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3.1 Suspicious Activity Detection Using Mobile Sensor Data via Modified 

Subspace KNN (msK) 

With the proliferation of mobile sensors, the data they capture shouldn’t go un- 

tapped. Today, crafting black box software to a mass, such data has become an 

uncomplicated endeavor. Leveraging this data, it becomes feasible to unearth 

suspicious and unlawful events. This section introduces an innovative forensic 

investigation approach using a modified subspace KNN (msK) algorithm, designed 

for detecting suspicious activities from mobile sensor data. 

Figure 3.1 shows the block diagram of the modified subspace KNN, devised to 

identify suspicious activity within mobile data. The data we employed was extracted 

from a wireless stream, comprising 29 bytes (Packet size comprising of all sensor 

readings) of information for each discrete time instant. This data was partitioned into 

smaller subsets termed subspaces. Within each subspace, a distinct K-Nearest 

Neighbors (KNN) algorithm was applied. The KNN, a predictive method, evaluates 

neighboring data points to make predictions. 

Post KNN analysis across each subspace, we aggregated the outcomes and tabulated 

the votes from each KNN run. To result in a definitive decision, we considered the 

maximum vote count along with its corresponding probability. The determination of 

suspicious activity rested on whether the votes for such activity  

 

Fig. 3.1: Block diagram illustrating the application of modified subspace KNN 

for the detection of suspicious activities from mobile data. 
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The mobile data is acquired from a wireless stream, yielding 29 bytes per time 

instance. This data is segmented into N subspaces, each subjected to a separate KNN 

analysis. The outcomes from individual KNNs are analyzed and decided based on a 

voting. The final classification hinges on the maximum votes, accompanied by their 

probabilities. Suspicious activity detection occurs if the votes for suspicious activity 

exceed those for normal activity. Typically, the number of subspaces is maintained as 

an odd value to prevent equal vote distribution between classes. In this case, we 

initiated with 3 subspaces, incrementing subsequently to 29 in steps of 2. 

Outnumbered those for normal activity. To ensure impartiality, we maintained the 

count of subspaces as an odd value, thereby avoiding an equal vote distribution 

between the two classes – suspicious and normal. In our implementation, we initially 

set the number of subspaces to 3, subsequently incrementing it to 29 in steps of 2. 

This methodology facilitates comprehensive analysis of mobile data by employing 

subspaces, KNN algorithms, and vote counting to discern suspicious activity patterns. 

3.1.1 Collection of mobile data 

For the collection of mobile data, a black box application was developed, capable of 

acquiring various sensor readings including GPS coordinates, Accelerometer data, 

Gyroscope data, Magnetic field measurements, Orientation data, Linear acceleration 

values, Gravity readings, Rotation values, Pressure measurements, and Battery 

temperature. The data acquisition was facilitated through the User Datagram Protocol 

(UDP) stream, utilizing port 5555 for communication. Four distinct interval selection 

options (Capture rates) were available, each denoting the number of packets received 

per unit time. Each packet utilized in this study comprised 29 bytes of information. 

The black box application could seamlessly operate in the background. It was derived 

from the open source IMU GPS Streaming app. The current investigation was carried 

out on Android 10 Funtouch OS 10 and Android platforms. 

3.1.2 Modified subspace KNN 

The mobile data was collected from a wireless stream at a rate of 29 bytes per time 

instance. Each time instance dataset was subdivided into N subspaces, and each KNN 

was applied separately. Finally, the votes from each KNN are totaled. For the final 

classification, the maximum number of votes with their probability is taken into 
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account. Suspicious activity is detected if the number of votes cast is greater than the 

number of votes cast for normal activity. Typically, the number of subspaces was kept 

odd, to avoid giving equal votes to the both classes. In our case, we start with a 

subspace n = 3 and gradually increase it to 29 in steps of 2 

i.e. n=5, 7, 9, 11.... 

The modified subspace KNN is a method that uses K neighborhood classification with 

parallel implementation. Here, to create multiple KNN models, data is sampled into 

subspaces. For example, out of 999 readings, any five readings are randomly chosen 

and then compared with the current time point. If the number of points is closer to 

normal activity compared to suspicious activity, then the current point is classified as 

normal. The main modification to the subspace KNN comes from the fact that we not 

only give the output class but also give the output probability that the current value 

belongs to that particular class. 

For the probability determination, we calculate the sum of the Euclidean distance of 

the point from each of the K points in the KNN. The formula for the Euclidean 

distance is given in equation (1). 

     

(3.1) 

Where, xc, yc are the coordinates of the current data point being classified. xi, yi are the 

coordinates of the ith neighbor, and i varies from 1, 2,...K Di is the Euclidean distance 

for the ith neighbor and i varies from 1, 2,...K. 

The formula for probability computation is given in equation (2). 

 

 (3.2)  

Where, PS is the probability of suspicious activity. L is the number of neighbors that 

belong to the suspicious class. DSi is the Euclidean distance from the current point to 

all i points that belong to the suspicious class, and i varies from 1, 2,...L. K − L is the 

number of neighbors that belong to the normal class. Dnj is the Euclidean distance 

from the current point to all j points that belong to the normal class, and j varies from 

1, 2,...K-L. 
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3.2 Activity classification 

After detecting suspicious activity using our modified subspace KNN, we decided to 

explore existing multiclass classification techniques to distinguish between different 

types of activities. One widely recognized classifier for time series data is Long Short-

Term Memory (LSTM), and we also considered DenseNet. 

For the LSTM based classification, we utilized standard libraries, including 

TensorFlow, Keras, Pandas, NumPy, and Matplotlib. 

We will discuss about these libraries in short: 

• TensorFlow, an open source machine learning library developed by Google, 

serves as a powerful platform for creating and training deep learning models. It 

employs data flow graphs to represent computations, where nodes represent 

mathematical operations and edges represent multidimensional data arrays 

(tensors) communicated between nodes. Tensors, serving as the central unit of 

data in TensorFlow, are pivotal for modeling and training. Tensor Flow’s 

efficiency in building and training deep learning models is notable. 

• It allows for the creation of computational graphs, which define the flow of 

operations. These graphs can be executed on various hardware platforms, 

including CPUs and GPUs, making TensorFlow a versatile and powerful tool for 

machine learning applications. 

• Keras, an open source high level neural network library written in Python by 

Francois Chollet, a Google engineer, is tailored for building and training neural 

networks. It operates atop deep learning frameworks (like TensorFlow, Theano, or 

CNTK), fostering rapid experimentation and iteration to stream line deep learning 

model development. Keras provides a user friendly API, abstracting away low 

level intricacies and emphasizing model architecture and experimentation. It 

supports multiple backends, enabling developers to select the most suitable one 

for their needs. Keras models can be developed in Python or R and executed with 

TensorFlow, Theano, CNTK, or MXNet, on various platforms like CPU, NVIDIA 

GPU, AMD GPU, TPU, Android, iOS, and Raspberry Pi. With wide industry 

adoption by companies like Netflix, Yelp, and Uber, Keras boasts a robust 
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research community and contributions from tech giants like Microsoft, Google, 

NVIDIA, and Amazon. Its ease of learning and prototyping, coupled with its 

flexibility and multi backend support, make Keras a preferred choice for neural 

network development, catering to both beginners and experts alike. 

• Pandas, a versatile Python library, is integral for data manipulation and analysis, 

simplifying tasks related to structured data. It is adept at handling tabular data, 

such as spreadsheets or SQL tables, providing data structures and functions for 

efficient operations. Built on NumPy, Pandas is widely used by data analysts, 

scientists, and engineers. It introduces two primary data structures: Series, for one-

dimensional labeled arrays, and DataFrame, for two dimensional labeled data 

structures resembling tables or spreadsheets. These structures enable easy 

manipulation, indexing, and operations involving data. Common use cases include 

data cleaning, merging, and joining datasets, grouping and aggregation, data 

visualization, and statistical analysis and machine learning when used alongside 

SciPy and Scikitlearn. 

• NumPy (Numerical Python) is a fundamental, open source Python library that 

plays a pivotal role in scientific computing, data analysis, and numerical 

computations. It boasts several key features: 

o Multidimensional Arrays: NumPy offers a powerful array processing 

package, with its primary data structure being the ndarray (n-dimensional 

array). These arrays can hold diverse data types (integers, floats, etc.) and 

enable efficient operations on extensive datasets. 

o Efficient Numerical Operations: NumPy is optimized for numerical 

computations, ensuring faster performance than standard Python lists. 

o Broadcasting: Facilitates element wise operations on arrays of various 

shapes. 

o Linear Algebra: Provides robust functions for matrix operations, eigen- 

values, and more. 

o Random Number Generation: Equipped with tools for random sampling 

and distributions. 

o Indexing and Slicing: Enables easy access and manipulation of array 

elements. 



 

 
CHAPTER-III                  RESEARCH METHODOLOGY 

FACULTY OF COMPUTER SCIENCE                      Page 54 

 

 

o Integration with Other Libraries: Often used in conjunction with libraries 

like SciPy, Matplotlib, and Pandas for comprehensive data analysis and 

visualization. 

• Matplotlib is a powerful visualization library in Python primarily utilized for 

creating 2D plots of arrays. It serves as a visualization utility for data analysis and 

exploration, enabling the creation of high quality visualizations and graphs. Built 

on NumPy arrays, Matplotlib is designed to work seamlessly with the broader 

SciPy stack. Introduced by John D. Hunter in 2002, it offers several types of plots, 

making it versatile for various tasks, such as line plots, bar plots, histogram plots, 

scatter plots, pie charts, and area plots. 

Specifically, we made use of the Matplotlib library for pie plots. Data importation was 

done through Google Drive. In the Keras framework, we employed traditional LSTM 

in combination with sequence preprocessing and DenseNet for classification. Our 

primary contribution in designing a forensic network was the sequential connection of 

DenseNet with LSTM. We employed the Adam optimizer to minimize errors in this 

deep learning model. The Adam optimizer (Adaptive Moment Estimation) is an 

advanced gradient descent optimization algorithm that adjusts the learning rate for 

each parameter dynamically, using estimates of first and second moments of 

gradients. It combines the benefits of AdaGrad and RMS Prop optimizers to handle 

sparse gradients and nonstationary objectives. 

3.2.1 Hardware details 

We deployed algorithm on a computer equipped with an Intel i9-9900 processor 

featuring a 16 MB cache and a maximum frequency of up to 5 GHz. This processor 

has 8 cores and 16 threads, paired with DDR4 2666 MHz RAM, with substantial 64 

GB of RAM memory. To facilitate the deep neural network training, we used an RTX 

3060 GPU with 12 GB of GDDR6 RAM. Storage was handled by a Samsung 980 1 

TB NVMe solid state drive, delivering impressive internal read speeds of 3500 

MB/sec. 

The mobile phone used for testing is a device that supports GSM, HSPA, and LTE 

technologies. It features a body dimension of 162 x 76.5 x 9.1 mm and weighs 197 

grams, with a glass front, plastic back, and plastic frame, and supports dual Nano SIM 
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cards. The display is a 6.53 inch IPS LCD with a resolution of 1080 x 2400 pixels, 

providing a screen to body ratio of approximately 83.1%. Running on Android 10 

with Funtouch 10.0, it is powered by the Qualcomm SM6125 Snap dragon 665 

chipset, an octacore CPU, and Adreno 610 GPU. The device offers substantial 

memory options with 128GB of internal storage paired with either 8GB or 6GB of 

RAM and supports microSDXC cards. Its quad rear camera setup includes a 13 MP 

wide lens, an 8 MP ultrawide lens, a 2 MP macro lens, and a 2 MP depth sensor, 

while the 16 MP front camera handles selfies. Additional features include Wi-Fi, 

Bluetooth 5.0, GPS, and USB Type C connectivity. The phone is equipped with a non 

removable 5000 mAh battery supporting 15W wired charging. 

3.2.2 Data collection and training details 

All values from the training data were read as arrays and concatenated into a single 

line. The feature vector organized the data into sets of three float values from the 

linear array of the original data. Once a window size of 192 values was reached, the X 

feature vector was saved, and Y was marked as 1,0,0, indicating that the data 

belonged to the first channel. This process was similarly repeated for sensor readings. 

The next activity was recorded and read as a separate linear array. All values from all 

sensors were likewise divided into a window size of 192, and the vector was marked 

this time as 0,1,0. Similarly, for the third activity, the vector was marked as 0,0,1. 

Initially, we focused solely on three criminal activities for consideration, each of 

which was dramatically reproduced: 

Mobile data was recorded when a mobile phone was in the pocket of a woman 

struggling against an attack (WSAA). Mobile data was recorded when a mobile phone 

was in the pocket of a man who was forcibly being dragged by kidnappers to enter a 

car (MKFE). Mobile data was collected from the pocket of a woman while she was 

running (WRUN). These three activities were dramatic recreation of incidents 

commonly associated with criminal activity. Trained professionals and an expert 

cameraman were involved in performing these activities. 

For training, all time series data was concatenated along with their corresponding 

activity labels. A total of 947 readings were used in LSTM, each with a window size 

of 192. For testing, a similar LSTM approach was employed, where the data was 
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windowed and concatenated into a single float vector, resulting in labels represented 

as 1,0,0: 0,1,0: 0,0,1. In total, 736 different files were used for subsequent denseNET-

based testing. 

3.2.3 Long Short Term Memory 

For feature selection purposes, we used Long Short Term Memory (LSTM), which is 

a type of recurrent neural network (RNN) architecture that is well suited for pro- 

cessing and making predictions based on sequences of data. It was introduced by 

Hochreiter and Schmidhuber in 1997 and has since become a fundamental com- 

ponent in various applications, including 1D signal processing, like in our case. 

Speech recognition, time series forecasting, and NLP are some more examples where 

LSTM is used. Here are the key details and components of LSTM networks:  

Memory Cells: LSTM networks are designed to capture and remember patterns over 

long sequences of data. They achieve this through the use of memory cells. These 

memory cells have the ability to store information for long durations, making them 

effective at capturing dependencies in sequential data. 

Gates: LSTMs employ three different types of gates to control the flow of in- 

formation within the memory cell and decide what to store, forget, and output. 

Forget Gate: The forget gate determines what information from the previous time step 

should be discarded from the cell state. It takes both the previous hidden state and the 

current input as inputs and outputs a value between 0 and 1 for each component of the 

cell state. A value of 1 means ”keep this,” while a value of 0 means ”discard this.” 

Input Gate: The input gate decides what new information should be stored in the cell 

state. It also takes the previous hidden state and the current input, and it produces a 

new candidate value for the cell state. 

Output Gate: The output gate decides what the next hidden state should be based on 

the cell state. It takes the current input and the previous hidden state and produces the 

new hidden state. 

Hidden State: In addition to the cell state, LSTM networks have a hidden state at each 

time step. The hidden state is a filtered version of the cell state and carries information 

relevant to the predictions being made. 
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Backpropagation Through Time (BPTT): LSTMs are trained using back  

 

Fig. 3.2: LSTM details 

Propagnation, similar to feedforward neural networks. However, due to their recurrent 

nature, training involves back propagating errors through time, which can be 

computationally intensive. This is known as BPTT. 

Vanishing Gradient Problem: LSTMs were introduced to mitigate the vanishing 

gradient problem, which affects traditional RNNs. The forget, input, and output gates 

in LSTM networks enable them to capture long range dependencies in data without 

suffering from the vanishing gradient problem. 

Variants: Over time, several variants of LSTM have been developed to address 

specific challenges. One notable variant is the Gated Recurrent Unit (GRU), which 

simplifies the LSTM architecture while retaining much of its effectiveness. 

LSTM networks as shown in figure 3.2 have proven to be highly effective in a wide 

range of applications where sequential data plays a crucial role. They are particularly 

valuable when dealing with time series data, text data, speech data, and any data 

where understanding dependencies over time is essential. 

3.2.4 DenseNET details 

A sequential model was employed with the initial layer being the dense net. The 

activation function used was Rectified Linear Unit (ReLU). The matrix was re- 

shaped to fit a dense net with a size of 128. Three additional dense layers followed, 
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and softmax activation was used instead of ReLU. Loss was computed using mean 

squared error, and the optimizer utilized was Adam, with a learning rate of 0.01. The 

primary metric of interest was accuracy. Over the course of 16 epochs, the time per 

step decreased from 636 microseconds for the first epoch to 43 microseconds for 

subsequent epochs. 

The results were evaluated based on 736 different samples, and accuracy scores, 

classification parameters, and a confusion matrix were employed for validation. These 

classification parameters included the F1 score, precision, and recall (sensitivity). To 

provide a clearer understanding of the three classes, the confusion matrix was 

normalized. 

3.3 Mobile app 

After delving into the intricacies of the proposed Dense Net based architecture, let’s 

explore the details of the mobile application developed for real time data collection. 

This application represents another significant contribution to the thesis, serving as a 

versatile tool for gathering data related to various activities. It’s worth noting that 

these activities aren’t limited to criminal scenarios; instead, we’ve designed a general-

purpose data collection app that can be beneficial for researchers across different 

domains. 

To initiate the collection of mobile data, users are required to connect sensors to their 

devices and create an object called ”MobileDEV” to facilitate data storage. 

This app ensures the collection of sensor data even when the device lacks a network 

connection. It achieves this by utilizing a sensor data log, which is stored locally. The 

app periodically accesses the camera to acquire images at predefined resolutions, 

autofocus settings, and flash modes. In addition to images, the app logs data related to 

acceleration, angular velocity, magnetic field strength, orientation, and position. 

Here’s a breakdown of the sensor data measurements: 

• Acceleration is measured in meters per second squared (m/s2). 

• Angular velocity is measured in radians per second (rad/s). 

• Magnetic field strength is measured in microtesla (µT). 
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• Orientation is determined considering elevation, XYZ coordinates, yaw, roll, and 

pitch. 

• Position data includes latitude, longitude, speed, altitude, and course. 

• Latitude is recorded in degrees, with positive values indicating north and negative 

values indicating south. 

• Longitude is measured in degrees, with positive values indicating east and 

negative values indicating west. 

• Speed is measured in meters per second (m/s). 

• Altitude is measured in meters above sea level. 

• Course is recorded in degrees with respect to true north. 

To enable data transmission, the user must select the ”stream to cloud or log” option. 

Additionally, the user should choose ”send position data” in the background and 

activate ”auto upload.” For the proof of concept, we manually collected the data, 

classifying it as either normal or indicative of a fight scenario. To facilitate data 

collection, users installed the data logger app on their mobile devices. 

We captured three similar fight sequences, each separated by an approximate time 

interval of 15 to 20 seconds. These sequences were recorded using the data logger 

app, and we configured the sampling rate to 300 milliseconds. 

From these fight sequences, we extracted various parameters, including acceleration, 

angular velocity, magnetic field data, orientation, and position. This process was 

consistently applied to all three sequences. The resulting dataset comprised  

 

Fig. 3.3: Thunkable software front user design interface 
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all these collected insights, which we prepared for subsequent analysis and 

processing. We then compared this dataset to the one containing normal sequences for 

further evaluation. 

After completing the multiclass classification using the LSTM with Dense NET 

approach for three classes, we opted to return to binary classification using real time 

data logged through our mobile app. For this task, we chose to employ the simplest 

machine learning algorithms, K-Nearest Neighbors (KNN) and Gaussian Support 

Vector Machine (SVM). 

The reason for this choice is that we wanted to avoid introducing the complexity of 

DenseNET into this binary classification task. Additionally, using standard algorithms 

such as KNN and Gaussian SVM allows us to test the performance of the app against 

established methods rather than our proposed ones. 

To train a model capable of distinguishing between normal and abnormal sequences, 

we employed two classification algorithms: k-nearest neighbors (KNN) and Gaussian 

Support Vector Machine (SVM). To generate a training dataset, we utilized a mobile 

application connected to various sensors deployed in different locations to collect real 

time data. This dataset was stored in an object referred to as ”MobileDEV.” 

Thunkable Front User Design Interface: Thunkable’s interface as shown in figure 4.11 

is divided into two main sections: 

1. Design View: This visual workspace displays app’s layout, where one can 

drag and drop components like buttons, lists, and maps to build user screens. It 

resembles a typical visual development environment with a live preview of 

our app as we design. 

2. Blocks Editor: This section houses the logic behind our app’s functionality. 

One can use drag-and-drop blocks to define how components interact and 

respond to user actions. Think of it as building the app’s behavior with visual 

puzzle pieces. 

General Layout: 

• Components Panel: Located on the left side, this panel houses all available UI 

components like buttons, text labels, images, maps, and sensors. 
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• Properties Panel: This panel on the right displays properties specific to the 

selected component, allowing one to customize its appearance and behavior. 

• Screen Canvas: The central area displays the app’s current screen layout in 

real-time, reflecting the components and their arrangement. 

• Navigation Toolbar: Provides options for managing screens, previewing the 

app, and accessing project settings. 

To build the app using thunkable , One needs to login the free thunkable account to 

login and then get started. The login page is as shown in figure 3.4 

Once logged in, one can install thunkable and a menu will pop up as shown in 

figure3.5 

 There are many menu buttons, from simple screen sharing to calculating text to 

speech, from which users can select one and make the app. 

Creating a mobile forensics app like the proposed one in Thunkable was definitely 

ambitious and technically challenging, but with careful planning and the right 

approach, it’s achievable. Now we explain some of the basic steps involved in 

building the proposed app, with a breakdown of the main steps involved: 

1. Design and Planning: 

• Define core functionalities: Identify the specific sensor data one want to 

capture (GPS, accelerometer, etc.), how one will handle timestamps, and 

what level of data analysis one can envision. 
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Fig. 3.4 : Sign-in window at Thunkable   
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Fig. 3.5: Menu on thunkable app 

• User interface: Plan the app’s screens and layout, considering user consent 

mechanisms, data visualization, and secure storage options. 

• Data security: Prioritize data encryption, secure storage techniques (local 

or cloud), and user control over data access and deletion. 

2. Building the App in Thunkable: 
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• Data collection: Use Thunkable’s built in sensor components to capture 

data from GPS, accelerometer, gyroscope, etc. Use the ”Clock” component 

for timestamps. 

• Data storage: Utilize Thunkable’s ”File” or ”Airtable” components to store 

data securely on the device or in the cloud. For advanced analysis, 

consider integrating with external databases. 

• Data visualization: Use Thunkable’s ”Charts” and ”Lists” components to 

visualize sensor data over time, like GPS tracks or accelerometer readings. 

• User interface: Drag and drop UI components to create screens for data 

collection, visualization, and settings. Pay attention to user friendliness and 

clarity. 

3. Advanced Features (Optional): 

• Data analysis: Consider integrating machine learning models for advanced 

analysis, like anomaly detection or pattern recognition in sensor data. This 

requires coding knowledge beyond Thunkable’s block based interface. 

• Reporting: Implement features for generating reports or exporting data in 

formats useful for further analysis in forensic software. 

3.4 KNN and Gaussian SVM 

KNN is a classification technique that groups similar looking data into clusters, 

treating each cluster as a class. Conversely, Gaussian SVM is a classification 

technique that distinguishes datasets based on extracted features. Data is collected 

 
 

Figure 3.6: The flow of the proposed work with KNN and Gaussian SVM. 
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The datasets of normal and fight sequences are created by accessing multiple videos. 

The datasets are uploaded to the cloud. Analysis of these datasets is done with the 

help of machine learning. Lastly, the sensor data collected is classified into a normal 

and abnormal sequence with maximum accuracy. 

Using various mobile sensors, and the collected data is stored in an object named 

“MobileDEV.” We trained a machine learning model using KNN and Gaussian SVM, 

with the results stored in a database for further analysis. The system performs 

sequence classification, categorizing sequences as either “normal” or “abnormal.” If a 

sequence is c lassified as “normal,” the sensors are instructed to continue data 

collection. Conversely, if the sequence is classified as “abnormal,” an abnormality 

report is generated. Figure 3.6 shows the proposed workflow diagram. We used 

multiple videos for the creation of normal and fight sequence datasets. This data is 

uploaded to the server for training. Machine learning is being used to analyze these 

datasets. Finally, the data collected in realtime is accurately classified into a normal 

and abnormal sequences. 

3.5 Data Collection 

For our research, we employed the Samsung S22 Ultra mobile phone as the primary 

device for data collection. This particular model features a variety of sensors, 

including an under display ultrasonic fingerprint sensor, an accelerometer, a gyro- 

scope, a proximity sensor, a compass sensor, and a barometer sensor. The ultrasonic 

fingerprint sensor serves the purpose of biometric authentication, while the 

accelerometer and gyroscope detect changes in device orientation. The proximity 

sensor identifies when the device is close to the user’s face, the compass sensor 

determines the device’s orientation relative to magnetic north, and the barometer 

sensor measures atmospheric pressure. Additionally, the Samsung S22 Ultra offers 

various features such as Samsung DeX, Samsung Wireless DeX for desktop 

experience support, Bixby natural language commands and dictation, and Ultra 

Wideband (UWB) support. 

The objective of our research was to develop a mobile application capable of 

collecting data from mobile phones to assist in investigations or legal cases. To 

achieve this, we initiated the data collection process by gathering information for the 
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training dataset. Trained actors were engaged to simulate ten real-life scenarios, 

encompassing situations such as a teenager running for survival, a man being forcibly 

dragged into a car during a kidnapping, and a woman calling for help while being 

kidnapped. The ten output classes for classification include descriptive labels such as 

”Teenager Running for Survival,” ”Male Sitting in Car Just Before Accident,” ”Kids 

Fighting,” ”Woman Sitting in Moving Vehicle Just Before Car Crash,” ”Women 

Calling for Help During Kidnapping,” ”Woman Struggling Against Attackers,” 

”Throwing of Mobile Phones to Protect Evidence,” ”Women Running to Save 

Herself,” ”Man Getting Dragged into Car During Kidnapping,” and ”Man Enters 

Vehicle by Forcibly Pushing Woman onto Back Seat.” 

3.6 LSTM feature extraction 

LSTMs (Long Short Term Memory networks) prove to be formidable tools in 

extracting features from 1D sensor data, particularly when temporal dependencies or 

patterns exist, as seen in our case where mobile data with discernible patterns was 

collected from sensors. The collaboration of LSTMs with Dense Net is instrumental 

in extracting features from this data. 

There are notable strengths in employing LSTMs for feature extraction. Notably, they 

excel in capturing long term dependencies, eliminating the need for manually defining 

features as in traditional methods. Their ability to discern subtle relationships between 

data points at distant time steps is crucial for capturing trends, cycles, and concealed 

patterns within the data. 

LSTMs are well suited for handling sequential data, a characteristic common in 

sensor data. They process sequences effectively, considering the context of each data 

point within its temporal context. This enables them to extract features influenced by 

both past and future values, resulting in richer representations. 

Moreover, LSTMs showcase adaptability to diverse sensor data types, including 

accelerometer readings, temperature measurements, and vibration signals. By 
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adjusting the model architecture and learning parameters, they can be tailored for 

specific sensor characteristics, extracting relevant features for different applications. 

The feature extraction process with LSTMs follows a systematic approach: 

Preprocessing: Sensor data acquired through a mobile app undergoes preprocessing 

before feeding it to the LSTM. This may involve scaling, normalization, and 

segmentation into appropriate time windows based on the expected feature timescale.  

LSTM Architecture: The LSTM network architecture is designed based on data 

complexity and desired features. Optimization involves factors like the number of 

hidden layers (2), activation functions (tanh), and learning rate (0.001) for optimal 

performance. 

Feature Extraction: As the LSTM processes sequential data, it learns internal 

representations of information. Extracted features include dominant frequencies, 

trends, amplitudes, and relationships between past and future values. 

Output Interpretation: Features extracted by the LSTM are accessed through various 

methods, depending on the model architecture. These can be directly accessed from 

hidden states, passed through additional layers for further processing, or utilized for 

downstream tasks such as classification or anomaly detection. 

In the context of human activity recognition, LSTMs prove effective in analyzing 

accelerometer data from mobile devices. They extract features like movement 

patterns, steps, and gestures, facilitating activity recognition for forensics. 

However, our study reveals that LSTMs can be computationally expensive and 

require larger datasets for effective training compared to simpler models. Hence, 

selecting the right hyperparameters and architecture is crucial for optimal feature 

extraction performance. 

Combining LSTMs with other neural network types, such as DenseNet, can leverage 

both spatial and temporal dependencies for even more informative feature extraction. 

In summary, LSTMs present a potent approach for extracting meaningful features 

from 1D sensor data, enabling diverse applications, especially in our forensic context. 
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3.7 IFDenseNET 

IFDenseNET-138 Conceptual Diagram for Classifying Mobile Phone Sensor Data 

138 Conceptual Diagram for Classifying Mobile Phone Sensor Data.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7: IFDenseNET-138 Conceptual Diagram for Classifying Mobile Phone 

Sensor Data 

The figure 3.7 shows a conceptual diagram of the IFDenseNET-138 deep learning 

architecture, which is proposed for classifying mobile phone sensor data. The model 

consists of 138 layers of dense connections, which allows for the efficient flow of 

information throughout the network. The input data to the model is a 2-D array, where 

each row represents individual sensors and each column represents a time series. The 

data is then processed through a 32x3 dense layer with ReLU activation for 138 times. 

To reduce the dimensions of the data, a max pooling layer and a flattened layer are 

used. Finally, the data is classified using the Softmax function, which outputs a 

probability distribution over the 4 possible classes. 

The IFDenseNET-138 architecture has been shown to be accurate for classifying 

mobile phone sensor data, and it is also computationally efficient. This makes it a 
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promising candidate for real time applications, such as activity recognition and health 

monitoring. 

3.8 Mobile App details 

 

 

 

 

 

 

 

 

 

Figure 3.8: The block code outlines a mobile application designed for evidence 

collection. 

Button 1 serves as the trigger to initiate data collection from mobile sensors, which is 

then transmitted to a cloud variable. In situations where there is no internet 

connection, the app stores the data locally on the device. The interface, as depicted in 

Panel a, features both start and stop buttons, real time sensor readings, and a loading 

symbol during the data upload process. The block code includes the initialization of 

the cloud variable and a do-while loop that determines whether the app is in sleep 

mode or actively collecting sensor data. During the data collection phase, the app 

loads gyroscope readings into the cloud variable and stores additional data in table 1. 

The app variable A is set to 1 when data is actively being recorded and is set to 0 

when either the stop button is pressed or data is already stored. The app continues to 

run in an infinite loop until the button is pressed again. 

Figure 3.8 illustrates the block coding structure of a proposed mobile application 

designed specifically for evidence collection. Upon clicking button 1, the application 

initiates the process of gathering data from various sensors including the gyroscope, 

magnetometer, accelerometer, and location sensor. This collected data is then 
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transmitted to a cloud variable that undergoes periodic updates. For instances, where 

an internet connection is unavailable, the data is stored locally on the mobile device’s 

memory. In Figure 3.9, Panel a showcases the user interface display featuring a blue 

start button, indicating that the program has just been initiated and no data is currently 

present in either the cloud or local memory. As  

 

Figure 3.9: The EC mobile collection app exhibits different front-end states 

(a) Initialization state: Marked by a blue button, this state indicates that no data has 

been collected yet. (b) Data collection state: Represented by a red button and the 

display of current sensor readings, this state is active when data is actively being 

collected. (c) Sleep mode state: Indicated by a green button, this state signifies that the 

data has already been stored in local memory and successfully uploaded to the cloud. 

the app proceeds to collect data from all the mobile sensors, the interface switches to 

displaying a red stop button (Fig. 3.9 b). Additionally, the interface provides real time 

readings from each sensor, visible above the button. A rotating loading symbol is 

employed as a visual representation while the data is being uploaded to the cloud. 

Finally, the evidence collector app, denoted by a green start button, signifies that the 

data is not only stored in local memory but has also been successfully uploaded to the 

cloud. 
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Figure 3.8 depicts the block coding of the proposed evidence collector app. The red 

blocks represent the initialization of the cloud variable data S with two local app 

variables, A and B, where A is initialized to 0, and B is initialized to 

1. The app has a single button called button 1 in the front end, which is initially 

blue (3.9a). When the user presses the button, the code goes into a do-while 

loop, where app variable A’s value decides whether all sensor readings are 

being stored, or the app is in sleep mode. In sleep mode, the app variable A 

value is reset, and the button background color is set to green (Fig. 3.9c), the 

button text is set to Start, and the loading icon’s visibility is set to false. If the 

app variable A is zero, then the ’if’ loop is entered. In this loop, the cloud 

variable is loaded with the gyroscope’s readings, and the button’s background 

color is set to red (Fig. 3.9b), while the button’s text is set to Stop. All four 

sensors (gyroscope, magnetometer, accelerometer, and location sensor) are 

enabled, and the loading icon’s visibility is set to true. A new variable data is 

created in table 1, which holds the values of alpha, beta, and gamma. 

3.9 App building using flutter 

3.9.1 Creating an App in Flutter 

Flutter is an open source, cross platform mobile application development frame work 

created by Google. It allows developers to build beautiful, high performance, and 

responsive applications for both iOS and Android platforms using a single codebase. 

In this thesis, we will explore the process of creating a simple app in Flutter. 

Before diving into the app development process, it is essential to set up the Flutter 

development environment. This includes installing the Flutter SDK, an IDE 

(Integrated Development Environment) like Android Studio or Visual Studio Code, 

and configuring the necessary tools for the target platforms (Android and/or iOS). 

3.9.2 Creating a New Flutter Project 

The first step in building a Flutter app is to create a new project. This can be achieved 

either through the IDE’s built in Flutter project creation wizard or by running the 

flutter create command in the terminal. During this process, one will be prompted to 

provide a project name, select the project type (Flutter Application), and specify the 

Flutter SDK path. 
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Once the project is created, it’s crucial to understand the project structure and the role 

of each file and directory. The main dart file is the entry point of the application, 

where the app’s execution begins. The lib directory contains the Dart source code 

files, including the user interface (UI) components and other application logic. 

3.9.3 Building the User Interface 

Flutter follows a widget based approach to building user interfaces. In the main dart 

file, one can find the MyApp and My Home Page widgets, which serve as the starting 

point for app’s UI. By modifying these widgets and adding additional widgets, one 

can create the desired layout and functionality for the app. In the provided code 

snippet, the My Home Page widget displays a Scaffold widget, which provides a basic 

structure for a screen in a Material Design app. It includes an AppBar at the top and a 

Center widget containing a Text widget that displays the message ”Welcome!”. 

3.9.4 Running the App 

After making the necessary modifications to the code, one can run the app on an 

emulator or a physical device. Flutter provides hot reload and hot restart features, 

which allow one to see the changes in our app instantly without having to restart the 

entire app. 

3.9.5 Customizing the App 

One can customize the app by adding more widgets, implementing navigation 

between different screens, integrating with APIs or databases, and incorporating 

various Flutter plugins and packages for additional functionality. 

3.9.6 Deploying the App 

Once the developer have completed the development and testing phases, one can 

prepare the Flutter app for release on the respective app stores (Google Play Store for 

Android and App Store for iOS). This process involves creating release builds, 

generating the necessary certificates and signing keys, and following the submission 

guidelines provided by the app stores. By following the guidelines outlined in this 

section one can gain a basic understanding of creating a simple yet functional app 

using the Flutter framework. 
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Fig. 3.10: File menu to flutter app 

As shown in figure 3.10 Open the Android Studio IDE and select Start a new Flutter 

project. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11: New flutter project 

As shown in figure 3.11 Select the Flutter Application as the project type. Then click 

Next. Verify the Flutter SDK path specifies the SDK’s location (select Install SDK. . . 

if the text field is blank). 
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As shown in figure 3.12 Enter a project name (for example, myapp). Then click Next. 

 

Fig. 3.12: UI for new flutter application 

The following code demonstrates a basic Flutter application. Flutter is an open source 

framework by Google for building natively compiled applications for mobile, web, 

and desktop from a single codebase. This example includes a simple app with a home 

page that displays a ”Welcome to GeeksForGeeks!” message. 

In the code, the main function is the entry point of the application, calling 

runApp() to attach the given widget to the screen. The MyApp class extends 

Stateless Widget, making it a widget that does not maintain any internal state. The 

build method of MyApp returns a MaterialApp widget, which serves as the root of 

the application. It sets the title, theme, and home page of the app. The home page 

is defined by the My Home Page class, which also extends Stateless Widget and 

returns a Scaffold widget, providing a structure for the app with an app bar and 

centered body content. 

// Importing important packages require to connect 

//  Flutter  and  Dart 
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import ’ package : flutter/ material. dart ’; 

// Main Function 

void main () { 

 // Giving  command  to  run App ()  to  run  the  app . 

 /* The purpose of the run App () function is to attach the given 

 widget to the screen . */ 

 run App ( const MyApp ()); 

} 

// Widget is used to create UI in flutter framework . 

/* StatelessWidget is a widget , which does not maintain any 

state of the widget. */ 

 

/* MyApp extends StatelessWidget and overrides its build 

method . */ 

class MyApp extends StatelessWidget { 

 const MyApp ({ Key ? key }) : super( key : key ); 

 // This widget is the root of the application . @ 

 Override 

 Widget build ( Build Context context) { return 

  MaterialApp ( 

   //  title  of  the  application 

   title : ’ Hello World Demo Application ’, 

   // theme of the widget theme 

   : Theme Data ( 

    primary Swatch :  Colors. lightGreen , 
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   ), 

   //  Inner  UI  of  the  application 

   home : const My Home Page ( title : ’ Home page ’), 

  ); 

 } 

}  

/* This class is similar to MyApp instead it returns 

Scaffold Widget */ 

class My Home Page extends StatelessWidget { 

 const My Home Page ({ Key ? key , required this. title }) : 

  super( key : key ); 

 final String title ; 

@ override 

Widget build ( Build Context context) { 

 return Scaffold ( 

  app Bar:  App Bar( 

   title : Text( title ), 

 ), 

 //  Sets  the  content  to  the 

 // center of the application page body : 

 const Center( 

  // Sets the content of the Application child : 

  Text(   

   ’ Welcome to GeeksForGeeks!’, 

  ) 
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   ), 

   ); 

      } 

} 

 

Fig. 3.13: Select main.dart as target file 

Figure 3.13 shows that main.dart is the main target file to be chosen in which all the 

codes needs to be uploaded. 

As shown in figure 3.14 Once the file is built apk file can be installed on mobile and 

one can see app like this. This is sample code executed from website GeeksForGeeks! 

that acted as hello world for us to develop fultter apps. 
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3.10 Classification of actual Sensor data using python code 

The algorithm shown is a Python script that reads accelerometer, gyroscope, and 

magnetometer data from CSV files, combines the features into a single feature vector, 

and uses a deep learning model to classify the data into two classes (0 and 1). Here’s 

an explanation of the code: The script starts by importing the necessary libraries: 

pandas for data manipulation, numpy for numerical operations, train testsplit from 

scikit learn for splitting the data into training and testing sets, and Sequential and 

Dense from TensorFlow’s Keras library for building the deep learning model. Next, 

the accelerometer, gyroscope, and magnetometer data are read 

 

Fig. 3.14: The final app built 
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from their respective CSV files using the pd.read csv() function from pandas. The 

feature columns (columns 2 to 4) are extracted from each data frame using the iloc 

method and converted to NumPy arrays. To ensure that the feature vectors have the 

same length, the script finds the minimum length among the three feature vectors and 

truncates each vector to that minimum length using slicing [:minlength]. This step is 

necessary because NumPy’s concatenate function requires arrays of the same shape 

along the non-concatenation axis. The truncated feature vectors are then combined 

into a single feature vector using np.concatenate() along axis=1, which means 

concatenating horizontally (column-wise). Random labels (0 or 1) are assigned to the 

data using np.random.randint(2, size=featurevectors.shape[0]). 

In the real world scenario, one would need to provide the actual labels for the data. 

The combined feature vectors and labels are then split into training and testing sets 

using train-test-split from scikit learn. The testsize parameter is set to 0.2, which 

means 20% of the data will be used for testing, and the remaining 80% for training. 

The random state parameter ensures reproducibility of the split. A deep learning 

model is defined using the Sequential API from Keras. The model has four dense 

(fully connected) layers: the input layer with 9 units (corresponding to the 9 features), 

two hidden layers with 64 and 32 units, respectively, and an output layer with a single 

unit. The ReLU activation function is used for the hidden layers, and the sigmoid 

activation is used for the output layer, which is suitable for binary classification 

problems. The model is compiled with the binary cross-entropy loss function, the 

Adam optimizer, and the accuracy metric. The model is then trained on the training 

data using ”model.fit()” function. The epochs parameter specifies the number of times 

the model will be trained on the entire training dataset (50 in this case), and the 

batchsize parameter determines the number of samples propagated through the 

network at once (32 in this case). The validation data parameter is used to monitor the 

model’s performance on the validation set (Xtest, Ytest) during training. Finally, the 

model’s performance on the test data is evaluated using model evaluate (Xtest, Ytest), 

which returns the loss and accuracy values. The accuracy score is printed to the 

console. Note that in this example, random labels are assigned for demonstration 

purposes. In a real world scenario, one would need to provide the actual labels for the 

data. Additionally, one might want to adjust the architecture of the deep learning 
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model and the hyperparameters (e.g., number of epochs, batch size) based on the 

specific use case and the performance of the model. 

3.11 Extracting the information from the Sensor data app on android 

This section of the thesis will explain in detail how to run the app and see the results 

of data logged. Figure 3.15 shows the basic app installation front UI where user will 

select install. 

 

Fig. 3.15: Installation UI for Sensordata app 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.16: UI to show progress bar of installation 
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Fig. 3.17: UI at the end of installation 

Figure 3.16 shows UI to show progress bar of installation. Total file size of APK is 22 

MB and post install size is around 500 MB. 

Figure 3.17 shows UI for the user to show completion of installation of the software. 

One can click on Done button to confirm installation completion. 

Figure 3.18 shows sign in menu to the user, which appears only first time when user 

press done. 

Figure 3.19 shows the UI to choose account during sign in. Here all the accounts are 

displayed where user has alrady signed-in through the device. 

Figure 3.20 shows the App main front UI offering user with an option to save 

accelerometer data. Also there is option to save magnetometer and gyroscope data. 

All the basic setup is done and next steps will be post crime activities. 

Figure 3.21 shows version button in settings sub menu about device. 
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Figure 3.22 shows the version number in this case 14.0.0.6 where user need to click 7 

times to enter debug mode. 

Figure 3.23 shows file menu to be clicked after pressing home button. 

Figure 3.24 shows other storage option where user need to enter and turn on 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.18: Sign in window for app 
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Fig. 3.19: UI to choose account during sign in 

bug reports. Figure 3.25 shows menu appered in setting after turning on debug mode 

and one needs to click on bug report in order to see the data from sensordata app. 

Figure 3.26 shows new option that appears once bug report is enabled inside files of 

the phone. 

Enter bug report by clicking newly arrived option of bug report as shown in figure 

3.27 

Figure 3.28 shows the files inside Oppo A79 5G phone where the testing of software 

was carried out. One needs to select Android from it. Figure 3.29 shows app data 

stored inside android folder. Along with app there are media and obb files avaiable 

which can store other forms of information. 

Figure 3.30 shows folders inside data folder showing installed app folder ”com. 

example. sensordata”. this is the domain name by default for any application built on 

flutter. One can change this name if required. 
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Figure 3.31 shows files once we enter com.example.sensordata. Most of the logged 

data is stored inside this folder. 

Figure 3.32 shows the UI when we enter Sensordata folder inside file. Only 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.20: App main front UI offering user with an option to save accelerometer 

data 
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Fig. 3.21: Version button in setting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.22: Version button from android device 
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Fig. 3.23: File menu to recover the data 

one folder named sensordata will be there. Figure shows different files under 

Sensordata app folder inside com.example.sensordata folder. Three .csv files are 

produced that holds all the data required. accerlometer.csv, gyroscope.csv and 

magnetometer.csv file. 

All the values are simultaneously written inside the 3 files. One of the files selected 

called gyroscope.csv is as shown in figure 3.34. Figure 3.35 shows that the data stored 

in 4 columns one is sensor name and next 3 are the values from these sensors. For 

simple sensor like light, only two values per row will be present; and for complex 

sensors like accelrometer, atleast 3 values will be present. 

3.12 Mobile Application for Sensor Data Collection 

This Flutter application, named SensorData, is designed to collect and store data from 

various mobile device sensors. The app begins with a login interface, allowing users 

to authenticate via username and password or through Google OAuth 
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Fig. 3.24: Storage device setting to turn on bug reports 
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Figure 3.25: Setting to turn on Bug Report 
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Fig. 3.26: Enabled Bug report in file 
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Fig. 3.27: Bug report folder contents 
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Fig. 3.28: Android folder to be opened inside the device Oppo A79 5G in this case 
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Fig. 3.29: Data folder inside the android folder where app data is stored. 
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Fig. 3.30 : Folders inside data folder showing installed app folder com. 

example. sensordata 
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Fig. 3.31: Files inside com.example.sensordata 
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Fig. 3.32: Sensordata folder inside files 
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Fig. 3.33: Files under sensor data 
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Fig. 3.34: Sample file selection : Gyroscope.csv 
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Fig. 3.35: Sample data stored for processing inside csv file 

(Authentication platform of google). Once logged in, users are directed to the main 

functionality of the app: continuous sensor data collection. The core of the application 

lies in the HomePage widget, which initializes and manages the data collection 

process. It utilizes the sensors plus package to access the device’s accelerometer, 

gyroscope, and magnetometer. The app continuously listens to events from these 

sensors, capturing data points at regular intervals. Each data point includes the sensor 

type, timestamp, and X, Y, Z coordinates. This real time data is temporarily stored in 

memory as lists of strings. To ensure data persistence, the application implements a 

periodic save mechanism. Every second, the collected sensor data is written to CSV 

files, with separate files for each sensor type (accelerometer.csv, gyroscope.csv, 

magnetometer.csv). These files are stored in a dedicated ”Sensor Data” folder within 

the app’s external storage directory. The app’s interface provides buttons for manual 
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data saving, while also featuring an automatic logout option for security. This 

structure allows for efficient data collection and storage, making it suitable for various 

research and analysis purposes in mobile sensing applications. 

3.13 Firebase Configuration for Cross-Platform Development 

This Dart code defines a crucial configuration class, Default Fire base Options, which 

manages Firebase setup across multiple platforms in a Flutter application. The class 

utilizes conditional logic to determine the appropriate Firebase configuration based on 

the target platform, supporting web, Android, iOS, macOS, and Windows. This 

approach ensures that the application can seamlessly integrate with Firebase services 

regardless of the deployment platform. 

The current Platform getter method serves as the core of this configuration system. It 

checks whether the application is running on the web using the kIsWeb constant, and 

if not, it uses default Target Platform to identify the specific operating system. Based 

on this determination, it returns the corresponding platform specific Firebase Options 

object. This method provides a convenient way to initialize Firebase with the correct 

configuration by simply calling ”Default Firebase Options current Platform”. 

Each supported platform has its own Firebase Options constant, containing essential 

parameters such as apiKey, appId, projectId, and storage Bucket. These constants also 

include platform specific details like androidClientId and iosClientId for mobile 

platforms, and measurementId for web and Windows. The code throws Unsupported 

Error for Linux and any unrecognized platforms, ensuring that developers are aware 

of unsupported environments. This structured approach to Firebase configuration 

facilitates efficient cross platform development and deployment of Flutter 

applications with Firebase integration. 

3.14 Supabase Configuration 

The SupabaseCread class encapsulates the essential credentials required for 

connecting to a Supabase backend. It contains two final string properties: url and key. 

The url property stores the unique URL of the Supabase project, which in this case is 

’https://xnlvzblwtolrtfyrvgta.supabase.co’. The key property holds the project’s API 

key, a long JWT token that provides authentication and authorization for accessing 

the Supabase services. This configuration allows the application to establish a secure 
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connection with the Supabase backend, enabling data operations and other backend 

functionalities. By encapsulating these credentials in a separate class, the code 

promotes better organization and easier management of backend configuration details. 

3.15 Deep learning code for data classification 

The code begins by importing necessary libraries and defining paths to CSV files 

containing sensor data (accelerometer, gyroscope, and magnetometer). It then loads 

these CSV files into Pandas DataFrames and combines them into a single DataFrame. 

The ’sensorType’ column is encoded into numerical classes using Label Encoder. 

This preprocessing step is crucial for preparing the data for machine learning 

algorithms, as it converts categorical data into a format that can be easily processed 

by neural networks. 

The data is then split into features (X) and labels (y), where X contains the sensor 

type and x, y, z coordinates, and y contains the encoded sensor types. The dataset is 

further divided into training and testing sets using train test split from scikit learn. A 

Sequential model is defined using Keras, consisting of two Dense layers with 64 

neurons each, using ReLU activation functions, and Dropout layers to prevent 

overfitting. The output layer has 10 neurons with a softmax activation function, 

suitable for multiclass classification. 

The model is compiled using the Adam optimizer and sparse categorical cross- 

entropy loss function. An Early Stopping callback is implemented to prevent over- 

fitting by monitoring the validation loss. The model is then trained on the training 

data for 20 epochs with a batch size of 32, using the test data for validation. After 

training, the model’s performance is evaluated on the test set, and the accuracy is 

printed. Finally, the code demonstrates how to use the trained model for making 

predictions on new data by providing an example data point and printing the predicted 

class. 


