FORMULATION AND EVALUATION OF MESOPOROUS SILICA NANOPARTICLES LOADED ANTIARTHRITIC GEL AS A TARGETED DRUG DELIVERY SYSTEM फार्मूलेशन एंड इवैल्यूएशन ऑफ़ मेसोपोरोस सिलिका नैनोपार्टिकल्स लोडेड एंटीअर्थरिटिक जेल एज अ टार्गेटेड ड्रग डिलीवरी सिस्टम

A Thesis

Submitted for the Award of the Ph.D. degree of

PACIFIC ACADEMY OF HIGHER EDUCATION AND RESEARCH UNIVERSITY

By

DINESH DAYARAMJI CHAKOLE

Under the Supervision of

DR. RAKTE AMOL SHARANAPPA

DR. VISHAL VIJAY PANDE

Professor Department of Pharmaceutics Pacific College of Pharmacy Pacific Academy of Higher Education and Research University, Udaipur Principal RSM's N.N. Sattha College of Pharmacy, Ahmednagar, Maharashtra

FACULTY OF PHARMACY DEPARTMENT OF PHARMACEUTICS PACIFIC ACADEMY OF HIGHER EDUCATION AND RESEARCH UNIVERSITY, UDAIPUR

DECLARATION

I, DINESH DAYARAMJI CHAKOLE S/o Mr. DAYARAMJI CHAKOLE, resident of 502, Daffodil, Kesar Garden, Plot No. -53, Sector 20, Opposite Ramesth Thakur Public School, Kharghar, Navi Mumbai, Mumbai Suburban - 410210, Maharashtra, hereby declare that the research work incorporated in the present thesis entitled **"FORMULATION AND EVALUATION OF MESOPOROUS SILICA NANOPARTICLES LOADED ANTIARTHRITIC GEL AS A TARGETED** DRUG DELIVERY SYSTEM" is our original work. This work (in part or in full) has not been submitted to any University for the award or a Degree or a Diploma. I have properly acknowledged the material collected from secondary sources wherever required. I solely own the responsibility for the originality of the entire content.

Date: / /2024

(DINESH DAYARAMJI CHAKOLE)

Signature of the Candidate

CERTIFICATE

Its gives me immense pleasure in certifying that the thesis entitled **"FORMULATION AND EVALUATION OF MESOPOROUS SILICA NANOPARTICLES LOADED ANTIARTHRITIC GEL AS A TARGETED DRUG DELIVERY SYSTEM"** and submitted by **DINESH DAYARAMJI CHAKOLE** is based on the work research carried out under my guidance. He has completed the following requirements as per Ph.D. regulations of the University;

- i. Course work as per University rules.
- ii. Residential requirements of the University.
- iii. Regularly presented Half Yearly Progress Report as prescribed by the University.
- iv. Published/ accepted minimum of two research paper in a refereed research journal.

I recommend the submission of thesis as prescribed/ notified by the University.

Date: / /2024

DR. RAKTE AMOL SHARANAPPA

Professor Department of Pharmaceutics Pacific College of Pharmacy Pacific Academy of Higher Education and Research University, Udaipur

CERTIFICATE

Its gives me immense pleasure in certifying that the thesis **"FORMULATION AND EVALUATION OF MESOPOROUS SILICA NANOPARTICLES LOADED ANTIARTHRITIC GEL AS A TARGETED DRUG DELIVERY SYSTEM"** and submitted by **DINESH DAYARAMJI CHAKOLE** is based on the work research carried out under my guidance. He has completed the following requirements as per Ph.D. regulations of the University;

- i. Course work as per University rules.
- ii. Residential requirements of the University.
- iii. Regularly presented Half Yearly Progress Report as prescribed by the University.
- iv. Published/ accepted minimum of two research paper in a refereed research journal.

I recommend the submission of thesis as prescribed/ notified by the University.

Date: / /2024

DR. VISHAL VIJAY PANDE

Principal RSM's N.N. Sattha College of Pharmacy, Ahmednagar, Maharashtra

COPYRIGHT

I, DINESH DAYARAMJI CHAKOLE, hearby declare that the Pacific Academy of Higher Education and Research University Udaipur, Rajasthan shall have the rights to preserve, use and disseminate this dissertation/thesis entitled "FORMULATION AND EVALUATION OF MESOPOROUS SILICA NANOPARTICLES LOADED ANTIARTHRITIC GEL AS A TARGETED DRUG DELIVERY SYSTEM" in print or electronic format for academic/research purpose.

Date: / /2024 Place: Udaipur **DINESH DAYARAMJI CHAKOLE**

ACKNOWLEDGEMENT

First of all, thank almighty GOD for all his Blessings and for giving me strength and wisdom for successfully completing this research work in time.

I am grateful to my faculty Supervisor, *Dr. Amol S. Rakte*, Professor in Pacific University for his continuous guidance and help in completing the research activities.

I express my gratitude to *Dr. Hemant Kothari*, Dean- Pacific Academy of Higher Education and Research University (PAHER University), *Dr. P.K. Choudhury*, Principal- Pacific College of Pharmacy, PAHER University and Other Staff members who directly or indirectly supported me towards completing the research work.

I would like to express my deep gratitude to my faculty Co-Supervisor *Dr. Vishal V. Pande*, Principal, NN Sattha College of Pharmacy for his guidance, support and efforts that help me in continuing research work. For his permission to use the Lab work and guidance in designing and interpreting the experimental work.

I would like to thank Management of NN Sattha College of Pharmacy to carry out work, to use the Lab and instrument facility of the College.

The work presented in this thesis would not have been possible without many peoples knowingly or unknowingly extending their support to me and research work.

I take this opportunity to acknowledge them and extend my sincere gratitude for helping me to make this thesis possible.

At this moment of accomplishment, I express my indebtedness to my parents *Shri Dayaramji* and *Late Smt. Shashikala Chakole* for all their blessings to see today's success.

Special Thanks and Gratitude towards my wife *Smt. Pooja*, for her unconditional love, constant support, continuous push and patience to make it possible today. My lovely daughters *Anushka* and *Sharvani* for their love, affection and support during every moment in my life.

This work would not have been possible without the grace of the "Shri Swami Samarth"

DINESH DAYARAMJI CHAKOLE

TABLE OF CONTENTS

Sr. No.	Topics	Page No.
	Declaration	ii
	Certificate	iii
	Certificate	iv
	Copyright	v
	Acknowledgement	vi
	Abstract	viii
	Table of Contents	ix
	List of Tables	xii
	List of Figures	xvi
CHAPTER-1	INTRODUCTION	1 - 66
CHAPTER-2	REVIEW OF LITERATURE	67 - 77
CHAPTER-3	AIM AND OBJECTIVES	78 - 80
CHAPTER-4	PLAN OF WORK	81 - 82
CHAPTER-5	MATERIALS AND METHOD	83 - 127
CHAPTER-6	RESULTS AND DISCUSSION	128 - 174
CHAPTER-7	SUMMARY AND CONCLUSION	175 - 177
	Annexure:	
	Research Paper Publication	-
	Conference Certificates	-
	Plagiarism Report	-

LIST OF TABLES

Sr. No.	Table No.	Title of Tables	Page No.
1.	5.1	List of Chemicals	103
2.	5.2	List of Instruments	104
3.	5.3	Formulation of Antiarthritic Gel (with Drug-Loaded MSNs containing Tofacitinib Citrate and Methotrexate)	116
4.	6.1	Drug Loading Efficiency of both the drugs	136
5.	6.2	Cumulative Percentage Drug Release Profile for Tofacitinib Citrate and Methotrexate	137
6.	6.3	Formulation of Antiarthritic Gel (with Drug-Loaded MSNs containing Tofacitinib Citrate and Methotrexate)	141
7.	6.4	Variation of Drug-Loaded MSNs concentrations in Formulations	142
8.	6.5	Variation of Carbopol 940 concentration in Formulation	144
9.	6.6	Variation of Propylene Glycol concentration in Formulation	146
10.	6.7	Rheological parameters of Nanogel Formulation (F3)	149
11.	6.8	Initial Spreadability assessment readings of Nanogel Formulation (F3)	150
12.	6.9	Adjusted Spreadability assessment readings after decreasing viscosity	151
13.	6.10	Adjusted Spreadability assessment readings after increasing MSN concentration	152
14.	6.11	Texture analysis of the Nanogel Formulation (F3)	153
15.	6.12	Drug content uniformity in Formulation F3	154

16.	6.13	Particle Size and Size Distribution of Nanogel	155
		Formulation (F3)	
17.	6.14	Zeta potential values of individual and combined	157
		drug from Nanogel Formulation (F3)	
18.	6.15	In- Vitro Drug Release of Individual and Combined	158
		drugs from Nanogel Formulation (F3)	
19.	6.16	<i>Ex-Vivo</i> Drug Release of Individual and Combined	160
		drugs from Nanogel Formulation (F3)	
20.	6.17	Accelerated stability study of the formulation (at	161
		$40^{\circ}C \pm 2^{\circ}C$ and 75% \pm 5% RH)	
21.	6.18	Long Term stability study of the formulation at (25°C	162
		± 2°C and 60 % ±5% RH)	
22.	6.19	Long Term stability study of the formulation at 4°C	163
23.	6.20	Cumulative percentage drug release from Nanogel	165
		Formulation (F3)	
24.	6.21	Plasma concentration of drugs at different time	166
		intervals	
25.	6.22	T _{max} of Methotrexate	167
26.	6.23	T _{max} of the Tofacitinib Citrate	168
27.	6.24	Summary of Dermatokinetic parameters of Nanogel	169
		Formulation (F3)	
28.	6.25	Dermatokinetic diffusion of Methotrexate	171
29.	6.26	Dermatokinetic diffusion of Tofacitinib Citrate	171

LIST OF FIGURES

Sr. No.	Figure No.	ure No. Title of Figures	
1.	1.1	Types of Arthritis	04
2.	1.2	Socio-Economic factors of arthritis	06
3.	1.3	Nanoparticles used in arthritis	19
4.	1.4	Advantages of MSNs	30
5.	5.1	Franz Diffusion Cell	121
6.	5.2	Diffusion Cell Apparatus	122
7.	6.1	The Fourier-transform infrared (FT-IR) spectrum for the MSN's	130
8.	6.2	Transmission electron microscopy (TEM) photographs depict: (A) A honeycomb-like permeable framework of mesoporous silica nanoparticles. The spherical particles are depicted with hexagonal straight paths flowing from them. The particles possess linear, one-dimensional cylindrical pores. (B) An aerial perspective of the particles, revealing the channels arranged in a honeycomb structure.	131
9.	6.3	An image obtained using scanning electron microscopy (SEM) that displays the dimension as well as structure of mesoporous silica nanoparticles.	132
10.	6.4	DSC Thermogram of MSN	133
11.	6.5	(A) Surface examination using nitrogen adsorption isotherms that enables the computation of surface area using the BET method. (B) The size of the pores of the fragments was determined using the Barrett- Joyer-Halenda (BJH) method.	133

12.	6.6	FTIR spectra for unmodified and surface-modified	134
		mesoporous silica nanoparticles (MSNs)	
13.	6.7	XRD spectra of surface modified mesoporous silica	135
		nanoparticles (MSNs)	
14.	6.8	Cumulative Percentage Drug Release Drugs loaded	138
		Surface-Modified MSNs	
15.	6.9	Combined Drug Release from different Formulation	143
		(Impact of Drug-Loaded MSNs concentrations in	
		Formulations)	
16.	6.10	Combined Drug Release from different Formulation	14
		(Impact of Carbopol-940 concentration in	
		Formulation)	
17.	6.11	Combined Drug Release from different Formulation	14'
		(Impact of Propylene Glycol concentration in	
		Formulation)	
18.	6.12	Content Uniformity of Methotrexate and Tofacitinib	14'
		citrate in different formulation Trials	
19.	6.13	Rheological behavior of the Nanogel Formulation	14
		(F3)	
20.	6.14	Initial Spreadability assessment readings of Nanogel	15
		Formulation (F3)	
21.	6.15	Adjusted Spreadability assessment after decreasing	15
		viscosity of Nanogel Formulation	
22.	6.16	Adjusted Spreadability assessment after increasing	15
		MSN concentration of Nanogel Formulation	
23.	6.17	Hardness of the of Nanogel Formulation (F3)	154
24.	6.18	Contour plot of Particle Size and Size Distribution of	15:
		Nanogel Formulation (F3)	
25.	6.19	Particle size of Methotrexate (MTX), Tofacitinib	150
		Citrate (TC) and Combined (MTX+TC) from	
		Nanogel Formulation (F3)	

26.	6.20	Polydespersibility Index (PDI) of Methotrexate	156
		(MTX), Tofacitinib Citrate (TC) and Combined	
		(MTX+TC) from Nanogel Formulation (F3)	
27.	6.21	Zeta Potential of Methotrexate (MTX), Tofacitinib	157
		Citrate (TC) and Combined Drugs (MTX+TC) from	
		Nanogel Formulation (F3)	
28.	6.22	In-Vitro Drug Release of Methotrexate (MTX),	159
		Tofacitinib Citrate (TC) and Combined Drugs	
		(MTX+TC) from the Nanogel Formulation (F3)	
29.	6.23	Ex-Vivo Drug Release of Methotrexate (MTX),	160
		Tofacitinib Citrate (TC) and Combined Drugs	
		(MTX+TC) from the Nanogel Formulation (F3)	
30.	6.24	Cumulative Drug Release for Methotrexate (MTX),	165
		Tofacitinib citrate (TC) and Combined Drugs	
		(MTX+TC) from Nanogel Formulation (F3)	
31.	6.25	Plasma concentration of Methotrexate (MTX) and	166
		Tofacitinib Citrate (TC) at different time intervals	
32.	6.26	Comparative Dermatokinetic Diffusion of	172
		Methotrexate and Tofacitinib citrate from the	
		Nanogel Formulation (F3)	
33.	6.27	Skin Diffusion of Methotrexate and Tofacitinib	173
		Citrate	

ABBREVIATIONS

MSNs	:	Mesoporous Silica Nanoparticles
DMARDs	:	Disease-Modifying Antirheumatic Drugs
JAK	:	Janus Kinase
NSAIDs	:	Nonsteroidal Anti-Inflammatory Drugs
COX	:	Cyclooxygenase
AUC	:	Area under the Curve
MTX	:	Methotrexate
TC	:	Tofacitinib Citrate
TEM	:	Transmission Electron Microscopy
SEM	:	Scanning Electron Microscopy
BET	:	Brunauer-Emmett-Teller
CAS	:	Chemical Abstracts Service
BP	:	British Pharmacopoeia
TEA	:	Triethanolamine
API	:	Active Pharmaceutical Ingredient
GRAS	:	Generally Recognized as Safe
EDTA	:	Ethylenediaminetetraacetic Acid
PG	:	Propylene Glycol
DMSO	:	Dimethyl Sulfoxide
KBr	:	Potassium Bromide
TEOS	:	Tetraethyl Orthosilicate
FTIR	:	Fourier Transform Infrared Spectroscopy
DLS	:	Dynamic Light Scattering
APTES	:	3-Aminopropyltriethoxysilane
PBS	:	Phosphate-Buffered Saline
pXRD	:	Powder X-ray Diffraction

Cmax Maximum Concentration : Time to Reach Maximum Concentration Tmax : Polydispersity Index PDI : APTES 3-Aminopropyltriethoxysilane : Absorption Rate Constant Ka : Ke Elimination Rate Constant : t1/2 Half-Life : Colony-Forming Unit CFU :