EVALUATION OF POLYHERBAL FORMULATION FOR ANTIDIABETIC ACTIVITY USING WISTAR RATS

A

Thesis

Submitted for the Award of the Ph.D. degree of PACIFIC ACADEMY OF HIGHER EDUCATION AND RESEARCH UNIVERSITY

By

TRUPTI BHAGWANRAO SHEVANTE

Under the Supervision of

Dr. RAJESH KHATHURIYA

Professor Pacific College of Pharmacy Pacific Academy of Higher Education and Research University, Udaipur Dr. SURESH L. JADHAV

Principal Vishal Institute of Pharmaceutical Education and Research, Ale, Pune

DEPARTMENT OF PHARMACEUTICS AND QA FACULTY OF PHARMACY PACIFIC ACADEMY OF HIGHER EDUCATION AND RESEARCH UNIVERSITY, UDAIPUR

DECLARATION

I, Ms. Trupti Bhagwanrao Shevante D/o Mr. Bhagwanrao Bhaurao Shevante resident of Shrirampur, Ahmednagar, 413709, Maharashtra, hereby declare that the research work incorporated in the present thesis entitled "EVALUATION OF POLYHERBAL FORMULATION FOR ANTIDIABETIC ACTIVITY USING WISTAR RATS" is our original work. This work (in part or in full) has not been submitted to any University for the award or a Degree or a Diploma. I have properly acknowledged the material collected from secondary sources wherever required. I solely own the responsibility for the originality of the entire content.

Date: / / 2024

(Trupti Bhagwanrao Shevante)

Signature of the Candidate

CERTIFICATE

Its gives me immense pleasure in certifying that the thesis entitled **"EVALUATION OF POLYHERBAL FORMULATION FOR ANTIDIABETIC ACTIVITY USING WISTAR RATS"** and submitted by **Ms. Trupti Bhagwanrao Shevante** is based on the work research carried out under my guidance. She has completed the following requirements as per Ph.D. regulations of the University;

- i. Course work as per University rules.
- ii. Residential requirements of the University.
- iii. Regularly presented Half Yearly Progress Report as prescribed by the University.
- iv. Published/ accepted minimum of two research papers in a refereed research journal.

I recommend the submission of the thesis as prescribed/ notified by the University.

Date: / / 2024

Dr. RAJESH KHATHURIYA

Professor Pacific College of Pharmacy Pacific Academy of Higher Education and Research University, Udaipur

CERTIFICATE

Its gives me immense pleasure in certifying that the thesis entitled **"EVALUATION OF POLYHERBAL FORMULATION FOR ANTIDIABETIC ACTIVITY USING WISTAR RATS"** and submitted by **Ms. Trupti Bhagwanrao Shevante** is based on the work research carried out under my guidance. She has completed the following requirements as per Ph.D. regulations of the University;

- i. Course work as per University rules.
- ii. Residential requirements of the University.
- iii. Regularly presented Half Yearly Progress Report as prescribed by the University.
- iv. Published/ accepted minimum of two research papers in a refereed research journal.

I recommend the submission of the thesis as prescribed/ notified by the University.

Date: / /2024

Dr. SURESH L. JADHAV

Principal Vishal Institute of Pharmaceutical Education and Research, Ale, Pune

COPYRIGHT

I, **Trupti Bhagwanrao Shevante**, hereby declare that the Pacific Academy of Higher Education and Research University Udaipur, Rajasthan shall have the rights to preserve, use and disseminate this dissertation/thesis entitled **"EVALUATION OF POLYHERBAL FORMULATION FOR ANTIDIABETIC ACTIVITY USING WISTAR RATS"** in print or electronic format for academic / research purpose.

Date: / / 2024

Trupti Bhagwanrao Shevante

Place: Pune

ACKNOWLEDGEMENT

Achievement is the steady realization of a noble objective. Any project's ability to succeed solely depends on the support, direction, and encouragement it receives from mentors and well-wishers.

First and foremost, I bend before the almighty for showering his blessings on me, without which I would not have been able to reach this position.

sincere feelings of gratitude to I express my my research guide Dr. Rajesh Khathuriya, Professor and Head Department of of Pharmacognosy, Pacific Academy of Higher Education and Research University Udaipur, Rajasthan and Coguide Dr. Suresh L. Jadhav, Principal, Vishal Institute of Pharmaceutical Education and Research, Ale, Pune. They have always been a constant source of encouragement and support throughout my Ph D programme. They always inspired me to think logically and independently, which helped me to complete the research work successfully. Their valuable suggestions and timely counsel helped me to design meaningful experiments.

I express my warmest gratitude to honorable **Dr. Hemant Kothari,** Dean, Pacific Academy of Higher Education and Research University Udaipur, Rajasthan for given admission to Ph.D. Programme in University.

My special thanks go to **Mr. Ankushsheth Sonawane**, President, Vishal Junnar Seva Mandal's for his moral support and valuable help in providing the excellent facilities for the completion of my research work.

I am immensely thankful to **Dr. Dushyant D. Gaikwad,** CEO Vishal Junnar Seva Mandal's Institute of Pharmaceutical Institutes, Ale, Pune, MS., for providing constant active support at my tough times. I won't fail in my duty to acknowledge the lessons of courage and wisdom taught by them.

I am highly thankful to **Dr. Mrunal Shirsath** and **Dr. Rupali Hande** for their constant support throughout my work. They were really the boosters for my entire work.

I warmly thank **Dr. Rajesh Kanja**, Assistant Professor (IT- Manager), Pacific Academy of Higher Education and Research University Udaipur, Rajasthan for his valuable advice, and Motivation throughout my work.

I gratefully acknowledge **Mr. Ramesh Agarwal,** for his understanding, encouragement and personal devotion which have provided good and smooth basis for my Ph.D. tenure.

Special thanks to **Dr. Deepa Mandalik**, Professor of Pharmacology, Poona College of Pharmacy, Pune, **Mr.Somnath Thange**, Professor in Pharmacology, DVV Patil's College of Pharmacy, Viladghat for her valuable suggestions in the Pharmacological studies.

I would like to thank Dr. (Mrs.) S. S. Rahangdale SPPU University Pune and Dr.R.K.Chaudhari, Senior Scientist, Agharkar Research Institute, Pune for the authentication of the plant material.

I would like to thank my colleagues Ms. B.R. Alhat, Ms. T.P. Bhujbal, Ms. A.V. Kavade, Ms. S. B. Phalle, Ms. R. A. Londhe, Ms. A.S. Jadhav, Mr. R.S. Gunjal Mr. V.K Gunjal, Mr. G.C. Kale, Mr. B.B. Chaudhari, Mr. G.A. Kale, Mr. P.K. Dhawade, Mr. S.D. Auti , Mr. P.S. Rahinj and Non-Teaching Staff of Vishal Institute of Pharmaceutical Education and Research, Vishal Junnar Seva Mandal's Institutes of Pharmacy, Vishal Junnar Seva Mandal's Institutes of Pharmacy, Kishal Junnar Seva Mandal's Institutes of Pharmacy for Women, Ale for always being kind and helpful.

A special thanks to librarians **Mr. D.K. Gunjal and Ms. R.S. Pawar** of Vishal Institute of Pharmaceutical Education and Research, Vishal Junnar Seva Mandal's Institutes of Pharmacy, Vishal Junnar Seva Mandal's Institutes of Pharmacy for Women, Ale Pune for cooperating me during the referencing work.

I owe a deep sense of gratitude towards my parents and especially towards my husband Mr. Vishal Deolalikar and my parents Mr. and Mrs. Lata and Bhagwanrao Shevante, my in laws Mrs. Shobha and Ravishankar Deolalikar and my great supporter Ms. Mangal Chaudhari for always providing support and inspiration to me throughout my lifetime. They have been an unlimited source of positive mental support.

I would like to thank all whose direct and indirect support helped me complete my thesis in time. Last but not the least a sincere thanks to all the valuable lives of animals used for the research work.

My distinctive thanks to *M/s Shorya Thesis Printers & Binders, Udaipur* for their role in shaping the matter, creative design work and bringing out this document meticulously, neatly and timely.

Apologies for any omissions.

Trupti Bhagwanrao Shevante

PREFACE

Diabetes is a chronic, metabolic disease basically classified as Type 1 and Type 2. About 422 million people worldwide have diabetes, the majority living in low-and middleincome countries, and 1.5 million deaths are directly attributed to diabetes each year. In the past 3 decades the prevalence of type 2 diabetes has raised dramatically in countries of all income levels. India is a major contributor to the worldwide diabetes burden, with rapid socioeconomic development and urbanization. India has indicated a rising incidence of diabetes among both urban and rural populations, owing to the urbanization of lifestyle factors. India accounts for one in six (17%) of all diabetics worldwide. Approximately 90 to 95% of Indians diagnosed with diabetes had type 2 diabetes, compared to a lower incidence of type 1 diabetes in western nations. The reported prevalence of diabetes in adults between the ages of 20 and 79 is **India 8.31%**. Only a small percentage of the more than 400 documented traditional plant remedies for diabetes mellitus have undergone scientific and medical investigation to determine their effectiveness.

Medicinal herbs that possess anti-diabetic properties are frequently taken as dietary supplements to regulate blood sugar levels and avert chronic issues associated with diabetes. The beneficial effects of many herbal remedies in lowering blood glucose as well as the other complications of diabetes play a major part in this health concern in medicinal plants. **"Let food be your medicine and medicine be your food"** by Hippocrates is a very important sentence. Traditional medicinal plants have been used in the treatment of diabetes mellitus for more than a century, but only a few of these have proved safe and efficacious.

The aim of this study is to prove the *Sesbania grandiflora* and *Beta Vulgaris* combination's synergistic antidiabetic activity. Polyherbal formulation designed consists of Methanolic extract of *Sesbania grandiflora* leaves and *Beta Vulgaris* root that has proven antidiabetic potential. The polyherbal extract was found to be safe and no toxicity was exhibited in rats. Albino Wistar rats were divided into five classes, each with six animals, the study that may provide insight into a substance's overall safety is one on acute toxicity. Glibenclamide and Streptozotocin (STZ) used to induce rats. Animals had been orally treated with PHF extract at dosages of 200 and 300 mg/kg bw. Blood glucose (BG) was measured to assess the antidiabetic effect. Following STZ medication, levels of low density lipoprotein and total cholesterol were also checked. Based on body weight,

STZ-induced diabetic rats have statistically significantly affected in the range of Haematological and Biochemical parameters. The research found be concluded that the possible mechanism by which PHF exerts its Antidiabetic, Hepatoprotective, and Nephroprotective activity against STZ-induced diabetes could be due to the regeneration of pancreatic beta cells, liver cells, and kidney cells through the potential to minimize the harmful effects of free radical.

INDEX

+1

Sr. No.	Topics	Page No.
1	Declaration	ii
2	Certificate	iii
3	Certificate	iv
4	Copyright	V
5	Acknowledgement	vi
6	Preface	ix
7	Index	xi
8	List of Tables	xiv
9	List of Figures	xix
10	List of Abbreviations	XX
1	INTRODUCTION	1 - 35
2	LITERATURE REVIEW	36 - 49
3	RESEARCH GAP	50 - 51
4	AIM,OBJECTIVES, PLAN OF WORK	52 - 53
5	MATERIAL AND METHOD	54 - 106
6	RESULT AND DISCUSSION	107 – 182
7	SUMMARY AND CONCLUSION	183 – 184
8	REFERENCES	185 - 200
	APPENDIX:	
	Research and Review paper publication	-
	Conference Certificates	-

LIST OF TABLES

Table No.	Title of the Table	Page No.
1.1	List of chemical drugs used as Antidiabetic	28
5.1	Chemical constituents present in Sesbania Grandiflora leaves	58
5.2	Different types of Beta Vulgaris L	65
5.3	Description of Beta vulgaris L	67
5.4	Chemical constituent present in Beta Vulgaris root	67
5.5	Description of Magnesium Stearate	70
5.6	Description of Talc	71
5.7	Description of Lactose Anhydrous	72
5.8	Description of Microcrystalline Cellulose	73
5.9	List of Materials used	74
5.10	List of Instruments /Equipments used	76
5.11	Chemical test for detection of Alkaloids.	85
5.12	Chemical test for detection of Carbohydrates.	86
5.13	Chemical test for detection of Glycosides.	86
5.14	Chemical test for detection of Protein.	87
5.15	Chemical test for detection of Phytosterols.	87
5.16	Chemical test for detection of Fixed oils and Fats	88
5.17	Chromatographic conditions	93
5.18	Drug combination ratio	94
5.19	Composition of Polyherbal formulation.	101
5.20	Flow properties and corresponding Angle of Repose	102

5.21	Grading of powders for their flow properties	103
5.22	Compressibility Index and Hausner's Ratio for powder flow	104
5.23	The Limits of the weight variation	105
6.1	Description of S.Grandiflora L	110
6.2	Description of <i>Beta vulgaris</i> Root.	111
6.3	Ultra–Violet analysis of leaves Sesbania Grandiflora	114
6.4	Ultra–Violet analysis of root of <i>Beta Vulgaris</i>	114
6.5	Angle of Repose of <i>Sesbania Grandiflora</i> leaves powder and <i>Beta Vulgaris</i> Root powder	116
6.6	Physicochemical Parameters of leaves Sesbania Grandiflora and root of Beta Vulgaris L	118
6.7	Extraction of leaves of <i>Sesbania Grandiflora</i> and root of <i>Beta vulgaris</i> L	119
6.8	Qualitative Phytochemical Tests of leaves Sesbania Grandiflora	122
6.9	Qualitative Phytochemical Tests of root of <i>Beta Vulgaris</i>	124
6.10	pH of Extracts	126
6.11	Absorbance of Gallic acid at 760 nm	126
6.12	Absorbance of Quercetin at 510 nm	128
6.13	Total phenolic and flavonoid content of leaves extracts of <i>Sesbania Grandiflora</i>	129
6.14	Total phenolic and flavonoid content of leaves extracts of Beta Vulgaris	129
6.15	Functional group in methanolic extract of <i>Sesbania</i> <i>Grandiflora</i> leaves	130
6.16	Functional group in methanolic extract of <i>Beta Vulgaris</i> Root	131
6.17	HPTLC fingerprinting of Methanolic extract of root of <i>Beta</i> <i>Vulgaris</i> at 254 nm and 366 nm	133

c 10	Df.Walue of Methodalis antipat of most of D () U I	100
6.18	Rf Value of Methanolic extract of root of <i>Beta Vulgaris</i>	133
6.19	Peak table of Methanolic extract of root of Beta Vulgaris	133
	with Rf Values at 254 nm and 366 nm	155
< 2 0	Peak table of Betalain of root of Beta Vulgaris with Rf	10-
6.20	Values at 254 nm and 366 nm	135
6.21	HPTLC fingerprinting of Methanolic extract of leaves of	136
0.21	Sesbania Grandiflora of at 254 nm and 366 nm	130
6.22	Rf Value of Methanolic extract of leaves of <i>Sesbania</i>	136
0	Grandiflora	100
6.23	Peak table of Methanolic extract of leaves of Sesbania	137
	<i>Grandiflor</i> a with Rf Values at 254 nm and 366 nm	
6.24	Peak table of Kaepferol and Quercetin of leaves of Sesbania	120
0.24	Grandiflora with Rf Values at 254 nm and 366 nm	138
6.25	Observation of changes in Clinical Signs in PHF (2000	141
0.25	mg/kg)Administered Acute Toxicity Group	1 1 1
6.26	Histopathology of Pancreas in groups	166
6.27	Histopathology of Liver in groups	170
6.28	Composition of Polyherbal Formulation	174
6.29	Organoleptic characters of Polyherbal Formulation	176
6.30	Functional group in Polyherbal Formulation	177
C 21	HPTLC fingerprinting of Methanolic extract combination in	170
6.31	equal ratio at 254nm and 366nm	178
6.32	R _f Value of Methanolic extract of root of PHF2	178
6.33	Preformulation studies	179
6.34	Results of Post compression studies of Polyherbal	4.0.0
	Formulation	180
6.35	Results of Stability study of F3 Polyherbal Tablet	185

LIST OF FIGURES

Figure No.	Title of the Figure	Page No.
1.1	Herbal Medicine used in diseases	03
1.2	Standardization of Herbal Drug	11
1.3	Major Endocrine glands, Tissues and their hormones	17
1.4	Type 1 Diabetes	18
1.5	Type 2 Diabetes	19
1.6	Islets of Langerhans	21
1.7	Secretion of Insulin in βcells	22
5.1	Sesbania Grandiflora L plants	54
5.2	Beta Vulgaris L.Root	64
5.3	Determination of Loss on drying (Moisture Content)	80
5.4	Alcohol Soluble Extractive Value	80
5.5	Water Soluble Extractive Value	81
5.6	Furnace of Ash value	82
5.7	Extraction of Sesbania Grandiflora and Beta vulgaris powder	84
5.8	Lyophilizer	85
5.9	Preliminary Phytochemical screening of Plant Extract	89
5.10	pH meter	89
5.11	FTIR spectroscopy	91
5.12	OECD guidelines for Acute toxicity studies	96
5.13	Invivo studies	99
5.14	Tablet compression machine	100
6.1	Authentication letters of Drugs	108
6.2	Sesbania Grandiflora leaves powder and Beta Vulgaris root	109

	powder	
6.3	Sesbania Grandiflora Leaves	11(
6.4	Beta Vulgaris L Root	110
6.5	Microscopic Evaluation of Sesbania Grandiflora Linn	112
6.6	Microscopic Evaluation of <i>Beta Vulgaris</i> Root	113
6.7	Angle of Repose of Sesbania Grandiflora leaves powder and Beta Vulgaris Root powder	11:
6.8	Alcohol soluble Extractive	11'
6.9	Water Soluble Extractive	11′
6.10	Rotary Evaporator	11
6.11	Aqueous Extract leaves of Sesbania Grandiflora and root of Beta vulgaris L	11
6.12	Methanolic Extract of leaves of Sesbania Grandiflora and root of Beta vulgaris L	120
6.13	Acetone Extract of leaves of Sesbania Grandiflora and root of Beta vulgaris L	12
6.14	Ethanolic extract of leaves of Sesbania Grandiflora and root of Beta vulgaris L	12
6.15	Standard curve of Gallic acid at 760 nm	12
6.16	Standard curve of Quercetin at 510 nm	12
6.17	I.R Spectra of methanolic extract of <i>Sesbania Grandiflora</i> leaves	13
6.18	I.R Spectra of methanolic extract of <i>Beta Vulgaris</i> root	13
6.19	HPTLC fingerprinting of Gallic acid and Quercetin at 254 nm and 366 nm	13
6.20	HPTLC fingerprinting of Methanolic extract of root of <i>Beta</i> Vulgaris at 254 nm and 366 nm	134
6.21	HPTLC Densitogram of Methanolic root Extract Of <i>Beta</i> <i>Vulgaris</i>	13:

())	HPTLC Densitogram of Methanolic extract of leaves of	1.25
6.22	Sesbania Grandiflora at 254 nm and 366 nm	137
6.23	Densitogram of Methanolic Leaves Extract Of Sesbania Grandiflora	138
6.24	Animal Ethical Letter for <i>Invivo</i> Studies for Antidiabetic Activity.	140
6.25	Effect of PHF 1, PHF 2, PHF 3 extract on blood glucose level (mg/dl)	142
6.26	Metabolic cages for Urine collection	14
6.27	Microscopical examination of Urine collected after treatment of PHF1, PHF2, PHF3	142
6.28	Effects of PHF2 at doses of 200 mg/kg (F200) and 400 mg/kg (F400) on the red blood cell (RBC) count (Million/Cu mm) in STZ-induced diabetes in rats.	143
6.29	Effects of PHF2 at doses of 200 mg/kg (F200) and 400 mg/kg (F400) on haemoglobin levels (g/dl) in rats with streptozotocin-induced diabetes.	144
6.30	Effect of PHF2 at doses of 200 mg/kg (F200) and 400 mg/kg (F400) on packed cell volume (PCV) in rats with streptozotocin -induced diabetes.	145
6.31	Effects of PHF2 at doses of 200 mg/kg (F200) and 400 mg/kg (F400) on mean corpuscular volume (MCV, fl) in rats with streptozotocin-induced diabetes.	14:
6.32	Effects of PHF2 at doses of 200 mg/kg (F200) and 400 mg/kg (F400) on mean corpuscular hemoglobin (MCH) in rats with streptozotocin-induced diabetes.	140
6.33	Effect of PHF2 on mean corpuscular hemoglobin concentration (MCHC) in rats with diabetes induced by	14'

	streptozotocin.	
6.34	Effect of PHF2 at doses of 200 mg/kg (F200) and 400 mg/kg (F400) on white blood cell (WBC) count in rats with streptozotocin-induced diabetes.	14'
6.35	Effect of PHF2 at doses of 200 mg/kg (F200) and 400 mg/kg (F400) on polymorphonuclear leukocytes (polymorphs) in rats with streptozotocin- induced diabetes.	14
6.36	Effect of PHF2 at doses of 200 mg/kg (F200) and 400 mg/kg (F400) on lymphocyte levels in streptozotocin-induced diabetic rats.	14
6.37	Effect of PHF2 administered at doses of 200 mg/kg (F200) and 400 mg/kg (F400) on eosinophil levels in rats with streptozotocin-induced diabetes.	14
6.38	Effects of PHF2 administered at doses of F200 and F400 on monocyte levels in rats with streptozotocin-induced diabetes are illustrated.	15
6.39	Effects of PHF2 administered at doses of 200 mg/kg (F200) and 400 mg/kg (F400) on basophil counts in streptozotocin-induced diabetic rats.	15
6.40	Effect of PHF2 at doses of F200 and F400 on platelet count (Lakhs/Cumm) in rats with streptozotocin-induced diabetes.	15
6.41	Effect of PHF2 administration on blood glucose levels in rats with streptozotocin-induced diabetes.	15
6.42	Effect of PHF2 administered at doses of 200 mg/kg (F200) and 400 mg/kg (F400) on creatinine levels (mg/dl) in rats with streptozotocin-induced diabetes.	15

6.43	Effect of PHF2 at doses of 200 mg/kg (F200) and 400 mg/kg (F400) on serum protein levels (mg/dl) in rats with streptozotocin-induced diabetes.	154
6.44	Effects of PHF2 at doses of 200 mg/kg (F200) and 400 mg/kg (F400) on alanine transaminase (ALT) levels (IU/L) in rats with streptozotocin-induced diabetes.	155
6.45	Effects of PHF2 at doses of F200 and F400 on aspartate transaminase levels (IU/L) in rats with streptozotocin- induced diabetes	156
6.46	Effect of PHF2 at doses F200 and F400 on blood urea nitrogen (BUN) levels (mg/dl) in rats with streptozotocin- induced diabetes.	157
6.47	Effects of PHF2 administered at doses of 200 mg/kg (F200) and 400 mg/kg (F400) on total cholesterol levels (mg/dl) in rats with streptozotocin-induced diabetes.	158
6.48	Effect of PHF2 administered at doses of F200 and F400 on triglyceride levels (mg/dl) in rats with streptozotocin- induced diabetes is depicted.	159
6.49	Effect of PHF2 at doses of F200 and F400 on high-density lipoprotein (HDL) levels (mg/dl) in rats with streptozotocin-induced diabetes.	160
6.50	Effect of PHF2 given at doses of 200 mg/kg (F200) and 400 mg/kg (F400) on low-density lipoprotein (LDL) levels (mg/dl) in rats with streptozotocin-induced diabetes.	161
6.51	Effects of PHF2 administered at doses of 200 mg/kg (F200) and 400 mg/kg (F400) on very low-density lipoprotein (VLDL) levels (mg/dl) in rats with streptozotocin (STZ)-induced diabetes.	162
6.52	Effects of PHF2 administered at doses of 200 mg/kg (F200) and 400 mg/kg (F400) on Glucose absorption levels mM in rats with streptozotocin (STZ)-induced	163

	diabetes.	
6.53	Effects of PHF2 administered at doses of 200 mg/kg (F200) and 400 mg/kg (F400) on HbA1c level in rats with streptozotocin (STZ)-induced diabetes.	164
6.53	Histopathology of Pancreases in group	16
6.54	Histopathology of Liver in group	17
6.55	F1 powder	174
6.56	F2 powder	174
6.57	F3 powder	17:
6.58	F3 powder	17:
6.59	F1 to F4 Tablets	17:
6.60	FTIR of Polyherbal formulation	170
6.61	HPTLC finger printing of Methanolic extract of root of PHF2 at 254 nm and 366 nm	178
6.62	Angle of repose PHF powder	17
6.63	Bulk and Tapped Density of PHF	180
6.64	Average Weight of Tablet	18
6.65	Hardness of Tablet.	18
6.66	Thickness of Tablet.	18
6.67	Friability test of Tablet.	18
6.68	Disintegration test of Tablet.	181

LIST OF ABBREVIATIONS

SG	• Sesbania Grandiflora
	· ·
BV	: Beta Vulgaris
WHO	: World Health Organization
DM	: Diabetes Mellitus
MODY	: Maturity-onset diabetes of the young
(FPG)	: Fasting plasma glucose
PHF	Polyherbal Formulation
T1DM	: TYPE 1 Diabetes Mellitus
T2DM	: TYPE 2 Diabetes Mellitus
BGL	: blood glucose levels
HFD	: high-fat diet
HNF	: Hepatocyte nuclear factor
SGOT	: Serum glutamic pyruvic transaminase
SGPT	: Serum glutamic oxaloacetic transaminase
HPTLC	: High-Performance Thin Layer Chromatographic
BUN	Blood urea nitrogen
STZ	: Streptozotocin
ANOVA	: Analysis Of Variance
Rf	: Reference Factor
M.P	: melting point
NIDDM	: Non-Insulin Dependent Diabetes Mellitus
GD	: Gestational Diabetes
UV-Vis	: Ultra violet Visible
FT-IR	: Fourier Transform Infra-Red
TLC	: Thin Layer Chromatography
HPLC	: High Performance Liquid Chromatography
ppm	: parts per million