ANALYTICAL STUDY OF BASE ISOLATION SYSTEM ON MEDIUM-RISE REINFORCED CONCRETE BUILDING FOR INDIAN SUBCONTINENT

भारतीय उपमहाद्वीप के लिए मध्यम-राइज़ प्रबलित कंक्रीट बिल्डिंग पर बेस आइसोलेशन सिस्टम का विश्लेषणात्मक अध्ययन

A

Thesis

Submitted for the Award of the Ph.D. degree of PACIFIC ACADEMY OF HIGHER EDUCATION AND RESEARCH UNIVERSITY

By

M. TAMIM TANWER

मो. तमीम तंवर

Under the supervision of

Dr. TANVEER AHMED KAZI

Professor Pacific Academy of Higher Education & Research University, Udaipur

FACULTY OF ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING

PACIFIC ACADEMY OF HIGHER EDUCATION AND RESEARCH UNIVERSITY, UDAIPUR

2023

DECLARATION

I, Mr. M. TAMIM TANWER, S/o Mr. M. ASLAM TANWER resident of Surat, Gujarat, hereby declare that the research work incorporated in the present thesis entitled "ANALYTICAL STUDY OF BASE ISOLATION SYSTEM ON MEDIUM-RISE REINFORCED CONCRETE BUILDING FOR INDIAN SUBCONTINENT" (भारतीय उपमहाद्वीप के लिए मध्यम-राइज़ प्रबलित कंक्रीट बिल्डिंग पर बेस आइसोलेशन सिस्टम का विश्लेषणात्मक अध्ययन) is my original work. This work (in part or in full) has not been submitted to any University for the award or a Degree or a Diploma. I have properly acknowledged the material collected from secondary sources wherever required.

I solely own the responsibility for the originality of the entire content.

Signature of the Candidate

Date:

FACULTY OF ENGINEERING

PACIFIC ACADEMY OF HIGHER EDUCATION AND RESEARCH UNIVERSITY, UDAIPUR

Dr. TANVEER AHMED KAZI Professor

CERTIFICATE

It gives me an immense pleasure in certifying that the thesis entitled "ANALYTICAL STUDY OF BASE ISOLATION SYSTEM ON MEDIUM-RISE REINFORCED CONCRETE BUILDING FOR INDIAN SUBCONTINENT" (भारतीय उपमहाद्वीप के लिए मध्यम-राइज़ प्रबलित कंक्रीट बिल्डिंग पर बेस आइसोलेशन सिस्टम का विश्लेषणात्मक अध्ययन) and submitted by Mr. M. TAMIM TANWER is based on the research work carried out under my guidance. He have completed the following requirements as per Ph.D. regulations of the University;

- (i) Course work as per the university rules.
- (ii) Residential requirements of the university.
- (iii) Regularly presented Half Yearly Progress Report as prescribed by the university.
- (iv) Published / accepted minimum of two research paper in a refereed research journal.

I recommend the submission of thesis as prescribed/notified by the University.

Date:

Name and Designation of Supervisor

Dr. TANVEER AHMED KAZI

Professor Pacific Academy of Higher Education & Research University, Udaipur

COPYRIGHT

I, Mr. M. TAMIM TANWER, hereby declare that the Pacific academy of higher education and research university, Udaipur, Rajasthan, shall have the rights to preserve, use and disseminate this dissertation entitled "ANALYTICAL STUDY OF BASE ISOLATION SYSTEM ON MEDIUM-RISE REINFORCED CONCRETE BUILDING FOR INDIAN SUBCONTINENT" (भारतीय उपमहाद्वीप के लिए मध्यम-राइज़ प्रबलित कंक्रीट बिल्डिंग पर बेस आइसोलेशन सिस्टम का विश्लेषणात्मक अध्ययन) in print or in electronic format for the academic research.

Date:

Signature of Candidate

Place:

ACKNOWLEDGEMENT

First and foremost, praises and thanks to the God, the Almighty, for his showers of blessings throughout my research work to complete the research successfully.

I would like to express my deep and sincere gratitude to my research supervisor, **Dr. Tanveer Ahmed Kazi**, Professor, Pacific Academy of Higher Education & Research University-Udaipur, for giving me the opportunity to do research and providing invaluable guidance throughout this research. His dynamism, vision, sincerity and motivation have deeply inspired me. He has taught me the methodology to carry out the research and to present the research works as clearly as possible. It was a great privilege and honor to work and study under his guidance. I am extremely grateful for what he has offered me. I would also like to thank him for his friendship, empathy, and great sense of humor. I am extending my heartfelt thanks to his wife, family for their acceptance and patience during the discussion I had with him on research work and thesis preparation.

I am extremely grateful to **my family** for their love, prayers, caring and sacrifices for educating and preparing me for my future.

I thank the management of Pacific Academy of Higher Education & Research University-Udaipur, for their support to do this work.

Finally, my thanks go to all the people who have supported me to complete the research work directly or indirectly.

M. Tamim Tanwer

Figure No.		
1	Tacoma Narrows Bridge: Excessive Deformation and Subsequent Collapse Due To Resonance.	5
2	NRB Schematic	9
3	LRB Schematic	10
4	Cable Friction Bearing Schematic	12
5	Resilient Friction Base Isolators Schematic	13
6	Friction Pendulum Bearing Schematic	14
7	Fixed & Isolated Base Structure Model	17
8	Elevation Views and Bare Frame Case Study	18
9	Plan & Elevation G+6 Storey Model	19
10	3D Model of 8-Storey Office Building	21
11	Buildings Elevation with and Without Base Isolators.	22
12	Analytical Model - Fixed & Isolated Base	23
13	2-Storey Sample Model	24
14	3D Model of G+ 5 Storeys	25
15	3D View of G+10 Storey in SAP2000 Model	26
16	Buildign A & Building B Model	28
17	G+12 Storey Sample Model - Plan	34
18	G+12 Storey Sample Model - Elevation	35
19	G+22 Storey Sample Model - Plan	37
20	G+22 Storey Sample Model - Elevation	38
21	Sample Material Property – Concrete M20	44
22	Sample Material Property – Steel Fe500	45
23	Sample Section Property – Slab	46

24	Sample Section Property – Beam	47
25	Sample Section Property – Column	48
26	Sample Diaphragm Data	49
27	Sample Mass Source Data	49
28	Sample Response Spectrum Function Property	50
29	Sample Modal Case	51
30	Sample Load Patterns	52
31	Sample Load Cases	52
32	Sample Load Combination	53
33	LRB Schematic	56
34	LRB Input Values in ETABS for Biaxial Load 1638 KN - Direction U ₁	62
35	LRB Input Values in ETABS for Biaxial Load 1638 KN - Direction $U_2 \& U_3$	63
36	LRB Schematic	64
37	LRB Input Values in ETABS for Uniaxial Load 2487 KN - Direction U ₁	70
38	LRB Input Values in ETABS for Uniaxial Load 2487 KN - Direction $U_2 \& U_3$	71
39	LRB Schematic	72
40	LRB Input Values in ETABS for Axial Load 3920 KN - Direction U ₁	78
41	LRB Input Values in ETABS for Axial Load 3920 KN - Direction U ₂ & U ₃	79
42	TFPB Schematic	80
43	TFPB Input Values in ETABS for Biaxial Load 1638 KN - Direction U ₁	88
44	TFPB Input Values in ETABS for Biaxial Load 1638 KN - Direction U2 & U3	89
45	TFPB Schematic	90

46	TFPB Input Values in ETABS for Uniaxial Load 2487 KN - Direction U_1	98
47	TFPB Input Values in ETABS for Uniaxial Load 2487 KN - Direction $U_2 \& U_3$	99
48	TFPB Schematic	100
49	TFPB Input Values in ETABS for Axial Load 3920 KN - Direction U ₁	108
50	TFPB Input Values in ETABS for Axial Load 3920 KN - Direction $U_2 \& U_3$	109
51	LRB Schematic	110
52	LRB Input Values in ETABS for Biaxial Load 3342 KN - Direction U ₁	116
53	LRB Input Values in ETABS for Biaxial Load 3342 KN - Direction $U_2 \& U_3$	117
54	LRB Schematic	118
55	LRB Input Values in ETABS for Uniaxial Load 4627 KN - Direction U ₁	124
56	LRB Input Values in ETABS for Uniaxial Load 4627 KN - Direction $U_2 \& U_3$	125
57	LRB Schematic	126
58	LRB Input Values in ETABS for Axial Load 6860 KN - Direction U ₁	132
59	LRB Input Values in ETABS for Axial Load 6860 KN - Direction $U_2 \& U_3$	133
60	TFPB Schematic	134
61	TFPB Input Values in ETABS for Biaxial Load 3342 KN - Direction U_1	142
62	TFPB Input Values in ETABS for Biaxial Load 3342 KN - Direction $U_2 \& U_3$	143
63	TFPB Schematic	144
64	TFPB Input Values in ETABS for Uniaxial Load 4627 KN - Direction U ₁	152

65	TFPB Input Values in ETABS for Uniaxial Load 4627 KN - Direction $U_2 \& U_3$	153
66	TFPB Schematic	154
67	TFPB Input Values in ETABS for Axial Load 6860 KN - Direction U_1	162
68	TFPB Input Values in ETABS for Axial Load 6860 KN - Direction $U_2 \& U_3$	163

LIST OF TABLES

Table No.	CableParticularsNo.	
1	Damping Coefficient, B _D or B _M	<u>No.</u> 57
2	Seismic Coefficient Cv	57
3	Vulcanized Natural Rubber Compounds	57
4	Damping Coefficient, B _D or B _M	64
5	Seismic Coefficient Cv	65
6	Vulcanized Natural Rubber Compounds	65
7	Damping Coefficient, B _D or B _M	72
8	Seismic Coefficient C _V	73
9	Vulcanized Natural Rubber Compounds	73
10	Damping Coefficient, B _D or B _M	111
11	Seismic Coefficient Cv	111
12	Vulcanized Natural Rubber Compounds	111
13	Damping Coefficient, B _D or B _M	118
14	Seismic Coefficient Cv	119
15	Vulcanized Natural Rubber Compounds	119
16	Damping Coefficient, B _D or B _M	126
17	Seismic Coefficient C _V	127
18	Vulcanized Natural Rubber Compounds	127
19	Comparison of Time Period of Fixed Base Structure (Case-I) and	165

	LRB Base Structure (Case-II).	
20	Comparison of Page Shear of Fixed Page Structure (Case Dard	166
20	Comparison of Base Shear of Fixed Base Structure (Case-I) and	166
	LRB Base Structure (Case-II).	
21	Comparison of Storey-Displacement of Fixed Base Structure	167
	(Case-I) and LRB Base Structure (Case-II).	
22	Comparison of Storey-Drift of Fixed Base Structure (Case-I) and	169
	LRB Base Structure (Case-II).	
23	Comparison of Steel Reduction of Fixed Base Structure (Case-I)	171
	and LRB Base Structure (Case-II).	
24	Comparison of Overall Cost Economy of Fixed Base Structure	172
	(Case-I) and LRB Base Structure (Case-II).	
25	Comparison of Time Period of Fixed Base Structure (Case-I) and	173
	TFPB Base Structure (Case-III).	
26	Comparison of Base Shear of Fixed Base Structure (Case-I) and	174
	TFPB Base Structure (Case-III).	
27	Comparison of Storey-Displacement of Fixed Base Structure	175
	(Case-I) and TFPB Base Structure (Case-III).	
28	Comparison of Storey-Drift of Fixed Base Structure (Case-I) and	177
	TFPB Base Structure (Case-III).	
29	Comparison of Steel Reduction of Fixed Base Structure (Case-I)	179
	and TFPB Base Structure (Case-III).	
30	Comparison of Overall Cost Economy of Fixed Base Structure	180
	(Case-I) and TFPB Base Structure (Case-III).	
31	Comparison of Time Period of Fixed Base Structure (Case-IV)	181
	and LRB Base Structure (Case-V).	

32	Comparison of Base Shear of Fixed Base Structure (Case-IV) and	182
	LRB Base Structure (Case-V).	
33	Comparison of Storey-Displacement of Fixed Base Structure	183
	(Case-IV) and LRB Base Structure (Case-V).	
34	Comparison of Storey-Drift of Fixed Base Structure (Case-IV)	185
	and LRB Base Structure (Case-V).	
35	Comparison of Steel Reduction of Fixed Base Structure (Case-IV)	187
	and LRB Base Structure (Case-V).	
36	Comparison of Overall Cost Economy of Fixed Base Structure	188
	(Case-IV) and LRB Base Structure (Case-V).	
37	Comparison of Time Period of Fixed Base Structure (Case-IV)	189
	and TFPB Base Structure (Case-VI).	
38	Comparison of Base Shear of Fixed Base Structure (Case-IV) and	190
	TFPB Base Structure (Case-VI).	
39	Comparison of Storey-Displacement of Fixed Base Structure	191
	(Case-IV) and TFPB Base Structure (Case-VI).	
40	Comparison of Storey-Drift of Fixed Base Structure (Case-IV)	193
	and TFPB Base Structure (Case-VI).	
41	Comparison of Steel Reduction of Fixed Base Structure (Case-IV)	195
	and TFPB Base Structure (Case-VI).	
42	Comparison of Overall Cost Economy of Fixed Base Structure	196
	(Case-IV) and TFPB Base Structure (Case-VI).	
43	Summary of Result Analysis	197

LIST OF GRAPHS

Graph No.	Particulars	
1	Parametric Variation of Time Period of Fixed Base Structure	No. 165
	(Case-I) and LRB Base Structure (Case-II).	
2	Parametric Variation of Base Shear of Fixed Base Structure	166
	(Case-I) and LRB Base Structure (Case-II).	
3	Parametric Variation of Storey-Displacement of Fixed Base	168
	Structure (Case-I) and LRB Base Structure (Case-II).	
4	Parametric Variation of Storey-Drift of Fixed Base Structure	170
	(Case-I) and LRB Base Structure (Case-II).	
5	Parametric Variation of Time Period of Fixed Base Structure	173
	(Case-I) and TFPB Base Structure (Case-III).	
6	Parametric Variation of Base Shear of Fixed Base Structure	174
	(Case-I) and TFPB Base Structure (Case-III).	
7	Parametric Variation of Storey-Displacement of Fixed Base	176
	Structure (Case-I) and TFPB Base Structure (Case-III).	
8	Parametric Variation of Storey-Drift of Fixed Base Structure	178
	(Case-I) and TFPB Base Structure (Case-III).	
9	Parametric Variation of Time Period of Fixed Base Structure	181
	(Case-IV) and LRB Base Structure (Case-V).	
10	Parametric Variation of Base Shear of Fixed Base Structure	182
	(Case-IV) and LRB Base Structure (Case-V).	
11	Parametric Variation of Storey-Displacement of Fixed Base	184
	Structure (Case-IV) and LRB Base Structure (Case-V).	
12	Parametric Variation of Storey-Drift of Fixed Base Structure	186

	(Case-IV) and LRB Base Structure (Case-V).	
13	Parametric Variation of Time Period of Fixed Base Structure(Case-IV) and TFPB Base Structure (Case-VI).	189
14	Parametric Variation of Base Shear of Fixed Base Structure (Case-IV) and TFPB Base Structure (Case-VI).	190
15	Parametric Variation of Storey-Displacement of Fixed Base Structure (Case-IV) and TFPB Base Structure (Case-VI).	192
16	Parametric Variation of Storey-Drift of Fixed Base Structure (Case-IV) and TFPB Base Structure (Case-VI).	194

LIST OF SYMBOLS & ABBREVIATIONS

Symbols	Abbreviations
EQ	Earthquake
RS	Response Spectrum
RC	Reinforced Concrete
NRB	Natural Rubber Bearing
LRB	Lead Rubber Bearing
TFPB	Triple Friction Pendulum Bearing
HDRB	High Damping Rubber Bearing
LDRB	Low Damping Rubber Bearing
FPB	Friction Pendulum Bearing
FD	Friction Damper
FS	Friction Slider
FF	Floor Finish
LL	Live Load
E	Youngs Modulus
G	Shear Modulus
K	Modification Factor
ε _b	Elongation of Rubber at Break
f _{py}	Yield Strength of Core

σ _a	Allowable Normal Stress
F _s	Shear Yield Strength of Steel
f _y	Yield Strength of Steel Plate
IS	Indian Standards
GL	Ground Level