bn)—d(a,b) as n—o.
Definition 3.6: The self-maps fand g of a set 4 are called commutative if fga=gfa for all

a€A.

Definition 3.7: Suppose f and g are two self-mappings of a multiplicative metric space
(A,d)1°. The pair (f.q) are called weak commutative mappings if d(fga,qfa)< d(fa,qa) for
all a€A.

Definition 3.8: Let (4,d) be a multiplicative metric space, and let f,4—A be called a
multiplicative contraction if there exists a real constant A€(0,1) such that d(f(a)f(b))<
d(a,b)/. for all a,hbEA.

Theorem 3.1: Let (4,d) be a multiplicative metric space, and let /:4—A be a multiplicative

contraction. If (4,d) is complete, then f'has a unique fixed point.

Theorem 3.2: Let P,Q,M, and N be self-mappings of a multiplicative metric space 4, they

satisfy the following conditions:

o  P(A)CNA), XA)cM(4);

e Mand P are weak commutative, N and Q are also weak commutative;
e oneof P, O, M, and N is continuous;

o d(Pa,Qb)<{max{d(Ma,Nb),d(Ma,Pa),d(Nb,0b),d(Pa,Nb),d(Ma,0Qb)}}, 1€(0,1/2), for
all a,b€A. Then P, O, M, and N have a unique common fixed point.
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Definition 3.9: The self-maps fand g of a multiplicative metric spacel!!! (4,d) are said to

be compatible if lim d(fg(an),qf(an))=1, whenever {a.} is a sequence in 4 such that lim
m—0oo

m—oo

fay=lim ga,=t, for some t€A.
m—oo

Definition 3.10: Suppose that f'and ¢ are two self-maps of a multiplicative metric space
(4, d). The pair (f, g) are called weakly compatible mappings if fla)=g(a) for a€EA implies
fq(a)=qf(a). That is, d(fa,qa)=1 implies d(fq(a),qfla))=1.

Remark 3.1: Commutative mappings must be weak commutative mappings, weak
commutative mappings must be compatible, compatible mappings must be weakly

compatible, but the converse is not true.

Example 3.1: Let A=R and (4,d) be a multiplicative metric space defined by d(a,b)=e* I
for all a,b in 4. Let fand g be two self-mappings defined by fla)=a’ and g(a)=2—a. Then

dmam)’q(am))= elam—1|.|a2m+am+2| —1ifa,—1.
iff am—d (fqam, qfam):e6|am—1|2 =1 ifa,—]

Thus fand q are compatible. Note that d(f7(0),gf(0))=d(8,2)=e*>e*=d(0,0)=d(£{0),4(0)), so

the pair (f,q) is not weakly commuting.

Example 3.2: Let 4=[0,+x), (4,d) be a multiplicative metric space defined by
d(a,b)=e!“"! for all a,b in A. Let fand ¢ be two self-mappings defined by:
fa={a,if0<a<22ifa=24if2<a<+ow
ga={4—-qaif0<a<?2?2ifa=27if2<a<+oo

By the definition of the mappings of f and ¢, only for a=2, fa=qa=2, at this time
fqa=qfa=2, so we see the pair (f,q) is weakly compatible. For a,=2—1/m€(0,2), from the
definition of the mappings of f and ¢g we have flam)=g(an)=2, but
d(fq(am),qflam))=e*m=e*#1, so the pair (f.q) is not compatible.

Let @ denote the set of functions ¢:[1,00]°>—[0,00) satisfying:
e ¢ isnon-decreasing and continuous in each coordinate variable;

b for Zlafor tzla l//(t):max{(ﬂ(t,t,t,l,t),(ﬂ(t,t,t,t,l),(ﬂ(t,l,l,t,t),(ﬂ(l,t,l,t,1),(0(1,1,t,1,t)}§t.

From now on, unless otherwise stated, we choose ¢ € @.
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THEOREM 3.2: Let (4, d) be a complete multiplicative metric space, P, Q, M, and N
be four mappings of A into itself. Suppose that there exists /. € (0, 1/2) such that P(X) C
NX), Q(X) cM(X), and

d(Pa, Ob) < ¢ d(Ma, Nb), d(Ma, Pa), d(Nb, Ob), d(Pa, Nb), d(Ma, ..(3.1)

Ob)
for all a, b € A. Assume one of the following conditions is satisfied.

a. FEither M or P is continuous, the pair (P, M) is compatible and the pair (Q, N) is

weakly compatible.

b. Either N or Q is continuous, the pair (Q, N) is compatible and the pair (P, M) is

weakly compatible.
Then P, Q, M, and N have a unique common fixed point.

Proof : Let ao € A. Since P(A) € N(A) and Q(4) € M(A), there exist a1, ax € A such
that yo = Pao = Nao and y1 = Qa1 = Mai. By induction, there exist sequences {a,} and

{vn} in A such that

Y2, = Paxy = Naxn+1, Y1 = Qaonr1 = Maon+2 .(3.2)

forallm=0,1,2,....
Next, we prove that {y,} is a multiplicative Cauchy sequence in 4. In fact, Vn € N, from
(3.1), (3.2), and the property of y we have
d(yan, yan+1) = d(Pazn, Qazn+1)
< ¢ d"(Maan, Nazn+1), d(Maon, Paz,), d'(Nacni1, Qazn1),

d(Pazn, Naon+1), d(Mazn, Qazn+1)
= 0 d'V2n1, Y2n), dV2nt, Y2n), @ G2ny V2ni1), dGony V2n), d'(V2n-2, Yoni1)
<@ dWmr, yu), A1, Yan), dVan, Yane1), 1,

A1, Yan) - A2, Yanr1)

<o d'3an1, yan) - A, Yane1), @Gant, Yan) - dV2ny Yant1),
A1, Yan) - @Gon, yann1), 1, dGant, yan) - dVany Yant1)
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<y d a1, yan) - dVan, Yant1)
<d' 1, yan) - @G2n, yans1).

This implies that
A2, yane1) < & anc1, yan)= d (Van-1, Yan). .(3.3)

h=./1-1€ (0, 1).

Similarly, using (3.1), (3.2), and the property of v, we have

d(yan+1, vane1) = d(Qaon+1, Paze1)= d(Pazn+1, Qazn+1)

< aﬂ(Maznﬂ, Nazp+1), di(Maznﬂ, Pazp+1), aﬂ(Naznﬂ, Qaorn+1), f(Pa2n+1, Nazp+1),

d(Mazni2, Qazns1)

= o d'(Van2, ), W21, Yan), A2, Yau1), dVane2, Yan), @ G2net, Yans1)

< @ d' Vo, yanr), dB2n1, yani1), d2n, Yani2), Ao, yon1) - dVantt, yana), 1

<@ dan, yant1) - dGanit, Yani2), dGany Vane1) - dGane2, Vane1), d2n, yoni2) - d'(Vanea,

Vo), 2, ane1) - dVant1, Yanea), 1)
<y dan, yant1) - dGans1, Yane2)

< d' W, yonr1) - dVant1, Yans2).
This implies that
A1, yoni2) < &V oy yan1)= d (Van, Yant1) .(3.4)
It follows from (3.3) and (3.4) that, for all » € N, we have
AWn, Y1) S d'Gn1, o) < A" (ua, yu1) < - < dM (o, ).
Therefore, for all n, m € N, n < m, by the multiplicative triangle inequality we obtain
AWn, ym) < dWn, yn+1) - dWnet, Yur2) dVm-1, yim)

< d" (yo, 1)+ d"*t (3o, y1) dPm=1 (o, 1)

hn

< di-% (o, y1)-
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This implies that d(y,, ym) — 1 (n, m — ). Hence {y,} is a multiplicative Cauchy se-

quence in 4. By the completeness of 4, there exists z € 4 such that y, — z (n — ).
Moreover, because
{yan} = {Pazx} = {Naz,+1} and {y2,+1} = {Qazn+1} = {Maon+2}

are subsequences of {y,}, we obtain

Pax= Naxn+1= Qazx+1=Mazn+2=z. .(3.5)

Next, we prove z is a common fixed point of P, O, M, and N under the condition (a).
Case 1: Suppose that M is a continuous, then limy—. MPaz, = limy—« MPaz, = Mz. Since
the pair (P, M) is compatible, from (3.5) we have

lim d (PMaz,, MPa>,)= lim d(PMaz,, Mz) =1,
n—->oo

n—oo

that is, lim PMay, = Mz. By using (3.1) and (3.2) we have

n—-oo

d(PMazn, Qaz+1) < ¢ d (MPaos, Naze1), d* (MPazn, PMaoy), d(Naxs1, Qaznt1),
d(PMaay, Naawi1), d (MPazn, Qazn1))
Taking n —o0 on the two sides of the above inequality, using (3.5) and the property of v,
we get
dMz,z) < ¢ d'(Mz, 2), d(Mz, Mz), d(z, 2), d(Mz, 2), d'(Mz, z)

=pd(Mz, z), 1,1, d(Mz, z), d(Mz, 2)

<y d(Mz, z)
< d(Mz, z).
This means that d(Mz, z)= 1, that is, Mz = z. Again applying (3.1) and (3.2), we obtain
d(Pz, Qazni1) < ¢ d(Mz, Naznr1), d'(Mz, Pz), d(Naznr1, Qazat),
d'(Pz, Nazn1), d'(Mz, Qazut).

Letting n —o0 on both sides in the above inequality, using Mz = z, (3.5), and the property

of v, we can obtain
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d(Pz,z)<¢ d”(z, 2), aﬁ(z, Pz), d”(z, 2), aﬁ(Pz, 2), aﬂ(z, )
=9 1,dPz,2), 1, d(Pz, z), 1
<y d(Pz,2)

<d"(Pz, z).

This implies that d(Pz, z)= 1, that is, Pz = z.
On the other hand, since z = P(z) € P(4) © N(A), there exists z* € 4 such that z = Pz = Nz*.
By using (3.1), z = Pz = Mz = Nz*, and the property of y, we can obtain
d(z, Qz*) = d(Pz, Qz*)

<o d" (Mz, Nz*), d(Mz, Pz), d (Nz*, Qz*), & (Pz, Nz*), d" (Mz, Qz*)

= o d(z, z), d(z, 2), & (z, Qz%), d"(z, 2), d(z, Oz*)

=o(1,1,d(z, 02, 1, d'(z, 0z*))

<wyd(z, Q)

< d\z, 0z%).

This implies that d(z, Qz*)= 1, and so Qz* =z = Nz*. Since the pair (Q, N) is weakly com-
patible, we have Oz = ONz* = NQz*= Nz.

Now we prove that Oz = z. From (3.1) and the property of y, we have
d(z, 0z) = d(Pz, Qz)
< ¢ d(Mz, Nz), d(Mz, Pz), d(Nz, Qz), d(Pz, Nz), d(Mz, Oz)
=g d(z, 02), d(z, 2), d(Qz, 02), d'(z, 02), d'(z, 0z)
=9 d(z, 02), 1,1, dz, Q2), d(z, 0z)
<y d\(z, 0z)
<d\(z, Q2).
This implies that d(z, Qz)= 1, s0 z = Q.

Therefore, we obtain z = Tz = Mz = Oz = Nz, so z is a common fixed point of P, O, M, and

N.
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Case 2: Suppose that P is continuous, thenlim PMas, = lim P%ay, = Pz. Since the pair
n—-oo n—->oo

(P, M) is compatible, from (3.5) we have

lim d(PMaz,, MPa>,)= lim d(Pz, MPaz,) =1,
n—>00

n—oo

that is, lim M Pa>, = Pz. From (3.1) and (3.2) we obtain

n—-oo

d (P*azn, Qazm) < ¢ d'(MPas, Naxe1), & (MPazs, P*azn), d(Naows1, Qazn+1),
d" (P*azn, Naon+1), d(MPazn, Qazni1)

Taking n —o0 on the two sides of the above inequality, using (3.5) and the property of v,

we can get
d(Pz, z) < ¢ d"(Pz, 2), d(Pz, P2), d'(z, z), d"(Pz, z), d(Pz, z)
=@ dA(PZ, 2), 2z, 2z, dA(PZ, 2), d%Pz, z)
<y d"(Pz, 2)
<dPz, z).
This means that d(Pz, z) = 1, this is Pz = z.

Since z = Pz € P(4) € N(A), there exists z* € A4 such that z = Pz = Nz*. From (3.1) we have
d( P*ax,, 0z*) < ¢ & (MPaz, Nz*), d(MPazn, P*az,), d(Nz*, Qz*), d(P*azm, Nz*),

d (MPazn, Oz).

Letting n — oo, using z = Pz = Nz* and the property of y, we can obtain

d(z, 0z) < ¢ d" (Pz, Nz*), d(Pz, Pz), d'(z, 0z*), d(Pz, z), d' (Pz, Qz*)
= o d\(z, 2), d(z, 2), d(z, Qz%), d'(z, 2), d(z, Oz")
=¢l1,1,d (z, 0z, 1, d(z, Oz*)
<yd(z, 0z)
<d (z, 0z").
This implies that d(z, Qz*)= 1, and so Qz* =z = Nz*. Since the pair (Q, N) is weakly com-
patible, we obtain
Oz = QONz*= NQz*= Nz.
So Oz = Nz. By (3.1) and the property of y, we have
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d(Pax, Oz) < ¢ d(Maan, Nz), d(Mazn, Paz,), d(Nz, Qz), d(Pax, Nz), d(Man,
Qz).

Taking n —oo on the two sides of the above inequality, using Nz = Oz and the property of

w, we can get
d(z, 0z) < ¢ d'(z, Nz), d'(z, ), d"(Nz, Qz), d(z, Nz), d'(z, Oz)
=9 d(z, 02), d(z,2), d(Qz, Q2), d'(z, O2), d'(z, Qz)
=9 d'(z, 02), 1, 1, d'(z, Qz), d'(z, O2)
<y dz, O2)

<d\z, 0z).

This implies that d(z, Qz)=1, so z = 0z = Nz.

On the other hand, since z = Oz € Q(4) € M(A), there exists z** € A such that z = Oz =
Mz,

By (3.1), using Oz = Nz = z and the property of y, we can obtain
d (Pz**, z)=d (Pz**, Qz)
<o d (Mz*, Nz), d (Mz**, Pz**), d(Nz, Qz), & (Pz**, Nz) , d"(Mz**, Q)
= ¢ d'(z, 2), d'(z, Pz*), d'(z, z), d" (Pz**, 2) , d'(z, 2)
=¢p1,d (Pz=,z2), 1, d"(Pz,2), 1
<wyd" (Pz,2)
<d (Pz, z).

This implies that d (Pz**, z)= 1, and so Pz**=z = Mz**. Since the pair (P, M) is compatible,
d(Pz, Mz)= d PMz**, MPz**= d(z, z)= 1.

So Mz = Pz. Hence z = Pz = Mz = 0z = Nz.
Next, we prove that P, O, M, and N have a unique common fixed point. Suppose that

w € A is also a common fixed point of P, O , M and N, then

d(z, w) = d(Pz, Qw)
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< ¢ d(Mz, Nw), d"(Mz, Pz), d(Nw, Ow), d"(Pz, Nw), d(Mz, Qw)

= ¢ d'(z, w), &z, z), d(w, w), d(z, w), d(z, w)

= d(z, w), 1, 1, d(z, w), d(z, w)

<y d(z,w)

<d(z, w).
This implies that d(z, w)= 1, and so w = z. Therefore, z is a unique common fixed point of
P, O, M, and N.

Finally, if condition (b) holds, then the argument is similar to that above, so we delete it.

This completes the proof.

Example 3.3 Let 4 = [0.2], and (4, d) be a multiplicative metric space defined by d(a, b)
= el P forall a, bin 4. Let P, O, M, and N be four self-mappings defined by

Pa=3Va€[0.2], Qa={7.a €[01] ;a €[12])

Ma={l,a €[0,1] Z,a € [1,2]

SN

,a =2}
Na={;,a €[01] 2,a €[12]L,a =2}

Note that P is multiplicative continuous in 4, and O, M, and N are not multiplicative
continuous mappings in A.

i.  Clearly we can get P(4) € N(A4) and O(A4) € M(A).

ii. By the definition of the mappings of P and M, only for {a,}c (P, M), we have

lim Pa, = lim Ma,=1="2

n—oco n—oo 4
. 5
lim d(PMan, MPay)=d(, 2)=1
n—oo 4 4
so we can see the pair (P, M) is compatible.
By the definition of the mappings of Q and N, only for a € (1, 2), Qa = Na = z, ONa =

Q(§)= % = N(§)= NQa, so ONa = NQa, thus we can see the pair (Q, N) to be weakly

compatible.
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Now we prove that the mappings P, O, M and N satisfy the condition (3.1) of Theorem
with 2 =2and ¢ (11, 2, £, t4, 15) =5 (11 + 2+ 13+ ta + 15). For this, we consider the following

casces:

Case 1.1f a, b € [0, 1], then
1
d(Pa, Qb) = d(2,%) = ez

and

¢ d(Ma, Nb), d(Ma, Pa), &(Nb, Qb), d(Pa, Nb), d(Ma, Qb)

~odi (39,6 (2. ¢ (D (G 2).d D)
= go(eg, 1,e, eg, eg)

1 2 2 1
= E(eS, 1,e,e3,e3)

14 1 -1 1 1 1
= eZ.E(eé+e 2+ez+ec+e o)

1
>es3

Thus we have

d(Pa, Qb)= ez <¢ d"(Ma, Nb), d(Ma, Pa), d(Nb, Ob), d"(Pa, Nb), d"(Ma, Ob) .

Case 2. 1f a = 2, b € (0, 1], then we obtain
d(Pa, 00)=d(2, ) = e
and
¢ d(Ma, Nb), d(Ma, Pa), &(Nb, Ob), d(Pa, Nb), d(Ma, Qb)
o (3 2). (3 2). (5 2). (3 2). (23),

1 2
p(e, es3,e,e31)
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1 1 2
=c(etest+etes+1)

14 1 1 1 1 _1
= eZ.E(ez+e 6+ezt+es+e 2

1
>ez2

d(Pa, Qb)= o3 < ¢ d(Ma, Nb), &(Ma, Pa), &(Nb, Ob), d(Pa, Nb), d(Ma, Ob)

Case3.1fa, b € [1, 2], then

d(Pa, Qb)=d(3, 3)
=1 < 9 &(Ma, Nb), d(Ma, Pa), d(Nb, Qb), d(Pa, Nb), d(Ma, Qb).

Then in all the above cases, the mappings P, O, M, and N satisfy the condition (3.1) of
Theorem 3.3 with A=2/3 and ¢(t1, t2, t3, ta, ts)= 1/5(t1 + t2 + 3 + t4 + t5). So all the conditions
of Theorem 3.3 are satisfied. Moreover, 5/4 is the unique common fixed point for all of the

mappings P, O, M, and N.

THEOREM 3.3: Let (4, d) be a complete multiplicative metric space P, Q, M and N
be four mappings of A into itself. Suppose that there exist /. € (0, %) andu,v € Z" such that
P(A4) € N(A), O(4) € M(A), and

d(P'a, 0'b) £ ¢ d(Ma, Nb), d*(Ma, P*a), d(Nb, O'b), d&(P*a, Nb), d(Ma, Q"b)  ..(3.6)
forall a, b € A. Assume the following conditions are satisfied.:

a. the pairs (P, M) and (Q, N) are commutative mappings,

b. one of P, O, M, and N is continuous.

Then P, Q, M and N have a unique common fixed point.

Proof: From P(4) € N(A), OQ(A) € M(A) we have

P'(4) € P*'(4) c - € P*(4) c P(4) € N(4)

and

O'(4) € Q3 4) € - € Q*(4) € O(4) © M(A).

Since the pairs (P, M) and (Q, N) are commutative mappings,
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P'(M) = P/ (PM) = P\ (MP) = P“*(PM)P = P**(MP*) = -+ = (M)P"
and

Q'(N)=Q"'(ON) = 0"(NQ) = 0" *(ON)Q = 0" *(NQ*) = - = (N)Q".
That is to say, P"M = MP"and O'N = NQ".

It follows from Remark 3.1 that the pairs (P*, M) and (Q", N) are compatible and also
weakly compatible. Therefore, by Theorem 3.3, we can find that P, 0", M, and N have a

unique common fixed point z.

In addition, we prove that P, O, M and N have a unique common fixed point. From (3.6)
and the property of y we have

d(Pz, z) = d(P"(Pz), Q"z)

< ¢ d(MPz, Nz), d"(MPz, P“(Pz)), d* (Mz, Q"z), & (P*(Pz), Nz), d"(MPz, 0"z)
= ¢ d(Pz, z), d(Pz, Pz), d(z, 2), d"(Pz, 2), d'(Pz, 2)

= ¢ d(Pz,2), 1, 1, d(Pz, 2), d(Pz, z)

<y d(Pz,z)

< d"(Pz, z).

This implies that d(Pz, z)= 1, so Pz =z.

On the other hand, we have

d(z, Oz) = d(P'z, Q'(Q2))

< ¢ d(Mz, NQz), d"(Mz, P'z), d"(NQz, Q"(Q2)), d"(P'z, NQz), d'(Mz, Q"(Qz))
= ¢ d(Pz, z), d'(z, z), d(0z, Q2), d'(z, O2), d'(z, Oz)

= ¢ d(Pz,2), 1, 1, d(z, Q2), d'(z, O2)

<y di(z 02)

<d'(z, 02).

This implies that d(z, Qz)=1, i.e., Oz = z.

Therefore, we obtain Pz = 0z = Mz = Nz =z, so z is a common fixed point of P, O, M and

N.

Finally, we prove that P, O, M, and N have a unique common fixed point. Suppose that w

€ A is also a common fixed point of P, O, M and N, then
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d(z, w) = d(P'z, O'w)

< ¢ d(Mz, Nw), &"(Mz, P'z), d'(Nw, Q'w), d"(P*z, Nw), d"(Mz, Q"w)
= d(z, w), d(z, 2), d(w, w), d(z, w), d'(z, W)

=9 d(zw), 1, 1, d(z, w), d(z, w)

<y dz,w)

<d(z, w).

This implies that d(z, w)= 1, and so w = z. Therefore, z is a unique common fixed point of

P, O, M, and N.

Corollary 3.1: Let (4, d) be a complete multiplicative metric space P, O, M and N be four
mappings of A into itself. Suppose that there exists /. € (0,1/2) such that P(A) € N(A), Q(A)
C M(A), and

d(Pa, Ob) < max d“(Ma, Nb), d(Ma, Pa), d(Nb, Ob), d(Pa, Nb), d(Ma, ..(3.7)
0b)

forall a, b € A. Assume one of the following conditions is satisfied.

a. either M or P is continuous, the pair (P, M) is compatible and the pair (Q, N) is

weakly compatible;

b. either N or Q is continuous, the pair (Q, N) is compatible and the pair (P, M) is

weakly compatible.
Then P, Q, M and N have a unique common fixed point.
Corollary 3.2: Let (A, d) be a complete multiplicative metric space P, O, M and N be four

mappings of A into itself. Suppose that there exist A € (0, 1/2) and u, v € Z" such that P(4)
C N(A), XA4) © M(A), and

d(P'a, Q'b) < max d(Ma, Nb), d(Ma, P"a), d"(Nb, Q'b), d'(P“a, Nb), &(Ma, ..(3.8)
Q'b)

for all a, b € A. Assume the following conditions are satisfied.

a. the pairs (P, M) and (Q, N) are commutative mappings;

b. one of P, O, M and N is continuous.
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Then P, Q, M and N have a unique common fixed point.

Corollary 3.3: Let (A, d) be a complete multiplicative metric space P, O, M and N be four
mappings of A into itself. Suppose that there exists 1 € (0,1/2) such that P(A) € N(A4), O(A)
C M(A), and

d(Pa, Ob) < eid(Ma, Nb)+ exd(Ma, Pa) + exd (Nb, Qb)+ ead”(Pa, Nb)+ esd(Ma, Ob) ..(3.9)
foralla,b € A. Here e1, ez, 3, es,e5>0and 0<e1 +ex + e3 +es +es < 1.
Assume one of the following conditions is satisfied.

a. either M or P is continuous, the pair (P, M) is compatible and the pair (Q, N) is

weakly compatible;

b. either N or Q is continuous, the pair (Q, N) is compatible and the pair (P, M) is

weakly compatible.

Then P, Q, M and N have a unique common fixed point.

Proof: Suppose the condition (3.9) hold. For a, b, c € A4, let

R(a, b, ¢) = max d"(Ma, Nb), &(Ma, Pa), d(Nb, Ob), d"(Pa, Nb), d(Ma, Ob).
Then

e1d (Na, Mb)+ exd(Ma, Pa)+ exd(Nb, Qb)+ esd"(Pa, Nb)+ esd"(Ma, Ob)
<(ertexte3+estes)R(a,b,c)

<R(a, b, c).

So, if (3.9) holds, then d(Pa, Qb) < R(a, b, c) for all a, b, ¢ € A. Then the conclusion of

Corollary 3.1 can be obtained from Corollary 3.1 immediately.

Corollary 3.4: Let (A, d) be a complete multiplicative metric space P, Q, M and N be four
mappings of A into itself. Suppose that there exist A € (0, 1/2) and u, v € Z" such that P(A)
C N(A4), O(A4) € M(A) and

d(P'a, 0'b) < exd(Ma, Nb)+ exd" (Ma, P'a )+ es d*(Nb, 0'b)+ esd"(P'a, Nb) +  ..(3.10)
esd(Ma, O'b)

foralla,b € A. Here e, ez, e3,e4,e5>0and 0 <ei+ex+e3+es+es<1.

Assume the following conditions are satisfied.
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a. the pairs (P, M) and (Q, N) are commutative mappings;
b. one of P, Q, M and N is continuous.

Then P, Q, M and N have a unique common fixed point.

Proof: 1t is similar to the proof of Theorem 3.4.

By taking M = N = [ (the identity mappings) in Theorems 3.3 and 3.4, and Corollaries 3.1

and 3.2, we have the following results.

Corollary 3.5: Let (4, d) be a complete multiplicative metric space, P and Q be two map-
pings of A into itself. Suppose that there exists A € (0, 1/2) such that

d(Pa, Ob) < ¢ d(a, b), da, Pa), (b, Ob), d(Pa, b), d'(a, Ob) .(3.11)

forall a, b € A. Then P and Q have a unique common fixed point.

Corollary 3.6: Let (A, d) be a complete multiplicative metric space P and Q be two map-
pings of A into itself. Suppose that there exist A € (0, 1/2) and u, v € Z" such that

d(P'a, Q'b) < ¢ d(a, b), d'(a, P'a), & (b, O’b), d"(P"a, b), &(a, O'b) .(3.12)

forall a, b € A. Then P and Q have a unique common fixed point.

Corollary 3.7: Let (4, d) be a complete multiplicative metric space P and Q be two map-
pings of A into itself. Suppose that there exists A € (0, 1/2) such that

d(Pa, Ob) < max d"(a, b), d(a, Pa), d(b, Ob), dPa, b), d(a, Ob) .(3.13)

forall a, b € A. Then P and Q have a unique common fixed point.

Corollary 3.8: Let (A, d) be a complete multiplicative metric space P and Q be two map-
pings of A into itself. Suppose that there exist 1 € (0, 1/2) and u, v € Z" such that

d(P'a, Q'b) < max d*(a, b), d'(a, P'a), d"(b, O'b), d(P'a, b), &(a, 0'b) .(3.14)

forall a, b € A. Then P and Q have a unique common fixed point.

Corollary 3.9: Let (A, d) be a complete multiplicative metric space, P and Q be two map-
pings of A into itself. Suppose that there exists . € (0, 1/2) such that

d(Pa, Qb) < eid(a, b)+ exd(a, Pa) + esd (b, Qb)+ esd(Pa, b)+ esd*(a, Ob)  ..(3.15)
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forall a, b € A. Here e, e2, 3, ea, e5>0and 0<e; +ex + e3 + esa + es < 1. Then P and Q

have a unique common fixed point.

Corollary 3.10: Let (A, d) be a complete multiplicative metric space, P and Q be two map-
pings of A into itself. Suppose that there exist A € (0, 1/2) and u, v € Z" such that

d (P'a, Q'b) < eid(a, by+ exd’(a, P'a) + exd'(b, Q'b) + esd’ (P*a, b) + esd"(a, ..(3.16)
o'b)
forall a, b € A. Here e, e2, 3, ea, e5>0 and 0< e +ex + e3 + esa + es < 1. Then P and Q

have a unique common fixed point.

By taking P = Q in Corollaries 3.5 - 3.10, we have the following results.

Corollary 3.11 Let (4, d) be a complete multiplicative metric space, P be a mapping of A
into itself. Suppose that there exists 4 € (0, 1/2) such that

d(Qa, Ob) < ¢ d(a, b), d(a, Oa), & (b, Ob), d(Qa, b), d(a, Ob) .(3.17)

forall a, b € A. Then Q have a unique fixed point.

Corollary 3.12: Let (A4, d) be a complete multiplicative metric space, Q be a mapping of
A into itself. Suppose that there exist . € (0, 1/2) and u, v € Z" such that

d(Q"a, Q'b) < ¢ d¥a, b), d" (a, Q"a), d'(b, Q'b), d(Q"a, b) , d'(a, Q') .(3.18)

forall a, b € A. Then Q have a unique fixed point.

Corollary 3.13: Let (A4, d) be a complete multiplicative metric space, Q be a mapping of
A into itself. Suppose that there exists A € (0, 1/2) such that

d(Qa, Ob) < max d(a, b), d(a, Qa), d(b, Ob), d(Qa, b), d(a, Ob) .(3.19)

forall a, b € A. Then Q has a unique fixed point.

Corollary 3.14: Let (A, d) be a complete multiplicative metric space, Q be a mapping of
A into itself. Suppose that there exist . € (0, 1/2) and u, v € Z" such that

d(0"a, 0"b) < max d(a, b), d'(a, O*a), &'(b, O'b), d"(Q"a, b), d(a, O'b) .(3.20)

forall a, b € A. Then Q has a unique fixed point.
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Corollary 3.15 Let (A4, d) be a complete multiplicative metric space, Q be a mapping of A
into itself. Suppose that there exists 4 € (0, 1/2)) such that

d(Qa, Ob) < erd(a, b)+ exd(a, Qa) + exd(b, Qb)+ esd(Qa, b)+ esd(a, Ob)  ..(3.21)

forall a, b € A. Here e1, €2, €3, ¢€4,85>0and 0<e; +ex+e3+es+es< 1. Then Q has a

unique fixed point.

Corollary 3.16 Let (A4, d) be a complete multiplicative metric space, Q be a mapping of A
into itself. Suppose that there exist A € (0, 1/2) and u, v € Z" such that

d (Q"a, O'b)< eid(a, by+ exd'(a, Q"a) + esd (b, 0'b) + esd"(Q"a, b) + esd'(a, ..(3.22)
o'b)
forall a, b € A. Here e1, €2, €3, €4,¢5>0and 0<e; +ex+e3+es+es<1. Then Q has a

unique fixed point.
3.4 CONCLUSION

The chapter undertook comprehensive exploration of fuzzy metric spaces, a fundamental
concept in mathematical analysis. Our exploration began with a meticulous examination
of the definitions, properties, and formal mathematical notations linked to fuzzy metric
spaces. Through an in-depth investigation of these foundational elements, our goal was to
establish a robust foundation for comprehending the distinctive characteristics and

applications of this mathematical framework.

The definition of fuzzy metric spaces introduced a nuanced perspective by incorporating
fuzzy scalars to redefine distance measures. This departure from conventional metric
spaces not only broadens the mathematical framework but also enhances its capability to
model uncertainty and vagueness in real-world scenarios. The integration of fuzzy logic in
defining fuzzy metric spaces adds a layer of flexibility and adaptability, enabling a more

nuanced representation of imprecise information.
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