

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 49

3.1 Suspicious Activity Detection Using Mobile Sensor Data via Modified

Subspace KNN (msK)

With the proliferation of mobile sensors, the data they capture shouldn’t go un-

tapped. Today, crafting black box software to a mass, such data has become an

uncomplicated endeavor. Leveraging this data, it becomes feasible to unearth

suspicious and unlawful events. This section introduces an innovative forensic

investigation approach using a modified subspace KNN (msK) algorithm, designed

for detecting suspicious activities from mobile sensor data.

Figure 3.1 shows the block diagram of the modified subspace KNN, devised to

identify suspicious activity within mobile data. The data we employed was extracted

from a wireless stream, comprising 29 bytes (Packet size comprising of all sensor

readings) of information for each discrete time instant. This data was partitioned into

smaller subsets termed subspaces. Within each subspace, a distinct K-Nearest

Neighbors (KNN) algorithm was applied. The KNN, a predictive method, evaluates

neighboring data points to make predictions.

Post KNN analysis across each subspace, we aggregated the outcomes and tabulated

the votes from each KNN run. To result in a definitive decision, we considered the

maximum vote count along with its corresponding probability. The determination of

suspicious activity rested on whether the votes for such activity

Fig. 3.1: Block diagram illustrating the application of modified subspace KNN

for the detection of suspicious activities from mobile data.

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 50

The mobile data is acquired from a wireless stream, yielding 29 bytes per time

instance. This data is segmented into N subspaces, each subjected to a separate KNN

analysis. The outcomes from individual KNNs are analyzed and decided based on a

voting. The final classification hinges on the maximum votes, accompanied by their

probabilities. Suspicious activity detection occurs if the votes for suspicious activity

exceed those for normal activity. Typically, the number of subspaces is maintained as

an odd value to prevent equal vote distribution between classes. In this case, we

initiated with 3 subspaces, incrementing subsequently to 29 in steps of 2.

Outnumbered those for normal activity. To ensure impartiality, we maintained the

count of subspaces as an odd value, thereby avoiding an equal vote distribution

between the two classes – suspicious and normal. In our implementation, we initially

set the number of subspaces to 3, subsequently incrementing it to 29 in steps of 2.

This methodology facilitates comprehensive analysis of mobile data by employing

subspaces, KNN algorithms, and vote counting to discern suspicious activity patterns.

3.1.1 Collection of mobile data

For the collection of mobile data, a black box application was developed, capable of

acquiring various sensor readings including GPS coordinates, Accelerometer data,

Gyroscope data, Magnetic field measurements, Orientation data, Linear acceleration

values, Gravity readings, Rotation values, Pressure measurements, and Battery

temperature. The data acquisition was facilitated through the User Datagram Protocol

(UDP) stream, utilizing port 5555 for communication. Four distinct interval selection

options (Capture rates) were available, each denoting the number of packets received

per unit time. Each packet utilized in this study comprised 29 bytes of information.

The black box application could seamlessly operate in the background. It was derived

from the open source IMU GPS Streaming app. The current investigation was carried

out on Android 10 Funtouch OS 10 and Android platforms.

3.1.2 Modified subspace KNN

The mobile data was collected from a wireless stream at a rate of 29 bytes per time

instance. Each time instance dataset was subdivided into N subspaces, and each KNN

was applied separately. Finally, the votes from each KNN are totaled. For the final

classification, the maximum number of votes with their probability is taken into

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 51

account. Suspicious activity is detected if the number of votes cast is greater than the

number of votes cast for normal activity. Typically, the number of subspaces was kept

odd, to avoid giving equal votes to the both classes. In our case, we start with a

subspace n = 3 and gradually increase it to 29 in steps of 2

i.e. n=5, 7, 9, 11....

The modified subspace KNN is a method that uses K neighborhood classification with

parallel implementation. Here, to create multiple KNN models, data is sampled into

subspaces. For example, out of 999 readings, any five readings are randomly chosen

and then compared with the current time point. If the number of points is closer to

normal activity compared to suspicious activity, then the current point is classified as

normal. The main modification to the subspace KNN comes from the fact that we not

only give the output class but also give the output probability that the current value

belongs to that particular class.

For the probability determination, we calculate the sum of the Euclidean distance of

the point from each of the K points in the KNN. The formula for the Euclidean

distance is given in equation (1).

(3.1)

Where, xc, yc are the coordinates of the current data point being classified. xi, yi are the

coordinates of the ith neighbor, and i varies from 1, 2,...K Di is the Euclidean distance

for the ith neighbor and i varies from 1, 2,...K.

The formula for probability computation is given in equation (2).

 (3.2)

Where, PS is the probability of suspicious activity. L is the number of neighbors that

belong to the suspicious class. DSi is the Euclidean distance from the current point to

all i points that belong to the suspicious class, and i varies from 1, 2,...L. K − L is the

number of neighbors that belong to the normal class. Dnj is the Euclidean distance

from the current point to all j points that belong to the normal class, and j varies from

1, 2,...K-L.

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 52

3.2 Activity classification

After detecting suspicious activity using our modified subspace KNN, we decided to

explore existing multiclass classification techniques to distinguish between different

types of activities. One widely recognized classifier for time series data is Long Short-

Term Memory (LSTM), and we also considered DenseNet.

For the LSTM based classification, we utilized standard libraries, including

TensorFlow, Keras, Pandas, NumPy, and Matplotlib.

We will discuss about these libraries in short:

• TensorFlow, an open source machine learning library developed by Google,

serves as a powerful platform for creating and training deep learning models. It

employs data flow graphs to represent computations, where nodes represent

mathematical operations and edges represent multidimensional data arrays

(tensors) communicated between nodes. Tensors, serving as the central unit of

data in TensorFlow, are pivotal for modeling and training. Tensor Flow’s

efficiency in building and training deep learning models is notable.

• It allows for the creation of computational graphs, which define the flow of

operations. These graphs can be executed on various hardware platforms,

including CPUs and GPUs, making TensorFlow a versatile and powerful tool for

machine learning applications.

• Keras, an open source high level neural network library written in Python by

Francois Chollet, a Google engineer, is tailored for building and training neural

networks. It operates atop deep learning frameworks (like TensorFlow, Theano, or

CNTK), fostering rapid experimentation and iteration to stream line deep learning

model development. Keras provides a user friendly API, abstracting away low

level intricacies and emphasizing model architecture and experimentation. It

supports multiple backends, enabling developers to select the most suitable one

for their needs. Keras models can be developed in Python or R and executed with

TensorFlow, Theano, CNTK, or MXNet, on various platforms like CPU, NVIDIA

GPU, AMD GPU, TPU, Android, iOS, and Raspberry Pi. With wide industry

adoption by companies like Netflix, Yelp, and Uber, Keras boasts a robust

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 53

research community and contributions from tech giants like Microsoft, Google,

NVIDIA, and Amazon. Its ease of learning and prototyping, coupled with its

flexibility and multi backend support, make Keras a preferred choice for neural

network development, catering to both beginners and experts alike.

• Pandas, a versatile Python library, is integral for data manipulation and analysis,

simplifying tasks related to structured data. It is adept at handling tabular data,

such as spreadsheets or SQL tables, providing data structures and functions for

efficient operations. Built on NumPy, Pandas is widely used by data analysts,

scientists, and engineers. It introduces two primary data structures: Series, for one-

dimensional labeled arrays, and DataFrame, for two dimensional labeled data

structures resembling tables or spreadsheets. These structures enable easy

manipulation, indexing, and operations involving data. Common use cases include

data cleaning, merging, and joining datasets, grouping and aggregation, data

visualization, and statistical analysis and machine learning when used alongside

SciPy and Scikitlearn.

• NumPy (Numerical Python) is a fundamental, open source Python library that

plays a pivotal role in scientific computing, data analysis, and numerical

computations. It boasts several key features:

o Multidimensional Arrays: NumPy offers a powerful array processing

package, with its primary data structure being the ndarray (n-dimensional

array). These arrays can hold diverse data types (integers, floats, etc.) and

enable efficient operations on extensive datasets.

o Efficient Numerical Operations: NumPy is optimized for numerical

computations, ensuring faster performance than standard Python lists.

o Broadcasting: Facilitates element wise operations on arrays of various

shapes.

o Linear Algebra: Provides robust functions for matrix operations, eigen-

values, and more.

o Random Number Generation: Equipped with tools for random sampling

and distributions.

o Indexing and Slicing: Enables easy access and manipulation of array

elements.

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 54

o Integration with Other Libraries: Often used in conjunction with libraries

like SciPy, Matplotlib, and Pandas for comprehensive data analysis and

visualization.

• Matplotlib is a powerful visualization library in Python primarily utilized for

creating 2D plots of arrays. It serves as a visualization utility for data analysis and

exploration, enabling the creation of high quality visualizations and graphs. Built

on NumPy arrays, Matplotlib is designed to work seamlessly with the broader

SciPy stack. Introduced by John D. Hunter in 2002, it offers several types of plots,

making it versatile for various tasks, such as line plots, bar plots, histogram plots,

scatter plots, pie charts, and area plots.

Specifically, we made use of the Matplotlib library for pie plots. Data importation was

done through Google Drive. In the Keras framework, we employed traditional LSTM

in combination with sequence preprocessing and DenseNet for classification. Our

primary contribution in designing a forensic network was the sequential connection of

DenseNet with LSTM. We employed the Adam optimizer to minimize errors in this

deep learning model. The Adam optimizer (Adaptive Moment Estimation) is an

advanced gradient descent optimization algorithm that adjusts the learning rate for

each parameter dynamically, using estimates of first and second moments of

gradients. It combines the benefits of AdaGrad and RMS Prop optimizers to handle

sparse gradients and nonstationary objectives.

3.2.1 Hardware details

We deployed algorithm on a computer equipped with an Intel i9-9900 processor

featuring a 16 MB cache and a maximum frequency of up to 5 GHz. This processor

has 8 cores and 16 threads, paired with DDR4 2666 MHz RAM, with substantial 64

GB of RAM memory. To facilitate the deep neural network training, we used an RTX

3060 GPU with 12 GB of GDDR6 RAM. Storage was handled by a Samsung 980 1

TB NVMe solid state drive, delivering impressive internal read speeds of 3500

MB/sec.

The mobile phone used for testing is a device that supports GSM, HSPA, and LTE

technologies. It features a body dimension of 162 x 76.5 x 9.1 mm and weighs 197

grams, with a glass front, plastic back, and plastic frame, and supports dual Nano SIM

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 55

cards. The display is a 6.53 inch IPS LCD with a resolution of 1080 x 2400 pixels,

providing a screen to body ratio of approximately 83.1%. Running on Android 10

with Funtouch 10.0, it is powered by the Qualcomm SM6125 Snap dragon 665

chipset, an octacore CPU, and Adreno 610 GPU. The device offers substantial

memory options with 128GB of internal storage paired with either 8GB or 6GB of

RAM and supports microSDXC cards. Its quad rear camera setup includes a 13 MP

wide lens, an 8 MP ultrawide lens, a 2 MP macro lens, and a 2 MP depth sensor,

while the 16 MP front camera handles selfies. Additional features include Wi-Fi,

Bluetooth 5.0, GPS, and USB Type C connectivity. The phone is equipped with a non

removable 5000 mAh battery supporting 15W wired charging.

3.2.2 Data collection and training details

All values from the training data were read as arrays and concatenated into a single

line. The feature vector organized the data into sets of three float values from the

linear array of the original data. Once a window size of 192 values was reached, the X

feature vector was saved, and Y was marked as 1,0,0, indicating that the data

belonged to the first channel. This process was similarly repeated for sensor readings.

The next activity was recorded and read as a separate linear array. All values from all

sensors were likewise divided into a window size of 192, and the vector was marked

this time as 0,1,0. Similarly, for the third activity, the vector was marked as 0,0,1.

Initially, we focused solely on three criminal activities for consideration, each of

which was dramatically reproduced:

Mobile data was recorded when a mobile phone was in the pocket of a woman

struggling against an attack (WSAA). Mobile data was recorded when a mobile phone

was in the pocket of a man who was forcibly being dragged by kidnappers to enter a

car (MKFE). Mobile data was collected from the pocket of a woman while she was

running (WRUN). These three activities were dramatic recreation of incidents

commonly associated with criminal activity. Trained professionals and an expert

cameraman were involved in performing these activities.

For training, all time series data was concatenated along with their corresponding

activity labels. A total of 947 readings were used in LSTM, each with a window size

of 192. For testing, a similar LSTM approach was employed, where the data was

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 56

windowed and concatenated into a single float vector, resulting in labels represented

as 1,0,0: 0,1,0: 0,0,1. In total, 736 different files were used for subsequent denseNET-

based testing.

3.2.3 Long Short Term Memory

For feature selection purposes, we used Long Short Term Memory (LSTM), which is

a type of recurrent neural network (RNN) architecture that is well suited for pro-

cessing and making predictions based on sequences of data. It was introduced by

Hochreiter and Schmidhuber in 1997 and has since become a fundamental com-

ponent in various applications, including 1D signal processing, like in our case.

Speech recognition, time series forecasting, and NLP are some more examples where

LSTM is used. Here are the key details and components of LSTM networks:

Memory Cells: LSTM networks are designed to capture and remember patterns over

long sequences of data. They achieve this through the use of memory cells. These

memory cells have the ability to store information for long durations, making them

effective at capturing dependencies in sequential data.

Gates: LSTMs employ three different types of gates to control the flow of in-

formation within the memory cell and decide what to store, forget, and output.

Forget Gate: The forget gate determines what information from the previous time step

should be discarded from the cell state. It takes both the previous hidden state and the

current input as inputs and outputs a value between 0 and 1 for each component of the

cell state. A value of 1 means ”keep this,” while a value of 0 means ”discard this.”

Input Gate: The input gate decides what new information should be stored in the cell

state. It also takes the previous hidden state and the current input, and it produces a

new candidate value for the cell state.

Output Gate: The output gate decides what the next hidden state should be based on

the cell state. It takes the current input and the previous hidden state and produces the

new hidden state.

Hidden State: In addition to the cell state, LSTM networks have a hidden state at each

time step. The hidden state is a filtered version of the cell state and carries information

relevant to the predictions being made.

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 57

Backpropagation Through Time (BPTT): LSTMs are trained using back

Fig. 3.2: LSTM details

Propagnation, similar to feedforward neural networks. However, due to their recurrent

nature, training involves back propagating errors through time, which can be

computationally intensive. This is known as BPTT.

Vanishing Gradient Problem: LSTMs were introduced to mitigate the vanishing

gradient problem, which affects traditional RNNs. The forget, input, and output gates

in LSTM networks enable them to capture long range dependencies in data without

suffering from the vanishing gradient problem.

Variants: Over time, several variants of LSTM have been developed to address

specific challenges. One notable variant is the Gated Recurrent Unit (GRU), which

simplifies the LSTM architecture while retaining much of its effectiveness.

LSTM networks as shown in figure 3.2 have proven to be highly effective in a wide

range of applications where sequential data plays a crucial role. They are particularly

valuable when dealing with time series data, text data, speech data, and any data

where understanding dependencies over time is essential.

3.2.4 DenseNET details

A sequential model was employed with the initial layer being the dense net. The

activation function used was Rectified Linear Unit (ReLU). The matrix was re-

shaped to fit a dense net with a size of 128. Three additional dense layers followed,

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 58

and softmax activation was used instead of ReLU. Loss was computed using mean

squared error, and the optimizer utilized was Adam, with a learning rate of 0.01. The

primary metric of interest was accuracy. Over the course of 16 epochs, the time per

step decreased from 636 microseconds for the first epoch to 43 microseconds for

subsequent epochs.

The results were evaluated based on 736 different samples, and accuracy scores,

classification parameters, and a confusion matrix were employed for validation. These

classification parameters included the F1 score, precision, and recall (sensitivity). To

provide a clearer understanding of the three classes, the confusion matrix was

normalized.

3.3 Mobile app

After delving into the intricacies of the proposed Dense Net based architecture, let’s

explore the details of the mobile application developed for real time data collection.

This application represents another significant contribution to the thesis, serving as a

versatile tool for gathering data related to various activities. It’s worth noting that

these activities aren’t limited to criminal scenarios; instead, we’ve designed a general-

purpose data collection app that can be beneficial for researchers across different

domains.

To initiate the collection of mobile data, users are required to connect sensors to their

devices and create an object called ”MobileDEV” to facilitate data storage.

This app ensures the collection of sensor data even when the device lacks a network

connection. It achieves this by utilizing a sensor data log, which is stored locally. The

app periodically accesses the camera to acquire images at predefined resolutions,

autofocus settings, and flash modes. In addition to images, the app logs data related to

acceleration, angular velocity, magnetic field strength, orientation, and position.

Here’s a breakdown of the sensor data measurements:

• Acceleration is measured in meters per second squared (m/s2).

• Angular velocity is measured in radians per second (rad/s).

• Magnetic field strength is measured in microtesla (µT).

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 59

• Orientation is determined considering elevation, XYZ coordinates, yaw, roll, and

pitch.

• Position data includes latitude, longitude, speed, altitude, and course.

• Latitude is recorded in degrees, with positive values indicating north and negative

values indicating south.

• Longitude is measured in degrees, with positive values indicating east and

negative values indicating west.

• Speed is measured in meters per second (m/s).

• Altitude is measured in meters above sea level.

• Course is recorded in degrees with respect to true north.

To enable data transmission, the user must select the ”stream to cloud or log” option.

Additionally, the user should choose ”send position data” in the background and

activate ”auto upload.” For the proof of concept, we manually collected the data,

classifying it as either normal or indicative of a fight scenario. To facilitate data

collection, users installed the data logger app on their mobile devices.

We captured three similar fight sequences, each separated by an approximate time

interval of 15 to 20 seconds. These sequences were recorded using the data logger

app, and we configured the sampling rate to 300 milliseconds.

From these fight sequences, we extracted various parameters, including acceleration,

angular velocity, magnetic field data, orientation, and position. This process was

consistently applied to all three sequences. The resulting dataset comprised

Fig. 3.3: Thunkable software front user design interface

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 60

all these collected insights, which we prepared for subsequent analysis and

processing. We then compared this dataset to the one containing normal sequences for

further evaluation.

After completing the multiclass classification using the LSTM with Dense NET

approach for three classes, we opted to return to binary classification using real time

data logged through our mobile app. For this task, we chose to employ the simplest

machine learning algorithms, K-Nearest Neighbors (KNN) and Gaussian Support

Vector Machine (SVM).

The reason for this choice is that we wanted to avoid introducing the complexity of

DenseNET into this binary classification task. Additionally, using standard algorithms

such as KNN and Gaussian SVM allows us to test the performance of the app against

established methods rather than our proposed ones.

To train a model capable of distinguishing between normal and abnormal sequences,

we employed two classification algorithms: k-nearest neighbors (KNN) and Gaussian

Support Vector Machine (SVM). To generate a training dataset, we utilized a mobile

application connected to various sensors deployed in different locations to collect real

time data. This dataset was stored in an object referred to as ”MobileDEV.”

Thunkable Front User Design Interface: Thunkable’s interface as shown in figure 4.11

is divided into two main sections:

1. Design View: This visual workspace displays app’s layout, where one can

drag and drop components like buttons, lists, and maps to build user screens. It

resembles a typical visual development environment with a live preview of

our app as we design.

2. Blocks Editor: This section houses the logic behind our app’s functionality.

One can use drag-and-drop blocks to define how components interact and

respond to user actions. Think of it as building the app’s behavior with visual

puzzle pieces.

General Layout:

• Components Panel: Located on the left side, this panel houses all available UI

components like buttons, text labels, images, maps, and sensors.

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 61

• Properties Panel: This panel on the right displays properties specific to the

selected component, allowing one to customize its appearance and behavior.

• Screen Canvas: The central area displays the app’s current screen layout in

real-time, reflecting the components and their arrangement.

• Navigation Toolbar: Provides options for managing screens, previewing the

app, and accessing project settings.

To build the app using thunkable , One needs to login the free thunkable account to

login and then get started. The login page is as shown in figure 3.4

Once logged in, one can install thunkable and a menu will pop up as shown in

figure3.5

 There are many menu buttons, from simple screen sharing to calculating text to

speech, from which users can select one and make the app.

Creating a mobile forensics app like the proposed one in Thunkable was definitely

ambitious and technically challenging, but with careful planning and the right

approach, it’s achievable. Now we explain some of the basic steps involved in

building the proposed app, with a breakdown of the main steps involved:

1. Design and Planning:

• Define core functionalities: Identify the specific sensor data one want to

capture (GPS, accelerometer, etc.), how one will handle timestamps, and

what level of data analysis one can envision.

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 62

Fig. 3.4 : Sign-in window at Thunkable

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 63

Fig. 3.5: Menu on thunkable app

• User interface: Plan the app’s screens and layout, considering user consent

mechanisms, data visualization, and secure storage options.

• Data security: Prioritize data encryption, secure storage techniques (local

or cloud), and user control over data access and deletion.

2. Building the App in Thunkable:

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 64

• Data collection: Use Thunkable’s built in sensor components to capture

data from GPS, accelerometer, gyroscope, etc. Use the ”Clock” component

for timestamps.

• Data storage: Utilize Thunkable’s ”File” or ”Airtable” components to store

data securely on the device or in the cloud. For advanced analysis,

consider integrating with external databases.

• Data visualization: Use Thunkable’s ”Charts” and ”Lists” components to

visualize sensor data over time, like GPS tracks or accelerometer readings.

• User interface: Drag and drop UI components to create screens for data

collection, visualization, and settings. Pay attention to user friendliness and

clarity.

3. Advanced Features (Optional):

• Data analysis: Consider integrating machine learning models for advanced

analysis, like anomaly detection or pattern recognition in sensor data. This

requires coding knowledge beyond Thunkable’s block based interface.

• Reporting: Implement features for generating reports or exporting data in

formats useful for further analysis in forensic software.

3.4 KNN and Gaussian SVM

KNN is a classification technique that groups similar looking data into clusters,

treating each cluster as a class. Conversely, Gaussian SVM is a classification

technique that distinguishes datasets based on extracted features. Data is collected

Figure 3.6: The flow of the proposed work with KNN and Gaussian SVM.

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 65

The datasets of normal and fight sequences are created by accessing multiple videos.

The datasets are uploaded to the cloud. Analysis of these datasets is done with the

help of machine learning. Lastly, the sensor data collected is classified into a normal

and abnormal sequence with maximum accuracy.

Using various mobile sensors, and the collected data is stored in an object named

“MobileDEV.” We trained a machine learning model using KNN and Gaussian SVM,

with the results stored in a database for further analysis. The system performs

sequence classification, categorizing sequences as either “normal” or “abnormal.” If a

sequence is c lassified as “normal,” the sensors are instructed to continue data

collection. Conversely, if the sequence is classified as “abnormal,” an abnormality

report is generated. Figure 3.6 shows the proposed workflow diagram. We used

multiple videos for the creation of normal and fight sequence datasets. This data is

uploaded to the server for training. Machine learning is being used to analyze these

datasets. Finally, the data collected in realtime is accurately classified into a normal

and abnormal sequences.

3.5 Data Collection

For our research, we employed the Samsung S22 Ultra mobile phone as the primary

device for data collection. This particular model features a variety of sensors,

including an under display ultrasonic fingerprint sensor, an accelerometer, a gyro-

scope, a proximity sensor, a compass sensor, and a barometer sensor. The ultrasonic

fingerprint sensor serves the purpose of biometric authentication, while the

accelerometer and gyroscope detect changes in device orientation. The proximity

sensor identifies when the device is close to the user’s face, the compass sensor

determines the device’s orientation relative to magnetic north, and the barometer

sensor measures atmospheric pressure. Additionally, the Samsung S22 Ultra offers

various features such as Samsung DeX, Samsung Wireless DeX for desktop

experience support, Bixby natural language commands and dictation, and Ultra

Wideband (UWB) support.

The objective of our research was to develop a mobile application capable of

collecting data from mobile phones to assist in investigations or legal cases. To

achieve this, we initiated the data collection process by gathering information for the

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 66

training dataset. Trained actors were engaged to simulate ten real-life scenarios,

encompassing situations such as a teenager running for survival, a man being forcibly

dragged into a car during a kidnapping, and a woman calling for help while being

kidnapped. The ten output classes for classification include descriptive labels such as

”Teenager Running for Survival,” ”Male Sitting in Car Just Before Accident,” ”Kids

Fighting,” ”Woman Sitting in Moving Vehicle Just Before Car Crash,” ”Women

Calling for Help During Kidnapping,” ”Woman Struggling Against Attackers,”

”Throwing of Mobile Phones to Protect Evidence,” ”Women Running to Save

Herself,” ”Man Getting Dragged into Car During Kidnapping,” and ”Man Enters

Vehicle by Forcibly Pushing Woman onto Back Seat.”

3.6 LSTM feature extraction

LSTMs (Long Short Term Memory networks) prove to be formidable tools in

extracting features from 1D sensor data, particularly when temporal dependencies or

patterns exist, as seen in our case where mobile data with discernible patterns was

collected from sensors. The collaboration of LSTMs with Dense Net is instrumental

in extracting features from this data.

There are notable strengths in employing LSTMs for feature extraction. Notably, they

excel in capturing long term dependencies, eliminating the need for manually defining

features as in traditional methods. Their ability to discern subtle relationships between

data points at distant time steps is crucial for capturing trends, cycles, and concealed

patterns within the data.

LSTMs are well suited for handling sequential data, a characteristic common in

sensor data. They process sequences effectively, considering the context of each data

point within its temporal context. This enables them to extract features influenced by

both past and future values, resulting in richer representations.

Moreover, LSTMs showcase adaptability to diverse sensor data types, including

accelerometer readings, temperature measurements, and vibration signals. By

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 67

adjusting the model architecture and learning parameters, they can be tailored for

specific sensor characteristics, extracting relevant features for different applications.

The feature extraction process with LSTMs follows a systematic approach:

Preprocessing: Sensor data acquired through a mobile app undergoes preprocessing

before feeding it to the LSTM. This may involve scaling, normalization, and

segmentation into appropriate time windows based on the expected feature timescale.

LSTM Architecture: The LSTM network architecture is designed based on data

complexity and desired features. Optimization involves factors like the number of

hidden layers (2), activation functions (tanh), and learning rate (0.001) for optimal

performance.

Feature Extraction: As the LSTM processes sequential data, it learns internal

representations of information. Extracted features include dominant frequencies,

trends, amplitudes, and relationships between past and future values.

Output Interpretation: Features extracted by the LSTM are accessed through various

methods, depending on the model architecture. These can be directly accessed from

hidden states, passed through additional layers for further processing, or utilized for

downstream tasks such as classification or anomaly detection.

In the context of human activity recognition, LSTMs prove effective in analyzing

accelerometer data from mobile devices. They extract features like movement

patterns, steps, and gestures, facilitating activity recognition for forensics.

However, our study reveals that LSTMs can be computationally expensive and

require larger datasets for effective training compared to simpler models. Hence,

selecting the right hyperparameters and architecture is crucial for optimal feature

extraction performance.

Combining LSTMs with other neural network types, such as DenseNet, can leverage

both spatial and temporal dependencies for even more informative feature extraction.

In summary, LSTMs present a potent approach for extracting meaningful features

from 1D sensor data, enabling diverse applications, especially in our forensic context.

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 68

3.7 IFDenseNET

IFDenseNET-138 Conceptual Diagram for Classifying Mobile Phone Sensor Data

138 Conceptual Diagram for Classifying Mobile Phone Sensor Data.

Fig. 3.7: IFDenseNET-138 Conceptual Diagram for Classifying Mobile Phone

Sensor Data

The figure 3.7 shows a conceptual diagram of the IFDenseNET-138 deep learning

architecture, which is proposed for classifying mobile phone sensor data. The model

consists of 138 layers of dense connections, which allows for the efficient flow of

information throughout the network. The input data to the model is a 2-D array, where

each row represents individual sensors and each column represents a time series. The

data is then processed through a 32x3 dense layer with ReLU activation for 138 times.

To reduce the dimensions of the data, a max pooling layer and a flattened layer are

used. Finally, the data is classified using the Softmax function, which outputs a

probability distribution over the 4 possible classes.

The IFDenseNET-138 architecture has been shown to be accurate for classifying

mobile phone sensor data, and it is also computationally efficient. This makes it a

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 69

promising candidate for real time applications, such as activity recognition and health

monitoring.

3.8 Mobile App details

Figure 3.8: The block code outlines a mobile application designed for evidence

collection.

Button 1 serves as the trigger to initiate data collection from mobile sensors, which is

then transmitted to a cloud variable. In situations where there is no internet

connection, the app stores the data locally on the device. The interface, as depicted in

Panel a, features both start and stop buttons, real time sensor readings, and a loading

symbol during the data upload process. The block code includes the initialization of

the cloud variable and a do-while loop that determines whether the app is in sleep

mode or actively collecting sensor data. During the data collection phase, the app

loads gyroscope readings into the cloud variable and stores additional data in table 1.

The app variable A is set to 1 when data is actively being recorded and is set to 0

when either the stop button is pressed or data is already stored. The app continues to

run in an infinite loop until the button is pressed again.

Figure 3.8 illustrates the block coding structure of a proposed mobile application

designed specifically for evidence collection. Upon clicking button 1, the application

initiates the process of gathering data from various sensors including the gyroscope,

magnetometer, accelerometer, and location sensor. This collected data is then

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 70

transmitted to a cloud variable that undergoes periodic updates. For instances, where

an internet connection is unavailable, the data is stored locally on the mobile device’s

memory. In Figure 3.9, Panel a showcases the user interface display featuring a blue

start button, indicating that the program has just been initiated and no data is currently

present in either the cloud or local memory. As

Figure 3.9: The EC mobile collection app exhibits different front-end states

(a) Initialization state: Marked by a blue button, this state indicates that no data has

been collected yet. (b) Data collection state: Represented by a red button and the

display of current sensor readings, this state is active when data is actively being

collected. (c) Sleep mode state: Indicated by a green button, this state signifies that the

data has already been stored in local memory and successfully uploaded to the cloud.

the app proceeds to collect data from all the mobile sensors, the interface switches to

displaying a red stop button (Fig. 3.9 b). Additionally, the interface provides real time

readings from each sensor, visible above the button. A rotating loading symbol is

employed as a visual representation while the data is being uploaded to the cloud.

Finally, the evidence collector app, denoted by a green start button, signifies that the

data is not only stored in local memory but has also been successfully uploaded to the

cloud.

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 71

Figure 3.8 depicts the block coding of the proposed evidence collector app. The red

blocks represent the initialization of the cloud variable data S with two local app

variables, A and B, where A is initialized to 0, and B is initialized to

1. The app has a single button called button 1 in the front end, which is initially

blue (3.9a). When the user presses the button, the code goes into a do-while

loop, where app variable A’s value decides whether all sensor readings are

being stored, or the app is in sleep mode. In sleep mode, the app variable A

value is reset, and the button background color is set to green (Fig. 3.9c), the

button text is set to Start, and the loading icon’s visibility is set to false. If the

app variable A is zero, then the ’if’ loop is entered. In this loop, the cloud

variable is loaded with the gyroscope’s readings, and the button’s background

color is set to red (Fig. 3.9b), while the button’s text is set to Stop. All four

sensors (gyroscope, magnetometer, accelerometer, and location sensor) are

enabled, and the loading icon’s visibility is set to true. A new variable data is

created in table 1, which holds the values of alpha, beta, and gamma.

3.9 App building using flutter

3.9.1 Creating an App in Flutter

Flutter is an open source, cross platform mobile application development frame work

created by Google. It allows developers to build beautiful, high performance, and

responsive applications for both iOS and Android platforms using a single codebase.

In this thesis, we will explore the process of creating a simple app in Flutter.

Before diving into the app development process, it is essential to set up the Flutter

development environment. This includes installing the Flutter SDK, an IDE

(Integrated Development Environment) like Android Studio or Visual Studio Code,

and configuring the necessary tools for the target platforms (Android and/or iOS).

3.9.2 Creating a New Flutter Project

The first step in building a Flutter app is to create a new project. This can be achieved

either through the IDE’s built in Flutter project creation wizard or by running the

flutter create command in the terminal. During this process, one will be prompted to

provide a project name, select the project type (Flutter Application), and specify the

Flutter SDK path.

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 72

Once the project is created, it’s crucial to understand the project structure and the role

of each file and directory. The main dart file is the entry point of the application,

where the app’s execution begins. The lib directory contains the Dart source code

files, including the user interface (UI) components and other application logic.

3.9.3 Building the User Interface

Flutter follows a widget based approach to building user interfaces. In the main dart

file, one can find the MyApp and My Home Page widgets, which serve as the starting

point for app’s UI. By modifying these widgets and adding additional widgets, one

can create the desired layout and functionality for the app. In the provided code

snippet, the My Home Page widget displays a Scaffold widget, which provides a basic

structure for a screen in a Material Design app. It includes an AppBar at the top and a

Center widget containing a Text widget that displays the message ”Welcome!”.

3.9.4 Running the App

After making the necessary modifications to the code, one can run the app on an

emulator or a physical device. Flutter provides hot reload and hot restart features,

which allow one to see the changes in our app instantly without having to restart the

entire app.

3.9.5 Customizing the App

One can customize the app by adding more widgets, implementing navigation

between different screens, integrating with APIs or databases, and incorporating

various Flutter plugins and packages for additional functionality.

3.9.6 Deploying the App

Once the developer have completed the development and testing phases, one can

prepare the Flutter app for release on the respective app stores (Google Play Store for

Android and App Store for iOS). This process involves creating release builds,

generating the necessary certificates and signing keys, and following the submission

guidelines provided by the app stores. By following the guidelines outlined in this

section one can gain a basic understanding of creating a simple yet functional app

using the Flutter framework.

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 73

Fig. 3.10: File menu to flutter app

As shown in figure 3.10 Open the Android Studio IDE and select Start a new Flutter

project.

Fig. 3.11: New flutter project

As shown in figure 3.11 Select the Flutter Application as the project type. Then click

Next. Verify the Flutter SDK path specifies the SDK’s location (select Install SDK. . .

if the text field is blank).

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 74

As shown in figure 3.12 Enter a project name (for example, myapp). Then click Next.

Fig. 3.12: UI for new flutter application

The following code demonstrates a basic Flutter application. Flutter is an open source

framework by Google for building natively compiled applications for mobile, web,

and desktop from a single codebase. This example includes a simple app with a home

page that displays a ”Welcome to GeeksForGeeks!” message.

In the code, the main function is the entry point of the application, calling

runApp() to attach the given widget to the screen. The MyApp class extends

Stateless Widget, making it a widget that does not maintain any internal state. The

build method of MyApp returns a MaterialApp widget, which serves as the root of

the application. It sets the title, theme, and home page of the app. The home page

is defined by the My Home Page class, which also extends Stateless Widget and

returns a Scaffold widget, providing a structure for the app with an app bar and

centered body content.

// Importing important packages require to connect

// Flutter and Dart

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 75

import ’ package : flutter/ material. dart ’;

// Main Function

void main () {

 // Giving command to run App () to run the app .

 /* The purpose of the run App () function is to attach the given

 widget to the screen . */

 run App (const MyApp ());

}

// Widget is used to create UI in flutter framework .

/* StatelessWidget is a widget , which does not maintain any

state of the widget. */

/* MyApp extends StatelessWidget and overrides its build

method . */

class MyApp extends StatelessWidget {

 const MyApp ({ Key ? key }) : super(key : key);

 // This widget is the root of the application . @

 Override

 Widget build (Build Context context) { return

 MaterialApp (

 // title of the application

 title : ’ Hello World Demo Application ’,

 // theme of the widget theme

 : Theme Data (

 primary Swatch : Colors. lightGreen ,

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 76

),

 // Inner UI of the application

 home : const My Home Page (title : ’ Home page ’),

);

 }

}

/* This class is similar to MyApp instead it returns

Scaffold Widget */

class My Home Page extends StatelessWidget {

 const My Home Page ({ Key ? key , required this. title }) :

 super(key : key);

 final String title ;

@ override

Widget build (Build Context context) {

 return Scaffold (

 app Bar: App Bar(

 title : Text(title),

),

 // Sets the content to the

 // center of the application page body :

 const Center(

 // Sets the content of the Application child :

 Text(

 ’ Welcome to GeeksForGeeks!’,

)

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 77

),

);

 }

}

Fig. 3.13: Select main.dart as target file

Figure 3.13 shows that main.dart is the main target file to be chosen in which all the

codes needs to be uploaded.

As shown in figure 3.14 Once the file is built apk file can be installed on mobile and

one can see app like this. This is sample code executed from website GeeksForGeeks!

that acted as hello world for us to develop fultter apps.

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 78

3.10 Classification of actual Sensor data using python code

The algorithm shown is a Python script that reads accelerometer, gyroscope, and

magnetometer data from CSV files, combines the features into a single feature vector,

and uses a deep learning model to classify the data into two classes (0 and 1). Here’s

an explanation of the code: The script starts by importing the necessary libraries:

pandas for data manipulation, numpy for numerical operations, train testsplit from

scikit learn for splitting the data into training and testing sets, and Sequential and

Dense from TensorFlow’s Keras library for building the deep learning model. Next,

the accelerometer, gyroscope, and magnetometer data are read

Fig. 3.14: The final app built

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 79

from their respective CSV files using the pd.read csv() function from pandas. The

feature columns (columns 2 to 4) are extracted from each data frame using the iloc

method and converted to NumPy arrays. To ensure that the feature vectors have the

same length, the script finds the minimum length among the three feature vectors and

truncates each vector to that minimum length using slicing [:minlength]. This step is

necessary because NumPy’s concatenate function requires arrays of the same shape

along the non-concatenation axis. The truncated feature vectors are then combined

into a single feature vector using np.concatenate() along axis=1, which means

concatenating horizontally (column-wise). Random labels (0 or 1) are assigned to the

data using np.random.randint(2, size=featurevectors.shape[0]).

In the real world scenario, one would need to provide the actual labels for the data.

The combined feature vectors and labels are then split into training and testing sets

using train-test-split from scikit learn. The testsize parameter is set to 0.2, which

means 20% of the data will be used for testing, and the remaining 80% for training.

The random state parameter ensures reproducibility of the split. A deep learning

model is defined using the Sequential API from Keras. The model has four dense

(fully connected) layers: the input layer with 9 units (corresponding to the 9 features),

two hidden layers with 64 and 32 units, respectively, and an output layer with a single

unit. The ReLU activation function is used for the hidden layers, and the sigmoid

activation is used for the output layer, which is suitable for binary classification

problems. The model is compiled with the binary cross-entropy loss function, the

Adam optimizer, and the accuracy metric. The model is then trained on the training

data using ”model.fit()” function. The epochs parameter specifies the number of times

the model will be trained on the entire training dataset (50 in this case), and the

batchsize parameter determines the number of samples propagated through the

network at once (32 in this case). The validation data parameter is used to monitor the

model’s performance on the validation set (Xtest, Ytest) during training. Finally, the

model’s performance on the test data is evaluated using model evaluate (Xtest, Ytest),

which returns the loss and accuracy values. The accuracy score is printed to the

console. Note that in this example, random labels are assigned for demonstration

purposes. In a real world scenario, one would need to provide the actual labels for the

data. Additionally, one might want to adjust the architecture of the deep learning

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 80

model and the hyperparameters (e.g., number of epochs, batch size) based on the

specific use case and the performance of the model.

3.11 Extracting the information from the Sensor data app on android

This section of the thesis will explain in detail how to run the app and see the results

of data logged. Figure 3.15 shows the basic app installation front UI where user will

select install.

Fig. 3.15: Installation UI for Sensordata app

Fig. 3.16: UI to show progress bar of installation

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 81

Fig. 3.17: UI at the end of installation

Figure 3.16 shows UI to show progress bar of installation. Total file size of APK is 22

MB and post install size is around 500 MB.

Figure 3.17 shows UI for the user to show completion of installation of the software.

One can click on Done button to confirm installation completion.

Figure 3.18 shows sign in menu to the user, which appears only first time when user

press done.

Figure 3.19 shows the UI to choose account during sign in. Here all the accounts are

displayed where user has alrady signed-in through the device.

Figure 3.20 shows the App main front UI offering user with an option to save

accelerometer data. Also there is option to save magnetometer and gyroscope data.

All the basic setup is done and next steps will be post crime activities.

Figure 3.21 shows version button in settings sub menu about device.

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 82

Figure 3.22 shows the version number in this case 14.0.0.6 where user need to click 7

times to enter debug mode.

Figure 3.23 shows file menu to be clicked after pressing home button.

Figure 3.24 shows other storage option where user need to enter and turn on

Fig. 3.18: Sign in window for app

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 83

Fig. 3.19: UI to choose account during sign in

bug reports. Figure 3.25 shows menu appered in setting after turning on debug mode

and one needs to click on bug report in order to see the data from sensordata app.

Figure 3.26 shows new option that appears once bug report is enabled inside files of

the phone.

Enter bug report by clicking newly arrived option of bug report as shown in figure

3.27

Figure 3.28 shows the files inside Oppo A79 5G phone where the testing of software

was carried out. One needs to select Android from it. Figure 3.29 shows app data

stored inside android folder. Along with app there are media and obb files avaiable

which can store other forms of information.

Figure 3.30 shows folders inside data folder showing installed app folder ”com.

example. sensordata”. this is the domain name by default for any application built on

flutter. One can change this name if required.

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 84

Figure 3.31 shows files once we enter com.example.sensordata. Most of the logged

data is stored inside this folder.

Figure 3.32 shows the UI when we enter Sensordata folder inside file. Only

Fig. 3.20: App main front UI offering user with an option to save accelerometer

data

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 85

Fig. 3.21: Version button in setting

Fig. 3.22: Version button from android device

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 86

Fig. 3.23: File menu to recover the data

one folder named sensordata will be there. Figure shows different files under

Sensordata app folder inside com.example.sensordata folder. Three .csv files are

produced that holds all the data required. accerlometer.csv, gyroscope.csv and

magnetometer.csv file.

All the values are simultaneously written inside the 3 files. One of the files selected

called gyroscope.csv is as shown in figure 3.34. Figure 3.35 shows that the data stored

in 4 columns one is sensor name and next 3 are the values from these sensors. For

simple sensor like light, only two values per row will be present; and for complex

sensors like accelrometer, atleast 3 values will be present.

3.12 Mobile Application for Sensor Data Collection

This Flutter application, named SensorData, is designed to collect and store data from

various mobile device sensors. The app begins with a login interface, allowing users

to authenticate via username and password or through Google OAuth

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 87

Fig. 3.24: Storage device setting to turn on bug reports

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 88

Figure 3.25: Setting to turn on Bug Report

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 89

Fig. 3.26: Enabled Bug report in file

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 90

Fig. 3.27: Bug report folder contents

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 91

Fig. 3.28: Android folder to be opened inside the device Oppo A79 5G in this case

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 92

Fig. 3.29: Data folder inside the android folder where app data is stored.

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 93

Fig. 3.30 : Folders inside data folder showing installed app folder com.

example. sensordata

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 94

Fig. 3.31: Files inside com.example.sensordata

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 95

Fig. 3.32: Sensordata folder inside files

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 96

Fig. 3.33: Files under sensor data

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 97

Fig. 3.34: Sample file selection : Gyroscope.csv

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 98

Fig. 3.35: Sample data stored for processing inside csv file

(Authentication platform of google). Once logged in, users are directed to the main

functionality of the app: continuous sensor data collection. The core of the application

lies in the HomePage widget, which initializes and manages the data collection

process. It utilizes the sensors plus package to access the device’s accelerometer,

gyroscope, and magnetometer. The app continuously listens to events from these

sensors, capturing data points at regular intervals. Each data point includes the sensor

type, timestamp, and X, Y, Z coordinates. This real time data is temporarily stored in

memory as lists of strings. To ensure data persistence, the application implements a

periodic save mechanism. Every second, the collected sensor data is written to CSV

files, with separate files for each sensor type (accelerometer.csv, gyroscope.csv,

magnetometer.csv). These files are stored in a dedicated ”Sensor Data” folder within

the app’s external storage directory. The app’s interface provides buttons for manual

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 99

data saving, while also featuring an automatic logout option for security. This

structure allows for efficient data collection and storage, making it suitable for various

research and analysis purposes in mobile sensing applications.

3.13 Firebase Configuration for Cross-Platform Development

This Dart code defines a crucial configuration class, Default Fire base Options, which

manages Firebase setup across multiple platforms in a Flutter application. The class

utilizes conditional logic to determine the appropriate Firebase configuration based on

the target platform, supporting web, Android, iOS, macOS, and Windows. This

approach ensures that the application can seamlessly integrate with Firebase services

regardless of the deployment platform.

The current Platform getter method serves as the core of this configuration system. It

checks whether the application is running on the web using the kIsWeb constant, and

if not, it uses default Target Platform to identify the specific operating system. Based

on this determination, it returns the corresponding platform specific Firebase Options

object. This method provides a convenient way to initialize Firebase with the correct

configuration by simply calling ”Default Firebase Options current Platform”.

Each supported platform has its own Firebase Options constant, containing essential

parameters such as apiKey, appId, projectId, and storage Bucket. These constants also

include platform specific details like androidClientId and iosClientId for mobile

platforms, and measurementId for web and Windows. The code throws Unsupported

Error for Linux and any unrecognized platforms, ensuring that developers are aware

of unsupported environments. This structured approach to Firebase configuration

facilitates efficient cross platform development and deployment of Flutter

applications with Firebase integration.

3.14 Supabase Configuration

The SupabaseCread class encapsulates the essential credentials required for

connecting to a Supabase backend. It contains two final string properties: url and key.

The url property stores the unique URL of the Supabase project, which in this case is

’https://xnlvzblwtolrtfyrvgta.supabase.co’. The key property holds the project’s API

key, a long JWT token that provides authentication and authorization for accessing

the Supabase services. This configuration allows the application to establish a secure

CHAPTER-III RESEARCH METHODOLOGY

FACULTY OF COMPUTER SCIENCE Page 100

connection with the Supabase backend, enabling data operations and other backend

functionalities. By encapsulating these credentials in a separate class, the code

promotes better organization and easier management of backend configuration details.

3.15 Deep learning code for data classification

The code begins by importing necessary libraries and defining paths to CSV files

containing sensor data (accelerometer, gyroscope, and magnetometer). It then loads

these CSV files into Pandas DataFrames and combines them into a single DataFrame.

The ’sensorType’ column is encoded into numerical classes using Label Encoder.

This preprocessing step is crucial for preparing the data for machine learning

algorithms, as it converts categorical data into a format that can be easily processed

by neural networks.

The data is then split into features (X) and labels (y), where X contains the sensor

type and x, y, z coordinates, and y contains the encoded sensor types. The dataset is

further divided into training and testing sets using train test split from scikit learn. A

Sequential model is defined using Keras, consisting of two Dense layers with 64

neurons each, using ReLU activation functions, and Dropout layers to prevent

overfitting. The output layer has 10 neurons with a softmax activation function,

suitable for multiclass classification.

The model is compiled using the Adam optimizer and sparse categorical cross-

entropy loss function. An Early Stopping callback is implemented to prevent over-

fitting by monitoring the validation loss. The model is then trained on the training

data for 20 epochs with a batch size of 32, using the test data for validation. After

training, the model’s performance is evaluated on the test set, and the accuracy is

printed. Finally, the code demonstrates how to use the trained model for making

predictions on new data by providing an example data point and printing the predicted

class.

