
SMART FOG – A COLLABORATIVE APPROACH TO SHARE

COMPUTATIONAL POWER OF FOG DEVICES FOR FOG COMPUTING

IN SMART CITY IoT NETWORK

स्मार्ट फ़ॉग - स्मार्ट सिर्ी आईओर्ी नेर्वर्ट में फ़ॉग रं्प्यूसरं्ग रे् सिए फ़ॉग

उपर्रणों र्ी र्म्पप्यूरे्शनि शसि िाझा र्रने रे् सिए एर् िहयोगात्मर् दृसिर्ोण

A Thesis

Submitted for the Award of Ph.D. degree

by

NALAWADE SURAJ RAJARAM

नलवड ेसूरज राजाराम
Under the Supervision of

Dr. ASHOK KUMAR JETAWAT

Professor

Pacific Academy of Higher Education

& Research University, Udaipur

FACULTY OF COMPUTER ENGINEERING

PACIFIC ACADEMY OF HIGHER EDUCATION

AND RESEARCH UNIVERSITY UDAIPUR
2024

DECLARATION

I, NALAWADE SURAJ RAJARAM S/o Mr. NALAWADE RAJARAM

ANNA resident of 4624, Suryoday Niwas, Adarsh Colony, Near Modern High

School, Rahimatpur Road, Koregaon. Satara Maharashtra, hereby declare that

the work incorporated in the present thesis entitled “SMART FOG – A

COLLABORATIVE APPROACH TO SHARE COMPUTATIONAL

POWER OF FOG DEVICES FOR FOG COMPUTING IN SMART CITY

IoT NETWORK” (“स्मार्ट फ़ॉग - स्मार्ट सिर्ी आईओर्ी नेर्वर्ट में फ़ॉग रं्प्यसूरं्ग रे् सिए फ़ॉग

उपर्रणों र्ी र्म्पप्यरेू्शनि शसि िाझा र्रने रे् सिए एर् िहयोगात्मर् दृसिर्ोण”) is my own

work and is original. This work (in part or in full) has not been submitted to

any University for the award of a Degree or a Diploma. I have properly

acknowledged the material collected from secondary sources wherever

required. I solely own the responsibility for the originality of the entire content.

 Date: (NALAWADE SURAJ RAJARAM)

 Place: Udaipur

FACULTY OF ENGINEERING

PACIFIC ACADEMY OF HIGHER EDUCATION

& RESEARCH UNIVERSITY, UDAIPUR

Dr. ASHOK KUMAR JETAWAT

Professor

CERTIFICATE

It gives me immense pleasure in certifying that the thesis entitled “SMART FOG – A

COLLABORATIVE APPROACH TO SHARE COMPUTATIONAL POWER OF FOG DEVICES FOR

FOG COMPUTING IN SMART CITY IoT NETWORK” (“स्मार्ट फ़ॉग - स्मार्ट सिर्ी आईओर्ी नेर्वर्ट में

फ़ॉग रं्प्यूसरं्ग रे् सिए फ़ॉग उपर्रणों र्ी र्म्पप्यरेू्शनि शसि िाझा र्रने रे् सिए एर् िहयोगात्मर्

दृसिर्ोण”) submitted by NALAWADE SURAJ RAJARAM is based on the research work carried

out under my guidance. he has completed the following requirements as per Ph.D.

regulations of the University.

i. Coursework as per University rules.

ii. Residential requirements of the University.

iii. Regularly presented Half Yearly Progress Report as prescribed by the University.

iv. Published/ accepted a minimum of two research papers in a refereed research
journal.

I recommend the submission of the thesis as prescribed/ notified by the

University.

Date:

Dr. ASHOK KUMAR JETAWAT
Professor

Pacific Academy of Higher

Education & Research University.

COPYRIGHT

I, NALAWADE SURAJ RAJARAM, hereby declare that the Pacific Academy

of Higher Education and Research University, Udaipur, Rajasthan shall have

the rights to preserve, use and disseminate this dissertation/ thesis “SMART

FOG – A COLLABORATIVE APPROACH TO SHARE COMPUTATIONAL

POWER OF FOG DEVICES FOR FOG COMPUTING IN SMART CITY IoT

NETWORK” (“स्मार्ट फ़ॉग - स्मार्ट सिर्ी आईओर्ी नेर्वर्ट में फ़ॉग रं्प्यूसरं्ग रे् सिए फ़ॉग

उपर्रणों र्ी र्म्पप्यरेू्शनि शसि िाझा र्रने रे् सिए एर् िहयोगात्मर् दृसिर्ोण”) in print or

electronic format for academic/ research purpose.

 Date: (NALAWADE SURAJ RAJARAM)

 Place: Udaipur Signature of the Candidate

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest regards and gratitude to my

eminent and esteemed supervisor and guide Dr. Ashok Kumar Jetawat,

Professor, Department of Computer Engineering, Pacific Academy of Higher

Education and Research University, Udaipur, Rajasthan, for giving me inspiration,

guidance, valuable suggestions, opinions and correction for the betterment of my

research work. I will always be grateful to him. He was always available for help

at any point in time. His guidance helped me in the time of research work and

writing of my thesis.

As I reflect on this milestone, I am reminded of the profound significance of the

support network which surrounds us. To Dr. Jayshree Jain madam, I extend my

deepest gratitude for her unwavering support and understanding throughout this

journey. In this journey, I have witnessed the impact of her support, whether it was

through guiding me at different stages of my research work or offering words of

encouragement when the path seemed daunting. Her contribution, perhaps less

visible, has been just as vital in shaping my academic growth.

I am thankful to the University authorities, especially Dr. HEMANT KOTHARI,

Dean, Pacific Academy of Higher Education and Research University, Udaipur,

Rajasthan, and Shri Ramesh Agrawal who guided me at different stages of

research work and others in PAHER for their support and encouragement. Without

their precious support, it would not be possible to conduct this research, and Ms.

Kusum Madam and Dr. Surya Pacific University Udaipur for helping me in

creating the Plagiarism report.

A special note of gratitude to my father, Shri Rajaram Anna Nalawade, My mother,

Smt. Sangita Rajaram Nalawade, whose blessings, love, and support have always

aided me in my research endeavors. My lovely wife, Smt. Ashwini Suraj Nalawade,

my smart son, Mr. Advait Suraj Nalawade, and my brother, Mr. Uday Rajaram

Nalawade, Dr. Manisha Songire (Nalawade) Mrs. Survena Yadav, Mr. Vinod Yadav,

who has always stood by me, I express my gratitude for their love, support, and

encouragement.

I am thankful to my grandfather, Shri Namdev Shivram Deokar, whose blessings,

love, and inspiration always added to my research work.

I would like to thank Prof. Dasharath Sagare Sir - Founder President, YSPM’s

Yashoda Technical Campus, Satara; Prof. Ajinkya D. Sagare Sir - Vice President,

Mr. Ganesh K. Survase Sir - Registrar, Mr. R. D. Mohite - Associate Director,

YSPM’s Yashoda Technical Campus, Satara, Dr. R. J. Dias working at Government

College of Pharmacy, Karad, Late Dr. A. B. Mahatme, Ex Principal, YSPM’s

Yashoda Technical Campus, Sataras.

I pay all my heartfelt gratitude to my friend Mr. Navnath Pandurang Jadhav working

at MAHLE Holding India Pvt Ltd, Pune, Dr. Madhuri Navanath Jadhav Professor at

Pune, Mr. Amol Baburao Nalawade, Mphasis Limited, Pune, Mr. Abhijeet Avinash

Salunkhe, Branch Manager at Janata Sahakari Bank, Satara, Mrs. Nikita Abhijeet

Salunkhe, my colleague Prof. Hakke Dasganu G. Working at Yashoda Technical

Campus, Satara, and Pacific University, Udaipur for helping me directly or indirectly

making this research work a success.

Thank you to everyone who has directly or indirectly helped me on this beautiful

voyage.

Last but not least, my distinctive thanks to M/s Shorya Thesis Printers & this

document meticulously, neatly, and timely.

NALAWADE SURAJ RAJARAM

PREFACE

Smart cities have emerged as a solution to enhance services and quality of life for

residents and visitors. These cities have made significant progress in optimizing

resource utilization, promoting environmental protection, improving infrastructure

operations and maintenance, and strengthening safety and security measures.

Achieving these improvements requires the implementation of new and existing

technologies, as well as the application of optimization techniques. Among the

technologies supporting smart city applications, the Internet of Things, FOG

computing, and cloud computing play vital roles. Integrating these three technologies

into a single system, known as the integrated IoT-Fog-Cloud system, offers a

sophisticated platform for developing and managing various smart city applications.

By leveraging the strengths of IoT gadgets, FOG nodes, and cloud services, this

platform enables applications to deliver optimal functionality and performance. The

integrated system opens up numerous opportunities for enhancing applications across

sectors such as energy, transportation, healthcare, and more. This research work

focuses on designing an improvised SMART FOG system, which the key emphasis of

the study.

Outline of the Thesis:

The entire research work is divided into six chapters as discussed. The chapterization

contains the overview of the proposed SMART FOG protocol-based technique,

implementation challenges, task allocation, scheduling techniques, fault tolerance

mechanisms, literature review of different authors, result analysis/testing,

performance evaluation, and conclusion.

• Chapter - 1 Introduction: Serves as a foundation for the research work by

highlighting the need for the study. It accomplishes this by referencing various

articles and analyzing surveys to establish a solid base for the proposed

research. To clarify the background concepts of fog computing, different

terminologies related to fog computing are defined and explained. This

ensures that readers have a clear understanding of the key terms and concepts

associated with the research topic. The chapter also provides an overview of

the proposed SMART FOG protocol-based technique. It explains the core

features and functionality of the technique, highlighting how it differs from

existing approaches. Additionally, a comparative study is conducted to

compare the proposed technique with other relevant methods in the field. This

comparison helps to establish the unique benefits and advantages of the

SMART FOG protocol-based technique. By encompassing these elements, the

first chapter sets the stage for the research work, presenting the need for the

study, providing a solid base through article references and survey analysis,

clarifying fog computing concepts, and introducing the proposed SMART

FOG protocol-based technique along with its comparative study.

• Chapter -2 Literature Review: Focuses on reviewing past studies conducted

in the research area. It involves examining a broad range of previously

completed research projects and providing a comprehensive background of

other relevant research works. These sources of literature include journals,

articles, research papers, and reputable platforms such as the OpenFog

Consortium, IEEE conferences and journals, Springer publications, and online

fog computing articles and resources. By conducting this review, the chapter

aims to gather existing knowledge, identify gaps in the research field, and

build upon the work that has already been done. It provides a critical analysis

and synthesis of the literature, highlighting key findings, methodologies, and

advancements in fog computing and related domains. The review of the

literature serves several purposes. Firstly, it helps to establish the current state

of the research area, providing a context for the proposed study. Secondly, it

helps the researcher identify research gaps or areas that require further

exploration. By examining the existing literature, the chapter also highlights

the strengths and weaknesses of previous approaches, leading to insights and

inspiration for the proposed research. The sources of literature mentioned,

such as the OpenFog Consortium, IEEE, Springer, and online fog computing

articles and resources, represent reputable and authoritative platforms in the

field. By consulting these sources, the chapter ensures a comprehensive and

reliable review of the existing literature, contributing to the overall credibility

and validity of the research project.

• Chapter -3 Research Methodology: This is dedicated to describing the

methodology used in the research project. It primarily focuses on the

architecture of the proposed system, including the use of block diagrams to

visualize the system's structure. The chapter provides a detailed explanation of

the different layers within the architecture, highlighting their functions and

interactions. In addition to the system architecture, the chapter also explores

the various technologies employed in the implementation of the proposed

system. It delves into the specifics of these technologies, discussing their

relevance and suitability for the project. The methodology chapter also

outlines the research methods employed in the study. It mentions the use of

questionnaires or surveys to gather data and insights from relevant

stakeholders or experts in the field. These methods help in understanding the

requirements, challenges, and expectations associated with the proposed

system. By gathering feedback through questionnaires, the research project

can align its objectives with the needs of the intended users or beneficiaries.

Furthermore, the chapter addresses any gaps or open challenges that were

identified during the literature review. It highlights how these gaps are

addressed or resolved through the proposed research. The focus is on

designing and developing the proposed system to bridge these gaps and

overcome challenges identified in previous studies.

• Chapter - 4 SMART FOG-based Technique: Focuses on the

implementation of the proposed system. The chapter discusses the total work

done in the system and outlines the next steps and milestones to be achieved. It

also addresses the challenges encountered during the selection of

communication protocols and security measures for each layer of

communication. The sharing of computational power between IoT devices and

fog devices is identified as a challenging aspect, and an improvised method is

proposed to enable this sharing. The proposed SMART FOG protocol-based

technique aims to execute tasks in the fog environment to avoid latency issues

associated with sending requests to cloud centers.

• Chapter – 5 Allocation and Scheduling of Computational Power: The

focus is on the allocation and scheduling of computational resources shared

with IoT devices. The chapter explores different techniques of resource

allocation and scheduling, identifying the most efficient ones suitable for fog

computing. The current work is tested according to the proposed system, and

the results are evaluated to meet the objectives of the research. The evaluation

specifically assesses the impact of the proposed work on latency issues in the

existing system. Testing and evaluation are crucial for validating the

hypothesis, which centers around implementing the SMART FOG protocol-

based technique to create a fog environment that shares computational power

with IoT devices.

• Chapter – 6 Conclusion and Future Work: Provides a summary of the

research work and its outcomes in comparison to the expected results defined

during the design phase. A detailed analysis is conducted to project future

possibilities and enhancements to the system resulting from the study. The

chapter also highlights key challenges and issues that warrant further

investigation for future development. This chapter serves as a conclusion to

the research, summarizing its findings and suggesting avenues for future

research and improvement.

In conclusion, based on the evaluation of various accuracy parameters, it can be

inferred that the MLP classifier and Logistic Regression are the most suitable

classification algorithms for resource allocation and task offloading in a SMART

FOG environment. These classifiers consistently outperform the others and

demonstrate their effectiveness in achieving accurate and reliable results.

INDEX

Chapter-1 Introduction 1-39

1.1 Fog Computing 3

1.2 Fog Computing Architecture 4

1.3 Issues Related to Fog Computing 6

 1.3.1 Privacy

 1.3.2 Network Security

 1.3.3 Network Management

 1.3.4 Placement of Fog Servers

 1.3.5 Delay in Computing

 1.3.6 Energy Consumption

1.4 IoT-Based Architectures and Protocols 10

 1.4.1 Three and Five-Layer Architectures

 1.4.2 IoT Device Connectivity: Architectures and Protocols

 1.4.3 IoT Protocol Architecture

 1.4.4 Layer IoT Architecture

 1.4.5 Five-Layer IoT Architecture

 1.4.6 Types of IoT Connections

1.5 Cloud And Fog Based Architectures 17

1.6 Social IoT 19

1.7 Implication of Fog Computing 21

1.8 Fog Computing Task Scheduling 22

 1.8.1 Static Scheduling Strategy

 1.8.2 Dynamic Task Scheduling Methods

 1.8.3 Hybrid Task Scheduling Methods

1.9 Fog Computing Challenges 31

 1.9.1 Drones

 1.9.2 Machine learning

 1.9.3 Security and Privacy

 1.9.4 Autonomic Fog Management and Connectivity

1.10 Machine Learning Algorithms 32

 1.10.1 Naive Bayes

 1.10.2 Logistic Regression

 1.10.3 Sequential Minimal Optimization

 1.10.4 Instance-Based Learner

 1.10.5 K-Star

 1.10.6 Multi-Class Classifier

 1.10.7 Random Forest

 1.10.8 Random Tree

 1.10.9 MLP Multi-Layer Perceptron

 1.10.10 k-Nearest Neighbor

 1.10.11 Supervised

 1.10.12 Unsupervised

 1.10.13 Semi-Supervised

1.11 Fog Computing Real-Time Applications 37

 1.11.1 Mobile Big Data Analytics

 1.11.2 Dams Safety

 1.11.3 Smart Utility Service

 1.11.4 Health Data

 1.11.5 Smart Cities

 1.11.6 Tele-Surveillance

Chapter-2 Literature Review 40-81

2.1 IoT Overview 41

2.2 Fog and Edge Computing 48

2.3 IoT and Fog Computing Applications 54

2.4 Fog Computing and Smart Cities 61

2.5 Resource Allocation and Task Scheduling Technique 69

Chapter – 3 Research Methodology 82-111

3.1 Significance of Research 83

3.2 Research Gaps 83

3.3 Problem Statement 85

3.4 Objectives 85

3.5 Hypothesis 86

3.6 Scope of Study 88

3.7 Research Methodology 88

 3.7.1 Sources of Information

 3.7.2 Data Collection

 3.7.3
Through Participation in Conference and Paper

Published

 3.7.4 Performance Evaluation

 3.7.5 Machine Learning Predictive Model Development

3.8 Tools and Technique 92

 3.8.1 Weka Tools and Technique

 3.8.2 Experimental Setup

 3.8.3 Hypothesis Testing Tool

3.9 Applied Methodology 97

 3.9.1 Fog-Cloud Smart Task Offloading Model

 3.9.2 Task Offloading

 3.9.3 Workflow Diagram

3.10 Performance Metrics for Supervised and Unsupervised

Algorithm
102

 3.10.1 Internal Validation

 3.10.2 External Validation

 3.10.3 Simulation Setup

Chapter- 4 Smart Fog Protocol-Based Techniques 112-189

4.1 Analysing IoT Infrastructure for Smart Fog Protocol Design 113

 4.1.1 Message Queue Telemetry Transport protocol

 4.1.2 Constrained Application Protocol

 4.1.3 Advanced Message Queuing Protocol

 4.1.4 Data Distribution Service

4.2 Task Scheduling and Allocation in Smart Fog Computing Nodes 117

4.3 Challenges in Implementing Fog Computing 121

4.4 Hypothesis Testing Results 123

4.5 Multiple Regression Model 155

4.6 Use of Machine Learning Approaches in Task Scheduling 160

 4.6.1 Logistic Regression

 4.6.2 IBK (Stratified Cross-Validation: 10-Fold)

 4.6.3 K-Star (Stratified Cross-Validation: 10-Fold)

 4.6.4 Adaboostm1 (Stratified Cross-Validation: 10-Fold)

 4.6.5 Comparative Analysis of Classification Algorithms

4.7 Clustering Algorithms Used for Task Scheduling 180

 4.7.1 Canopy Clustering

 4.7.2 Hierarchical Clustering

 4.7.3 Make Density-Based Clustering

Chapter- 5 Allocation and Scheduling of Computational

 Power

190-239

5.1 Task Offloading 191

5.2 Task Offloading and Resource Management System 192

5.3 Comparative Analysis Based on Cross-Validation 10 Folds 195

5.4 Comparative Analysis Based on Cross-Validation 20 Folds 206

5.5 Comparative Analysis Based on Split 33% 217

5.6 Overall Performance of Classification Algorithms 228

Chapter – 6 Conclusion and Future Work 240-247

6.1 Findings and Conclusions 241

6.2 Summarization of Hypotheses Testing Results 241

6.3 Use of Machine Learning Techniques for Task Scheduling 244

6.4 Classification Algorithms in Task Offloading and Resource

Allocation
244

6.5 Future Scope 245

6.6 Limitations 247

References 246-161

Appendix 262-263

 List of Publications and Conferences Attended

 Publish Research Papers

 Plagiarism Report

LIST OF TABLES

Table

No.

Title of Table
Page

No.

4.1 Comparison of Traditional Scheduling Algorithms 118

4.2 Integer Linear Programming 119

4.3 Comparison of Heuristic Scheduling Algorithms 119

4.4 Comparison of Fuzzy-Based Scheduling Algorithms 120

4.5 Execution Time Reduced due to Fog computing environment 125

4.6 Classification of Fog and Cloud for Execution Time 126

4.7 Type of System (Fog or Cloud) and Average Execution Time 127

4.8 Expected Frequency 127

4.9 2 Calculation 127

4.10 Latency reduced due to Fog computing environment 130

4.11 Classification of Fog and Cloud for Latency 131

4.12 Type of System (Fog or Cloud) and Latency 132

4.13 Expected Frequency 132

4.14 2 Calculation 132

4.15 Energy consumption reduced due to Fog computing environment 135

4.16 Classification of Fog and Cloud for Energy Consumption 136

4.17 Type of System (Fog or Cloud) and Energy Consumption 137

4.18 Expected Frequency 137

4.19 2 Calculation 137

4.20 Cost of execution reduced due to Fog computing environment 140

4.21 Classification of Fog and Cloud for Execution 141

4.22 Type of System (Fog or Cloud) and Cost of Execution 142

4.23 Expected Frequency 142

4.24 2 Calculation 143

4.25 Total network usage reduced due to Fog computing environment 145

4.26 Classification of Fog and Cloud for Total Network Usage 147

4.27 Type of System (Fog or Cloud) and Total Network Usage 148

4.28 Expected Frequency 148

4.29 2 Calculation 148

4.30 Computational Power reduced due to Fog computing environment 151

4.31 Classification of Fog and Cloud for Computational Power 153

4.32 Classification of Fog and Cloud for Computational Power 154

4.33 Expected Frequency 154

4.34 2 Calculation 154

4.35 Descriptive summary of various measures 156

4.36 Variables Considered & Removed 157

4.37 Regression Model Summary 157

4.38 ANOVA Statistics 158

4.39 Coefficient Values 159

4.40 Excluded Measures 160

4.41 Residual Statistics of Model 160

4.42 Performance Measures for Logistic Regression (LR98) at 10-fold

cross-validation
162

4.43 Accuracy Class Wise (LR Classifier) 162

4.44 Confusion Matrix (LR) 163

4.45 Performance Measures for IBK at 10-fold cross-validation 163

4.46 Accuracy Class Wise (IBK) 164

4.47 Confusion Matrix (IBK) 164

4.48 Performance Measures for K-Star at 10-fold cross-validation 165

4.49 Accuracy Class Wise (K-Star) 166

4.50 Confusion Matrix (K-Star) 166

4.51 Performance Measures forAdaBoostM1 at 10-fold Cross-

Validation
167

4.52 Accuracy Class Wise (AdaBoostM1) 167

4.53 Confusion Matrix (AdaBoostM1) 168

4.54 Performance-Wise Analysis of Classification Algorithms (10 folds,

Number of Tasks: 40 and Nodes: 4)
169

4.55 Performance-Wise Analysis of Classification Algorithms (25 folds,

Number of Tasks: 40 and Nodes: 4)
171

4.56 Performance-Wise Analysis of Classification Algorithms (10 folds,

160 number of tasks and Nodes: 4)
174

4.57 Performance-Wise Analysis of Classification Algorithms (25 folds,

160 number of tasks and Nodes: 4)
177

4.58 Accuracy Canopy Clustering 182

4.59 Performance Measure Class Wise (Canopy Clustering) 183

4.60 Confusion Matrix (Canopy Clustering) 184

4.61 Overall Accuracy Hierarchical Clustering 184

4.62 Class or Node-wise Hierarchical Clustering Performance Measures 184

4.63 Confusion Matrix (Hierarchical Clustering) 186

4.64 Overall Accuracy Make Density-Based Clustering 186

4.65 Class or Node wise Make Density-Based Clustering Performance

Measures
187

4.66 Confusion Matrix (Make Density-Based Clustering) 189

5.1 Comparative Analysis of Classifiers Used for Task Offloading and

Resource Allocation: 10-fold Cross Validation
195

5.2 Performance Analysis of Classification Algorithms Used for Task

Offloading: 20-fold Cross-validation
206

5.3 Performance Analysis of Classification Algorithms Used for Task

Offloading: Percentage Split Method – 33%
217

5.4 Overall Performance of Classification Algorithms used for Task

Offloading
228

LIST OF FIGURES

Fig.

No.

Title of Figure Page No.

1.1 Fog Computing Architecture 5

1.2 Three(A)- and Five(B)-Layer Architectures 12

1.3 IoT Architectures 14

1.4 Types of IoT Connection 15

1.5 Publish / Subscribe Architecture 16

1.6 Cloud and Fog-Based Architectures 18

1.7 IOT & FOG Computing 20

1.8 Fog Computing Task Scheduling 24

1.9 Static Scheduling Strategy 26

1.10 Dynamic Task Scheduling 28

1.11 Hybrid Task Scheduling Methods 29

3.1 Data processing challenges at cloud data center 84

3.2 iFogSim Architecture 90

3.3 Weka Tool K-Star 95

3.4 Task offloading criteria 98

3.5 Flow Diagram: SMART FOG Task Offloading 99

3.6 Workflow Diagram 101

3.7 Cluster validity index 102

3.8 Internal Validation Method 103

3.9 External Validation Method 104

3.10 Optimization Metrics 108

4.1 AMQP architecture 116

4.2 Fog Vs Cloud system based on Average Execution Time (ms) 124

4.3 Fog Vs Cloud system based on Latency (ms) 129

4.4 Fog Vs Cloud system based on Energy Consumption (Joules) 134

4.5 Fog Vs Cloud system based on Cost of Execution (ms) 139

4.6 Fog Vs Cloud system based on Total Network Usage (B/s) 144

4.7 Fog Vs Cloud system based on Computational Power (W) 150

4.8 Evaluation of classifier at 10-fold cross-validation based on

various performance measures

170

4.9 Evaluation of classifier at 25-fold cross-validation based on

various performance measures

172

4.10 Average Execution Time (ms): 25 folds 173

4.11 Evaluation of classifier at 10-fold cross-validation based on

various performance measures

175

4.12 Average Execution Time (ms): 10 folds 176

4.13 Evaluation of classifier at 25-fold cross-validation based on

various performance measures

178

4.14 Average Execution Time (ms): 25 folds 179

4.15 Overall Accuracy Canopy Clustering 182

4.16 Class-wise performance measures 183

4.17 Class or Node-wise Hierarchical Clustering Performance

Measures

185

4.18 Overall Accuracy Make Density-Based Clustering 187

4.19 Class or Node wise Make Density-Based Clustering

Performance Measures

188

5.1 Proposed task offloading management system 192

5.2 Accuracy Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Cross

Validation-10 folds)

196

5.3 Kappa Statistic Value for Classifiers Used in Task Offloading

and Resource Management (Configuration Setting: Cross

Validation-10 folds)

197

5.4 TP Rate Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Cross

Validation-10 folds)

198

5.5 FP Rate Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Cross

Validation-10 folds)

199

5.6 Precision Value for Classifiers Used in Task Offloading and

Resource Management

200

5.7 (Configuration Setting: Cross Validation-10 folds) 201

5.8 F-Measure Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Cross

Validation-10 folds)

202

5.9 ROC Area Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Cross

Validation-10 folds)

203

5.10 MAE Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Cross

Validation-10 folds)

204

5.11 Average Execution Time for Classifiers Used in Task

Offloading and Resource Management (Configuration Setting:

Cross Validation-10 folds)

205

5.12 Accuracy Value for Classifiers Used in Task Offloading and

Resource Management Configuration Setting: Cross Validation-

20 folds)

207

5.13 Kappa Statistics Value for Classifiers Used in Task Offloading

and Resource Management Configuration Setting: Cross

Validation-20 folds)

208

5.14 TP Rate Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Cross

Validation-20 folds)

209

5.15 TP Rate Value for Classifiers Used in Task Offloading and

Resource Management Configuration Setting: Cross Validation-

20 folds)

210

5.16 Precision Value for Classifiers Used in Task Offloading and

Resource Management Configuration Setting: Cross Validation-

20 folds)

211

5.17 Recall Value for Classifiers Used in Task Offloading and

Resource Management Configuration Setting: Cross Validation-

20 folds)

212

5.18 F-Measure Value for Classifiers Used in Task Offloading and

Resource Management Configuration Setting: Cross Validation-

20 folds)

213

5.19 ROC Area Value for Classifiers Used in Task Offloading and

Resource Management Configuration Setting: Cross Validation-

20 folds)

214

5.20 MAE Value for Classifiers Used in Task Offloading and

Resource Management Configuration Setting: Cross Validation-

20 folds)

215

5.21 Average Execution Time for Classifiers Used in Task

Offloading and Resource Management Configuration Setting:

Cross Validation-20 folds)

216

5.22 Accuracy Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Split-33%)

218

5.23 Kappa Statistics Value for Classifiers Used in Task Offloading

and Resource Management (Configuration Setting: Split-33%)

219

5.24 TP Rate Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Split-33%)

220

5.25 FP Rate Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Split-33%)

221

5.26 Precision Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Split-33%)

222

5.27 Recall Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Split-33%)

223

5.28 F-Measure Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Split-33%)

224

5.29 ROC Area Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Split-33%)

225

5.30 MAE Value for Classifiers Used in Task Offloading and 226

Resource Management (Configuration Setting: Split-33%)

5.31 Average Execution Time for Classifiers Used in Task

Offloading and Resource Management (Configuration Setting:

Split-33%)

227

5.32 Overall Accuracy for Classifiers Used in Task Offloading and

Resource Management

229

5.33 Overall, Kappa Statistics for Classifiers Used in Task

Offloading and Resource Management

230

5.34 Overall TP Rate for Classifiers Used in Task Offloading and

Resource Management

231

5.35 Overall FP Rate for Classifiers Used in Task Offloading and

Resource Management

232

5.36 Overall Precision for Classifiers Used in Task offloading and

Resource Management

233

5.37 Overall Recall for Classifiers Used in Task Offloading and

Resource Management

234

5.38 Overall F-Measure for Classifiers Used in Task Offloading and

Resource Management

235

5.39 Overall, ROC Area for Classifiers Used in Task Offloading and

Resource Management

236

5.40 Overall, MAE for Classifiers Used in Task Offloading and

Resource Management

237

5.41 Overall Average Execution Time for Classifiers Used in Task

Offloading and Resource Management

238

LIST OF ABBRIVATIONS

ACK : Acknowledgment

AMQP : Advanced Message Queuing Protocol

ANN : Artificial Neural Networks

CCTV : Closed-Circuit Television

CoAP : Constrained Application Protocol

CON : Confirmable Message

CPU : Central Processing Unit

CSP : Cloud Service Providers

DCPS : Data-Centric Publish-Subscribe

DDS : Data Distribution Service

DLRL : Data Local Reconstruction Layer

DOTS : Dynamic Optimization of Time Sequences

EDA : Estimation of Distribution Algorithm

EDF : Earliest Deadline First

LFC : Least Slack Time

FCFS : First-Come, First-Served

FLPSO : Fuzzy Logic and Particle Swarm Optimization

FPFTS : Fuzzy-Possibilistic Fuzzy Time Series

H2H : Human-to-Human

HAN : Home-Area Network

HH : Hybrid Heuristic

HTP : Hypertext Transfer Protocol

IACO : Improved Ant Colony Optimization

ICT : Information and Communications Technology

IEEE : Institute of Electrical and Electronics Engineers

ILP : Integer Linear Programming

IoE : Internet of Energy

IoMT : Internet of Medical Things

IoP : Internet of People

IoS : Internet of Things

IP : Internet Protocol

IPSO : Improved Particle Swarm Optimization

IT : Information Technology

ITS : Intelligent Transportation System

KNN : K-Nearest Neighbor

LAN : Local Area Network

LoRaWAN : WAN Long Range Wide Area Network

LR : Logistic Regression

LWM2M : Light-Weight Machine-To-Machine Communication

M2M : Machine-to-Machine

MAPE-K : Monitor, Analyze, Plan, Execute, and Knowledge

MCC : Matthews Correlation Coefficient

MCCV : Minimum Critical-Cycle Variance

MEC : Mobile Edge Computing

MILP : Mixed Integer Linear Programming

MIPs : Million Instructions Per Seconds

ML : Machine Learning

MLP : Multilayer Perceptron

MQTT : Message Queuing Telemetry Transport

MTC : Machine Type Communication

NCA : Network Computing and Applications

NFC : Near Field Communication

NFV : Network Function Virtualization

NLP : Natural Language Processing

NON : Non-confirmable

PERA : Packetized Ensemble Resource Allocation

PRC : Precision-Recall Curve

PTPN : Preemptive Task Priority Network

PTZ : Pan-Tilt-Zoom

QoS : Quality of Service

RFID : Radio Frequency Identification

RR : Round Robin

RST : Representational State Transfer

SC : Smart Cities

SDN : Software-Defined Networking

SEM : Structural Equation Modelling

SG : Smart Grid

SIoT : Social Internet of Things

SJF : Shortest Job First

SLAs : Service Level Agreements

SLR : Systematic Literature Review

SVM : Support Vector Machine

TCP/ IP : Transmission Control Protocol and Internet Protocol

TIPS : Time-Invariant Power Scheduling

TLS : Transport Layer Security

TN : True Negative

TP : True Positive

UDP : User Datagram Protocol

URL : Uniform Resource Locator

Wi-Fi : Wireless Fidelity

WRR : Weighted Round Robin

WSN : Wireless Sensor Networks

XMPP : Extensible Messaging and Presence Protocol

1.1 Fog Computing

1.2 Fog Computing Architecture

1.3 Issues Related to Fog Computing

 1.3.1 Privacy

 1.3.2 Network Security

 1.3.3 Network Management

 1.3.4 Placement of Fog Servers

 1.3.5 Delay in Computing

 1.3.6 Energy Consumption

1.4 IoT-Based Architectures and Protocols

 1.4.1 Three and Five-Layer Architectures

 1.4.2 IoT Device Connectivity: Architectures and Protocols

 1.4.3 IoT Protocol Architecture

 1.4.4 Layer IoT Architecture

 1.4.5 Five-Layer IoT Architecture

 1.4.6 Types of IoT Connections

1.5 Cloud And Fog Based Architectures

1.6 Social IoT

1.7 Implication of Fog Computing

1.8 Fog Computing Task Scheduling

 1.8.1 Static Scheduling Strategy

 1.8.2 Dynamic task scheduling methods

 1.8.3 Hybrid task scheduling methods

1.9 Fog Computing Challenges

 1.9.1 Drones

 1.9.2 Machine learning

 1.9.3 Security and Privacy

 1.9.4 Autonomic Fog Management and Connectivity

Chapter-1
Introduction

2

1.10 Machine Learning Algorithms

 1.10.1 Naive Bayes

 1.10.2 Logistic Regression

 1.10.3 Sequential minimal optimization

 1.10.4 Instance-Based Learner

 1.10.5 K-Star

 1.10.6 Multi-Class Classifier

 1.10.7 Random Forest

 1.10.8 Random Tree

 1.10.9 MLP Multi-layer Perceptron

 1.10.10 k-Nearest Neighbor

 1.10.11 Supervised

 1.10.12 Unsupervised

 1.10.13 Semi-Supervised

1.11 Fog Computing Real-Time Applications

 1.11.1 Mobile Big Data Analytics

 1.11.2 Dams Safety

 1.11.3 Smart Utility Service

 1.11.4 Health Data

 1.11.5 Smart Cities

 1.11.6 Tele-surveillance

3

To improve services and quality of life for citizens and visitors, several cities have

recently made progress toward becoming smart cities. These cities now have

improved resource utilization, increased environmental protection, enhanced

infrastructure operations and maintenance, and robust safety and security measures.

To improve services and performance in their various sectors, smart cities rely on

implementing new and existing technologies and various optimization techniques.

The IoT1, FOG computing and cloud computing are a few of the technologies

assisting smart city applications. These three can be combined into one system, an

integrated IoT-Fog-Cloud system, to create a sophisticated platform for creating and

managing various kinds of smart city applications. With the help of this platform,

applications will be able to deliver the best functionality and performance possible by

utilizing the best features of IoT gadgets, FOG nodes, and cloud services. Numerous

opportunities for improving and optimizing applications in the fields of energy,

transportation, healthcare, and other industries will be presented by the use of this

strong platform. The improvised SMART FOG system design would be the main

focus of this research project.

1.1 Fog Computing

Fog computing is referred to as a distributed computing paradigm that essentially

extends the cloud's services to the network's edge. According to Cisco, Fog

computing is a continuation of the cloud computing paradigm from the network's core

to its edges. It makes networking, computing, and storage between end devices and

conventional cloud servers easier. Fog computing uses both the cloud and the edge

devices that are situated between end devices and cloud servers to run applications

rather than only using the cloud for this purpose. Edge and cloud computing are both

benefits of fog computing. While making use of edge devices' proximity to the

endpoints, it also uses the cloud's on-demand scalability.

By effectively exploiting the resources present at the edge nodes to do partial

computing and by performing filtering operations in the nodes, it essentially lessens

the strain on the cloud server. Fog computing is typically confused with two ideas in

particular. Mobile Edge Computing and Mobile Cloud Computing are these ideas.

1Internet of Things

4

MCC2 essentially contends that data processing and storage are carried out on a cloud,

away from mobile devices. As a result, it transfers data and processing power from

individual mobile devices to the cloud. MEC3 is a network architecture concept that

extends cloud computing capabilities to the edge of the network. It brings

computation, storage, and networking resources closer to the end-user or device,

reducing latency and improving overall system performance. MEC enables the

execution of applications and services at the edge of the network, closer to where the

data is generated and consumed. A cloudlet, on the other hand, is a concept related to

edge computing and MEC. It refers to a small-scale data center or server cluster

deployed at the edge of the network, typically near mobile devices or end-users.

Cloudlets provide computational resources and services to nearby devices, offering

low-latency access to data and applications.

In comparison, MEC is a broader term that encompasses the concept of cloudlets.

MEC involves deploying computing capabilities at various points in the network, such

as base stations, access points, or edge routers, whereas a cloudlet specifically refers

to a small-scale server cluster. Cloudlets are one implementation of MEC, but MEC

can also involve distributed edge computing without using dedicated cloudlet

infrastructure. It may be viewed as a more focused version of the cloud computing

concept. It resembles a cloud server that is situated at the edge of a mobile network.

Fog computing combines these two ideas with some of its characteristics to increase

its dependability and utility.

1.2 Fog Computing Architecture

The bandwidth, particularly on cellular networks, is a significant issue with cloud

computing. As the IoT grows and more physical devices are wirelessly connected, the

issue will only become worse. This issue is resolved by Fog computing, which stores

data locally on computers and other gadgets known as fog nodes. Any device having

computation, storage, and network connection, such as handheld devices, tablets, PCs,

routers, etc., can be used as a fog node.

2Mobile Cloud Computing
3Mobile Edge Computing

5

Figure 1.1: Fog Computing Architecture (Lai, 2021)

Figure 1.1 shows Fog-based architecture, fog nodes, also known as edge devices or

fog devices, are distributed throughout the network, closer to the data sources and

end-users. These fog nodes can be various devices such as routers, switches, access

points, edge servers, IoT devices, or other computing resources. The architecture

extends the capabilities of cloud computing by providing localized data processing,

storage, and analytics at the edge of the network. These fog nodes are controlled by

the Fog Data Service, which performs a variety of functions like data reduction, data

virtualization, data control and security, and edge analytics. Additionally, data might

be uploaded to the cloud for long-term analyses.

Kopras (2023) discussed that the widely adopted cloud computing paradigm is

evolving with the integration of fog computing, placing computing nodes in closer

proximity to end-users to meet stringent latency requirements. However, effective

task offloading, considering transmission and computation energy consumption, poses

challenges. Task allocation becomes intricate due to the multitude of arriving tasks

with diverse computational, communication, and delay requirements, alongside a

variety of computing nodes with differing capabilities. The research work introduces

an optimal task allocation procedure aimed at minimizing energy consumption for

6

wirelessly connected users in a network comprising Fog Nodes located at Access

Points and Cloud Nodes. The assignment of Access Points and computing nodes to

offloaded tasks, along with Fog Node operating frequencies, is optimized using a

Mixed-Integer Nonlinear Programming approach. Realistic energy consumption and

delay models, along with their pertinent parameters reflecting device characteristics,

are employed. Results indicate the profitability of distributing task processing among

multiple Fog Nodes and the cloud, often selecting distinct nodes for transmission and

computation. The proposed algorithm demonstrates superior performance, achieving

the lowest energy consumption and task rejection rate compared to alternative

allocation strategies. Additionally, a heuristic algorithm is presented, decoupling

wireless transmission optimization from implemented computations and wired

transmission, providing optimal or near-optimal solutions across various scenarios.

1.3 Issues Related to Fog Computing

Cloud computing is expanded by Fog computing, which also affects IoT. These

gadgets, also known as fog nodes, can be set up anywhere there is a network

connection. Fog computing provides extra storage capabilities at the periphery to

handle the demands. As a result, the Fog server must modify its services, which

increases administration and maintenance expenses. The operator must also deal with

the following problems.

1.3.1 Privacy

Because wireless dominates fog computing, network privacy is a major challenge.

The network operator manually creates settings, deploys fog nodes at the edge of the

internet, and incurs significant maintenance costs. The exposure of personal

information when utilizing networks is receiving more attention. The Fog nodes have

easier access to the end consumers. Because of this, Fog nodes gather more sensitive

data than faraway clouds. To address these problems, encryption techniques like

HAN4 might be applied.

4Home-Area Network

7

1.3.2 Network Security

Fog networks may be vulnerable to various network-level attacks, such as Denial of

Service, Man-in-the-Middle, or network sniffing attacks. It is crucial to implement

robust network security measures, including firewalls, intrusion detection systems,

and secure communication protocols, to detect and prevent these attacks and protect

the integrity and availability of the network. Fog nodes and IoT devices connected to

the fog network can be targets for exploitation and compromise. Weak device

security, such as default or easily guessable passwords, outdated firmware, or

unresolved vulnerabilities, can lead to unauthorized access and control. Implementing

secure device configurations, regular security updates, and strong security policies can

mitigate these risks.

1.3.3 Network Management

Network management in Fog computing refers to the processes, tools, and strategies

used to efficiently control, monitor, and maintain the network infrastructure and

devices in a fog computing environment. Fog computing introduces additional

complexity to network management due to the distributed nature of the architecture

and the heterogeneity of devices involved. Efficient network management in fog

computing is crucial to ensure the reliable and secure operation of the fog network. It

involves continuous monitoring, optimization of network performance, resource

allocation, configuration management, fault handling, and security measures to

maintain a robust and scalable fog computing environment. Fog computing

environments require continuous monitoring of network performance to ensure

efficient and reliable service delivery.

Network administrators need to monitor network traffic, latency, bandwidth

utilization, and other performance metrics to identify bottlenecks, congestion, or

potential issues that could impact the quality of service. Real-time monitoring tools

and analytics are employed to proactively manage and optimize network performance.

If SDN5 and NFV6 approaches SD are not used, controlling the network, the fog

nodes, and the connections between each node would be difficult when linked to

heterogeneous devices.

5 Software-Defined Networking
6 Network Function Virtualization

8

1.3.4 Placement of Fog Servers

The placement of fog servers requires careful consideration to ensure optimal

performance and cost-effectiveness for the area. One approach to reducing

maintenance costs is to thoroughly assess the capabilities and workload of each server

node before deployment. Before deploying fog servers, a comprehensive analysis

should be conducted to understand the specific needs and requirements of the area.

This analysis can involve evaluating factors such as network traffic patterns, latency

requirements, data processing demands, and the distribution of edge devices. By

examining the workload completed by each server node, it becomes possible to

identify the areas where fog servers would be most beneficial. This assessment helps

in determining the optimal placement of Fog servers, ensuring that they are

strategically located to reduce latency and efficiently process data closer to the source.

Additionally, considering the proximity of Fog servers to edge devices can help

minimize data transmission delays and enhance real-time processing capabilities.

Placing Fog servers near areas with high concentrations of edge devices can improve

response times and reduce network congestion. Furthermore, it is essential to assess

the scalability and flexibility of Fog server deployments. As the needs of the area

evolve, Fog servers should be easily adjustable and expandable to accommodate

changing demands.

Effective placement of fog servers involves analyzing the workload of server nodes,

considering network traffic patterns, optimizing proximity to edge devices, and

ensuring scalability. By carefully considering these factors, it is possible to deploy fog

servers in a manner that meets the needs of the area while minimizing maintenance

costs.

1.3.5 Delay in Computing

Delays in computing can have significant impacts on the efficiency and performance

of various services and applications that rely on data processing. One of the primary

reasons for delays is the aggregation of data. When data from multiple sources is

collected and combined for processing, it may take time to complete the aggregation

process, leading to delays in computing. Additionally, resource overuse can

exacerbate the delay issue. Fog servers, which are responsible for processing data

locally, may become overloaded with tasks, leading to slower processing times. This

9

resource constraint can hinder the effectiveness of Fog computing services, making

them less responsive and efficient. To address these challenges and reduce delays in

computing, it is essential to implement efficient data aggregation techniques. Data

should be aggregated in a manner that minimizes processing time while ensuring the

accuracy and integrity of the information. This involves optimizing algorithms and

strategies for data aggregation to achieve faster processing.

Furthermore, Fog nodes, which are distributed computing resources, should be

carefully managed to avoid resource overuse. Scheduling algorithms that prioritize

critical tasks and consider the mobility of Fog nodes can help distribute the processing

load more effectively. By using a priority and mobility paradigm in scheduling, fog

nodes can be dynamically allocated based on their availability and proximity to data

sources, reducing delays and improving overall performance. Moreover, optimizing

the communication and networking infrastructure between fog nodes and data sources

is crucial. Efficient data transmission protocols and network configurations can

minimize latency and ensure timely data delivery to Fog servers for processing.

Overall, addressing the delay in computing in fog environments requires a

comprehensive approach that involves optimizing data aggregation, managing

resources effectively, and improving communication infrastructure. By doing so, Fog

computing services can offer faster and more responsive data processing, enhancing

the overall user experience and system performance.

1.3.6 Energy Consumption

In Fog computing settings where multiple fog nodes are used, the distribution of

computing tasks can result in increased energy consumption. To address this issue,

reducing energy usage becomes crucial. This can be achieved through various

strategies, such as employing energy-efficient hardware components, implementing

dynamic resource allocation techniques, utilizing sleep mode and power management

features, adopting energy-aware task scheduling algorithms, implementing data

compression and aggregation methods, monitoring energy consumption, and

exploring the integration of renewable energy sources. By implementing these

measures, fog computing environments can minimize energy consumption, improve

sustainability, and reduce long-term energy costs.

10

Fog computing, while offering numerous benefits, faces challenges in terms of

network security, privacy, interoperability, resource management, and scalability.

Network security and privacy concerns arise due to the distributed nature of fog

computing, necessitating robust security mechanisms and encryption techniques to

protect sensitive data. The heterogeneity of Fog nodes and edge devices poses

interoperability challenges, requiring standardization efforts and protocols for

seamless communication and device management. Resource management and load

balancing become complex with increasing numbers of devices and applications,

necessitating dynamic resource provisioning and monitoring. Additionally, scalability

becomes crucial to handle the growing demands of Fog computing, requiring scalable

architectures and mechanisms for efficient resource allocation. Addressing these

issues through effective security measures, interoperability standards, resource

management techniques, and scalable architectures is essential for the successful

implementation and operation of Fog computing systems.

Fog computing offers substantial benefits but also faces several issues. Security is a

paramount concern as distributing computing resources closer to the edge increases

the attack surface. Interoperability challenges persist among diverse IoT devices and

fog nodes, hindering seamless data exchange. Resource allocation and load balancing

are complex due to dynamic workloads. Privacy issues arise from the vast data

generated and processed at the edge. Standardization efforts, security protocols, and

robust management systems are crucial to address these challenges and unlock the full

potential of fog computing, ensuring it can efficiently support IoT applications while

safeguarding data and systems.

1.4 IoT-Based Architectures and Protocols

IoT-based architectures and protocols are essential components that enable the

seamless integration and communication of various devices and systems in the IoT

ecosystem. These architectures and protocols play a crucial role in ensuring efficient

data exchange, interoperability, and security in IoT applications.

1.4.1 Three and Five-Layer Architectures

The IoT is a transformative concept that envisions a network of interconnected

devices, sensors, and systems communicating and exchanging data to provide

innovative services and valuable insights. In the realm of IoT architecture, two

11

common frameworks are the Three-Layer Architecture and the Five-Layer

Architecture. Accordingly, Figure 1.2 shows Three-Layer Architecture comprises the

Perception Layer, where data is collected from IoT devices and sensors; the Network

Layer, responsible for facilitating communication between devices and data

processing systems; and the Application Layer, where data is processed and

transformed into meaningful insights. On the other hand, the Five-Layer Architecture

presents a more comprehensive model with the addition of the Middleware Layer,

which acts as an intermediary for data normalization and transformation, and the

Business Layer, where business logic and decision-making occur based on insights

generated from the Application Layer. Both architectures play a crucial role in

organizing the flow of data and services within the IoT ecosystem, catering to diverse

use cases and providing a structured framework for the successful implementation of

IoT solutions. The choice between these architectures depends on the specific

requirements and complexity of the IoT application at hand. Three-layer design was

first used in the early stages of this field of study. The perception, network, and

application layers are its three layers.

The physical layer, which has sensors for sensing and gathering environmental data, is

the perception layer. It detects certain physical parameters or locates other intelligent

objects in the surrounding area. The network layer is in charge of establishing

connections with other intelligent objects, network components, and servers.

Additionally, it uses its characteristics to communicate and interpret sensor data.

The Application layer, delivering application-specific services to the user is the

responsibility of the application layer. It describes a variety of uses for the IoT,

including smart homes, smart cities, and smart health. The three-layer design

encapsulates the core concept of the IoT, however research on IoT frequently focuses

on its more intricate details, therefore it is insufficient. Because of this, the literature

has suggested a lot more layered structures. The first is the five-layer architecture,

which also has layers for processing and business. Perception, transport, processing,

application, and business layers make up the five layers as shown in Figure 1.2, The

perception and application layers play the same role as in a three-layer design.

12

Figure 1.2: Three(A) and Five-Layer(B) Architectures (Lai, 2021)

The Transport layer, through networks including WiFi7, 3G8, LAN9, Bluetooth,

RFID10, and NFC11, the transport layer moves sensor data from the perception layer to

the processing layer and back again. The processing layer, also known as the

middleware layer, plays a crucial role in a fog computing architecture. This layer

receives a substantial volume of data from the transport layer and performs various

tasks such as processing, storing, and analyzing it. It possesses the capability to

handle and provide a diverse range of services to the lower tiers. The processing layer

leverages different technologies, including modules for big data processing, cloud

computing infrastructure, and databases. By utilizing these technologies, the

processing layer enhances the overall functionality and performance of the fog

computing system. The business layer oversees the whole IoT system, including all

applications, revenue streams, and user privacy.

IoT-based architectures and protocols are pivotal in enabling the seamless operation

of interconnected devices and systems. These frameworks, including restful APIs,

7Wireless Fidelity
83rd Generation
9Local Area Network
10Radio Frequency Identification
11Near Field Communication

Application Layer

Business Layer

Network Layer

Perception Layer

Application Layer

Processing Layer

Transport Layer

Perception Layer

A B

13

MQTT, and CoAP, facilitate efficient communication and data exchange. They play a

crucial role in building scalable, interoperable, and secure IoT ecosystems. Selecting

the appropriate architecture and protocol depends on specific use cases, emphasizing

the need for careful consideration in implementing IoT solutions that align with

performance, scalability, and security requirements.

1.4.2 IoT Device Connectivity: Architectures and Protocols

The IoT is only able to function properly and transfer data when all of the connected

devices are online and securely linked to a communications network. Standards and

protocols for the IoT start to become relevant here. Both IP and non-IP networks can

be used to link devices that are part of the IoT. IP network connections are highly

complicated and need an increase in memory as well as power from the IoT devices;

nevertheless, range is not an issue. On the other hand, non-IP networks have a range

constraint and need a far lower amount of power and memory than IP networks do.

1.4.3 IoT Protocol Architecture

The architecture of the IoT is dependent on the functioning and execution of its

components in various industries. The IoT is constructed on top of a fundamental

process flow, which has two main architectures: a 3-layer architecture and a 5-layer

architecture.

1.4.4 Layer IoT Architecture

The most fundamental architecture consists of three distinct layers. It is composed of

three layers: the perception layer, the network layer, and the application layer

respectively. The physical layer is known as the perception layer, and it is comprised

of all of the intelligent sensor-based devices that collect data from their surrounding

environment.

The network layer is in charge of establishing connections between the many devices

and applications that make up the IoT ecosystem. It is comprised of all of the wireless

and wired communication technologies that are currently available. After that, the

data is sent to the application layer for processing.

14

It is the responsibility of the application layer to provide the user with services that

are unique to the program. It describes a variety of applications that may be used to

implement IoT, including smart homes, smart cities, and health care.

1.4.5 Five-Layer IoT Architecture

The three-layer design has been expanded into a five-layer architecture figure 1.3

shows this by adding two more layers, the processing layer, and the business layer

respectively. In the 5-layer design, the perception and application layers function in a

manner that is analogous to the 3-layer architecture. Networking technologies such as

WiFi, Bluetooth, 3G, RFID, and NFC are utilized by the transport layer to convey the

sensor data from the perception layer to the processing layer and vice versa. The

processing layer, also known as the middleware layer, is responsible for storing,

analyzing, and processing large amounts of data delivered by the transport layer. This

layer uses a wide variety of technologies, including databases, cloud computing, and

Big Data processing modules. The whole IoT system, including apps, companies, and

the privacy of individual users, is managed by the business layer.

Figure 1.3: IoT Architecture (Lai, 2021)

The Transport layer, through networks including WiFi, 3G, LAN , Bluetooth, RFID,

and NFC, the transport layer moves sensor data from the perception layer to the

processing layer and back again. IoT architecture can be centralized or decentralized,

15

depending on the application requirements and scale. The design of the architecture

needs to consider scalability, interoperability, data integrity, and energy efficiency to

create a robust and reliable IoT ecosystem that can support a wide range of

applications and services.

1.4.6 Types of IoT Connections

When it comes to data communication, an IoT system utilizes one of four distinct

types of transmission channels. Device-to-device communication, often known as

D2D12 communication enables devices that are physically adjacent to one another to

talk to one another via wireless protocols such as Bluetooth, ZigBee, or Z-Wave. By

the use of a D2D connection, it is possible to create a link even in the absence of a

network in Figure 1.4.

Figure 1.4: Types of IoT Connections (Adel, 2020)

The deployment of an intermediate platform enables communication to occur between

devices and gateways at each stage of the network. The majority of the time, gateways

are employed for two distinct functions: first, to collect data from sensors and transmit

it to the appropriate data system; and second, to evaluate data and transmit it back to

the device if any problems are discovered while the data is being analyzed. Both of

these functions are essential to the operation of a gateway.

12Device-to-Device

16

When someone refers to “gateway-to-data systems communication,” they are

referring to the process in which data is sent from a gateway to the appropriate data

system. Communication between the many different data systems might take place

either within a data center or within the cloud itself. For this sort of connection, the

protocols need to be easy to put into action and uncomplicated to include programs

that are already in existence. They are required to have high availability, appropriate

capacity, and trustworthy disaster recovery capabilities.

Figure 1.5: Publish / Subscribe Architecture (Ansari, 2018)

Figure 1.5 shows MQTT13 Publish / Subscribe Architecture there are two types of IoT

protocols: Protocols for the network layer: and IoT network protocols that link

devices requiring medium to high amounts of electricity to the network. With this

protocol, it is possible to communicate data from one end of the network to the other

within the network. A few of the most common network protocols for the IoT are

HTTP14, LoRaWAN15, Bluetooth, and Zigbee.

Data protocols for the IoT: Data protocols for the IoT link low-power IoT devices.

These protocols are capable of providing end-to-end communication with the

hardware even in the absence of any Internet connection. Connection in the data

protocols of the IoT can be accomplished by either a wired or cellular network.

MQTT, CoAP16, AMQP17, XMPP18, DDS19 are some common IoT data protocols.

13 Message Queuing Telemetry Transport
14 Hypertext Transfer Protocol
15 Long Range Wide Area Network
16 Constrained Application Protocol
17 Advanced Message Queuing Protocol
18 Extensible Messaging and Presence Protocol
19 Data Distribution Service

17

IoT protocols and network standards: There is a wide variety of IoT protocols

available to cater to a variety of applications and needs. Yet, each has its own set of

benefits and drawbacks for a variety of IoT use cases. This research work will go

through some of the IoT protocols that are the most popular overall.

1.5 Cloud and Fog-Based Architectures

Recently, there has been a shift toward fog computing, a system architecture in which

network gateways and sensors perform some of the data processing and analytics.

Cloud and fog-based architectures are fundamental paradigms in modern computing.

Cloud computing involves centralized data processing in remote data centers, while

fog computing disperses computing resources to the edge of the network. Both play

key roles in supporting a wide range of applications, balancing data processing, and

enabling scalability in an increasingly interconnected world.

Cloud and Fog computing architectures are advanced paradigms for distributed

computing. Cloud computing typically involves centralized data centers for resource-

intensive tasks, while Fog computing extends this concept to the edge of the network,

closer to end-users and devices. Both offer unique advantages.

Cloud computing provides scalability, cost-efficiency, and vast resources for data

processing and storage. Fog computing complements this by enabling low-latency,

real-time processing and reducing network congestion, making it ideal for

applications like IoT and autonomous vehicles. These architectures also foster data

security and privacy concerns, which require careful management. Recent research

delves into optimizing the integration of Cloud and Fog, ensuring seamless

coordination between central and edge resources. This involves developing efficient

data transfer, task offloading, and orchestration techniques. Additionally, AI and

machine learning are integrated to enhance decision-making processes in these

architectures, paving the way for more intelligent, context-aware applications in

diverse domains like healthcare, smart cities, and Industry 4.0.

18

Figure 1.6: Cloud and Fog-Based Architectures (Gupta, 2016)

Figure 1.6 shows illustrate Fog architecture’s tiered approach, inserting security,

monitoring, and pre-processing layers between the physical and transport levels.

Power, resources, and services are all tracked by the monitoring layer. Filtering,

processing, and analytics of sensor data are carried out by the pre-processing layer.

Data replication, dissemination, and storage are just a few of the storage capabilities

offered by the temporary storage layer. The security layer also assures data integrity

and privacy and performs encryption and decryption. On the network’s edge,

monitoring and pre-processing are carried out before data is sent to the cloud. The

temporary storage layer in fog computing provides various storage capabilities,

including data replication, dissemination, and storage. It serves as a crucial

component for managing data within the fog environment. Additionally, the security

layer plays a vital role in ensuring data integrity and privacy. It performs encryption

and decryption operations to safeguard sensitive information.

Cloud and Fog-based architectures offer versatile solutions for diverse computing

needs. Cloud provides centralized, scalable, and reliable data processing, while fog

extends computing to the network edge, reducing latency.

19

1.6 Social IoT

SIoT20 evaluate social interactions between objects in the same manner that social

relationships between people are considered. SIoT represents the integration of IoT

technology with social networks and human interactions. It enables smart devices to

collect and share data, enhancing user experiences, enabling collaborative decision-

making, and fostering a deeper connection between the physical and digital worlds

through social engagement and data sharing. The three basic components of a SIoT

system are as follows:

• One can navigate the SIoT. We can begin with a single device and browse all

of the devices that are linked to it. New devices are simple to find,

and services utilize an IoT social network like this.

• There is a requirement for reliability between gadgets

• To analyse the social networks of IoT devices, we can use models similar to

those used for researching human social networks.

SIoT refers to the integration of social networking principles and techniques into the

IoT paradigm. It combines the power of social interactions and networked devices to

enhance communication, collaboration, and information sharing among IoT devices

and users.

20Social Internet of Things.

20

 Figure 1.7: IOT & FOG Computing (Gupta, 2016)

In SIoT, devices are considered social entities, and relationships between devices are

established based on trust, reputation, and user preferences. This social aspect

enables devices to interact and collaborate in a more intelligent and context-aware

manner. SIoT offers several benefits. It enables efficient device discovery, where

devices can be easily found and connected based on their social relationships. It

promotes information sharing and collaborative decision-making among devices,

leading to improved efficiency and productivity. Additionally, it enhances user

experience by providing personalized and socially influenced services. However,

SIoT also presents challenges such as security and privacy concerns, managing

complex social networks of devices, and developing appropriate social networking

models for IoT environments. Overall, the integration of social aspects into the IoT

ecosystem through SIoT has the potential to revolutionize the way devices interact,

collaborate, and share information, paving the way for more intelligent and socially

aware IoT applications in Figure 1.7.

21

Social IoT bridges the gap between the physical and digital realms by connecting

IoT devices with social interactions. It transforms data sharing, fosters collaborative

decision-making, and enriches user experiences. By integrating technology with

human connections, Social IoT has the potential to drive innovation, improve

communication, and create more personalized and interconnected digital

ecosystems.

1.7 Implication of Fog Computing

Fog Computing is a promising paradigm that complements cloud computing by

extending computing and storage capabilities to the network edge. This

methodology focuses on leveraging fog computing to enhance the infrastructure of a

smart city. Smart cities are urban environments that integrate information and

communication technologies to optimize the efficiency of various systems, such as

transportation, energy, waste management, and public services. By utilizing

advanced technologies and data analytics, smart cities aim to improve the quality of

life for citizens, enhance sustainability, and enable better resource management.

The smart city concept opens up a new area to explore and It also brings new

challenges to implement and design it as a sustainable solution. The smart city has

great potential for economic growth and lifting the quality of life in cities. As

increasing numbers of citizens migrate to cities, the demand for services and

resources continues to increase. The World Bank predicts that over the next two

decades, India’s urban population will more than double to 33 % of the total

population. The emerging IoT introduces many challenges that cannot be handled by

today’s cloud computing. In this research work, we deal with the IoT Environment

features like low latency, high distribution, large-scale sensor network, mobility

support, and device heterogeneity. This proposed SMART FOG system allows us to

create a collaborative environment for IoT networks. In the proposed system, we are

going to implement a SMART FOG protocol-based technique which will allow Fog

nodes to share computing and storage power to IoT devices that have low

computational power within IoT network. The proposed system will be able to

schedule the tasks assigned to fog node for easy processing and efficient resource

management. The proposed work is focused on creating a resilient environment

using SMART FOG which will create trust in fog computing. As fog computing is

22

in its infancy, there are still many open challenges present. The SMART FOG will

create trust between fog clients and fog environment by providing fault-tolerant and

secure techniques for fog computing. This research will identify some of these

challenges and try to find the solution in proposed system.

Fog computing has attracted by huge number of researchers, so it is a trending topic

for research. The literature study motivates research in Fog Computing by

introducing a bright future and application of it. The researchers stated that Fog

Computing will the how today’s IoT and cloud computing are working. The

researchers also stated the challenges to be faced in the implementation of Fog

Computing in real-life applications. Currently, researchers are working on the

implementation of fog for commercial applications. The challenge for further studies

and solutions from experts is that we need to keep ourselves updated for online

publications and updates from OpenFog consortium related to Fog Computing.

According to author Sheikh (2023), Fog Computing's dynamic nature demands

innovative solutions for effective task scheduling. Integrating K-Means clustering

with fuzzy logic, addresses Fog's resource constraints, offering adaptability in task

allocation. Leveraging machine learning, our methodology optimizes execution

time, response time, and network usage by intelligently assigning tasks to Fog

nodes.

1.8 Fog Computing Task Scheduling

Fog computing task scheduling refers to the process of efficiently allocating

computational tasks to fog nodes in a fog computing environment. It plays a crucial

role in optimizing resource utilization, reducing latency, and improving overall

system performance. Task scheduling in fog computing involves determining which

tasks should be executed, where they should be executed, and when they should be

executed. This decision-making process takes into account various factors such as

the computational requirements of tasks, the availability and capabilities of fog

nodes, network conditions, and user requirements. Efficient fog task scheduling

involves several considerations. These include load balancing, where tasks are

evenly distributed among fog nodes to avoid overloading or underutilization of

resources.

23

Proximity-aware scheduling considers the geographic proximity of fog nodes to

edge devices to minimize communication delays and improve real-time processing

capabilities. Furthermore, energy-aware task scheduling focuses on optimizing

energy consumption by intelligently allocating tasks to energy-efficient fog nodes or

selectively activating certain nodes based on workload requirements.

Deadline-aware scheduling ensures that tasks with time constraints are scheduled

promptly, meeting their deadlines. Various scheduling algorithms and techniques are

employed in fog computing, such as heuristic-based algorithms, optimization

algorithms, and machine learning-based approaches. These algorithms aim to

balance the trade-offs between task performance, resource utilization, energy

efficiency, and other system objectives.

The study by Aimal (2022) addresses the challenges posed by traditional task

scheduling methods in Fog computing for latency-critical applications. By

introducing the "Critical Task First Scheduler", which prioritizes tasks based on

their nature, particularly focusing on critical tasks with larger MIPs21 sizes, the

proposed methodology aims to reduce latency, energy consumption, and network

utilization. Implemented in a healthcare scenario using the Fog simulator, the

Critical task First Scheduler, scheduler demonstrates superior performance

compared to First Come First Served, Shortest Job First, and cloud-only approaches.

Simulation results highlight the efficacy of the Critical task First Scheduler approach

in enhancing latency, energy efficiency, and network utilization for critical tasks

21 Million Instructions Per Seconds

24

Figure 1.8: Fog Computing Task Scheduling (Alizadeh, 2020)

Figure 1.8 shows the following categories can be used to categorize task scheduling

techniques in a fog computing environment are as follows:

• Static task scheduling methods

• Dynamic task scheduling methods

• Hybrid task scheduling methods

25

Overall, fog computing task scheduling plays a critical role in achieving efficient

and effective utilization of fog resources. By carefully managing task allocation and

considering various factors, fog computing systems can provide low-latency,

energy-efficient, and responsive services to edge devices, enabling a wide range of

applications in areas such as IoT, real-time analytics, and edge computing.

1.8.1 Static Scheduling Strategy

The task requirements must be available to the task scheduler before the initial

cutting scheduling strategy for static task scheduling approaches to work. Before

beginning any scheduling procedure, the task scheduler calculates the needs for each

job. In this case, the tasks are sent to the system without regard to the availability of

computing resources or the statuses of those resources. The First Come First Serve

scheduling approach and the round-robin method are the two most popular task-

scheduling techniques in this category. There is different static scheduling strategies

as follows:

First Come First Served Method

The First Come First Serve CPU scheduling algorithm processes jobs in the order

that they arrive in the ready queue. Newly arrived processes are added to the tail of

the FIFO queue. The first process in the queue is scheduled first and removed from

the queue.

Max Min Method

Performs a linear transformation on the original data. This technique gets all the

scaled data in the range (0,1). The formula to achieve this is that Min-max

normalization preserves the relationships among the original data values.

Minimum Completion Time Method

This algorithm locates the task with minimum execution time and allocates the task

to the resource on a first come first served basis. Severe load imbalance is the major

issue in this algorithm. It does not consider the resource availability and its load.

26

Opportunistic Load Balancing Method

Is a static load balancing algorithm. OLB keeps all nodes busy, so don't think about

previous loads. However, OLB22 does not consider the execution time of the task on

this node.

Round Robin Method

 reduce a multi-class problem to multiple two-class problems by learning one

classifier for each pair of classes, using only training examples for these two classes,

and ignoring all others

Figure 1.9 shows static task scheduling approaches, the task requirements must be

known to the task scheduler before initiating any scheduling strategy. The scheduler

calculates the resource needs for each job before the scheduling process begins.

Consequently, tasks are sent to the system without considering the availability or

status of computing resources. Within this category, several task-scheduling

techniques are commonly employed.

Figure 1.9: Static Scheduling Strategy (Alizadeh, 2020)

One such method is the First Come First Served approach, where tasks are executed

in the order they arrive, with no consideration for their resource requirements or

priorities. Another technique is the round-robin method, which assigns each task a

fixed time slice for execution in a cyclic manner, regardless of their resource needs.

Additionally, there are other methods like the Max-Min Method, which allocates

resources to tasks based on maximum possible resource utilization, and the Min-Min

Method, which focuses on minimizing the completion time of the smallest tasks.

22 Opportunistic load balancing

27

Furthermore, the Minimum Completion Time Method prioritizes tasks with the

shortest expected completion times, and the Opportunistic Load Balancing Method

dynamically allocates resources based on real-time availability and task demands.

Each method has its advantages and limitations, and the choice of a specific task

scheduling technique depends on the nature of the tasks, the system's resource

capabilities, and the desired performance objectives.

1.8.2 Dynamic Task Scheduling Methods

Based on the task's arrival at a specific time and the status of the system machine,

dynamic scheduling methods are created. These techniques might take into account

a single task at a time or several tasks at once.

Cross Entropy

Cross-entropy, also known as logarithmic loss or log loss, is a popular loss function

used in machine learning to measure the performance of a classification model.

Namely, it measures the difference between the discovered probability distribution

of a classification model and the predicted values. As per-word cross-entropy is the

average number of bits required per word, which has the advantage that you can

interpret it without knowing. randomly. Perplexity is closely related to per-word

cross-entropy; it just undoes the log. One advantage is that you can interpret it

without knowing the base of the log.

Genetic Algorithm

The genetic algorithm is a method for solving both constrained and unconstrained

optimization problems that are based on natural selection, the process that drives

biological evolution. The genetic algorithm repeatedly modifies a population of

individual solutions. In computer science and operations research, a genetic

algorithm GA is a metaheuristic inspired by the process of natural selection that

belongs to the larger class of evolutionary algorithms EA. Genetic algorithms are

commonly used to generate high-quality solutions to optimization and search

problems by relying on biologically inspired operators such as mutation, crossover,

and selection. Some examples of GA applications include optimizing decision trees

for better performance, solving sudoku puzzles, hyperparameter optimization, causal

inference, etc.

28

Immune Algorithm

The immune algorithm is a new optimization algorithm imitating the immune

system to solve the multimodal function optimization problem. This paper offers a

newly modified immune algorithm based on several former immune algorithms and

shows its ability to solve the multimodal function optimization problem. A digital

immune system is a software development practice for safeguarding applications

and services from software bugs and security flaws.

Particle Swarm Optimization

An iterative optimization technique that was inspired by the behavior of social

animals such as birds or fish. It involves a group of particles, or agents, that move

through a search space and try to find the optimal solution to a given problem. In

computational science, particle swarm optimization (PSO) is a computational

method that optimizes a problem by iteratively trying to improve a candidate

solution concerning a given measure of quality.

Ant Colony Optimization

In computer science and operations research, the ant colony optimization algorithm

is a probabilistic technique for solving computational problems that can be reduced

to finding good paths through graphs. Artificial ants stand for multi-agent methods

inspired by the behavior of real ants. The pheromone-based communication of

biological ants is often the predominant paradigm used. Combinations of artificial

ants and local search algorithms have become a method of choice for numerous

optimization tasks involving some sort of graph.

Figure 1.10: Dynamic Task Scheduling (Alizadeh, 2020)

29

According to Figure 1.10, the dynamic scheduling approach reduces computing

costs and long-term service latency. It utilized both a double deep Q learning-based

task scheduling method and the reinforcement learning technique. The allocation of

user tasks to virtual machines has previously been studied through studies that took

into account the propagation, waiting, transmission, and execution delays of various

activities. The experimental findings supported the methodology as superior to the

existing algorithms.

Figure 1.11: Hybrid Task Scheduling Methods (Wang, 2019)

The combination of both Static Scheduling Strategy and Dynamic task scheduling is

shown in Figure 1.11. Static scheduling is a strategy where tasks are assigned to

resources before program execution and remain fixed during runtime, while dynamic

task scheduling involves assigning tasks based on real-time conditions and workload

variations. Static scheduling strategies, such as round-robin or block scheduling,

provide predictable execution patterns but may not adapt well to dynamic changes.

On the other hand, dynamic task scheduling strategies, like work-stealing or task

prioritization, dynamically adjust task assignments to optimize performance,

considering factors like load balancing and task dependencies. Dynamic scheduling

offers flexibility but introduces overhead due to runtime decisions and coordination.

30

1.8.3 Hybrid Task Scheduling Methods

Hybrid task scheduling methods in fog computing combine multiple approaches or

techniques to optimize task allocation and resource utilization. These methods

leverage the strengths of different scheduling strategies to address the unique

challenges and requirements of fog computing environments.

One common approach is to combine centralized and decentralized scheduling

techniques. In centralized scheduling, a central controller or orchestrator is

responsible for making task allocation decisions based on a global view of the

system. Decentralized scheduling, on the other hand, distributes the task allocation

decision-making process among fog nodes themselves. Hybrid methods may use a

combination of both approaches, with the central controller handling high-level task

allocation decisions and individual fog nodes making local decisions based on their

local knowledge and resources.

Another hybrid approach is to combine static and dynamic scheduling. Static

scheduling involves pre-determining task assignments based on static parameters

such as task characteristics and node capabilities. Dynamic scheduling, on the other

hand, adjusts task assignments in real-time based on changing system conditions and

workload demands. Hybrid methods can utilize static scheduling for long-term task

allocation planning while incorporating dynamic scheduling to adapt to dynamic

changes in the system.

Furthermore, hybrid methods may integrate heuristic algorithms with optimization

techniques. Heuristic algorithms provide fast and approximate solutions by utilizing

predefined rules or guidelines. Optimization techniques, such as genetic algorithms

or particle swarm optimization, aim to find optimal solutions by exploring the search

space. Hybrid methods leverage the speed and simplicity of heuristics for initial task

allocation and use optimization techniques to refine and improve the initial

solutions. Hybrid task scheduling methods in fog computing are designed to strike a

balance between efficiency, scalability, adaptability, and system performance. By

combining different scheduling approaches, these methods can effectively handle

the complexity and variability of fog computing environments, leading to optimized

task allocation, reduced latency, improved resource utilization, and enhanced overall

system performance.

31

1.9 Fog Computing Challenges

Fog computing faces several challenges that need to be addressed for its successful

implementation and operation. Overcoming the challenges requires collaborative

efforts from researchers, industry stakeholders, and standardization bodies to

innovate and develop solutions that maximize resource utilization, enhance security,

promote interoperability, scale the system, reduce energy consumption, and optimize

task allocation. By addressing these challenges, fog computing can realize its

potential in enabling efficient and reliable edge computing solutions for various

applications. These challenges include:

1.9.1 Drones

Drones can be used in ITS23 applications not just as dumb sensors but also as smart

fog nodes, with external devices like the Raspberry Pi, Intel Edison, and ROCK64

placed on the top of the drone to aid in traffic monitoring by seeing and locating

errant cars. Similar to this, a drone can serve as a flying policeman in tele-

surveillance applications, able to identify and apprehend criminals. Therefore,

further research must be done to determine how drones can be used in a fog

computing architecture.

1.9.2 Machine learning

Applications like ITS, healthcare, and tele-surveillance require real-time data

processing and speedy replies, which might be given by implementing machine

learning in fog nodes. To make judgments based on the information gathered from

the sensors, the fog nodes must be intelligent enough. We are proposing a more

robust approach that integrates drones with machine learning and extends it to

capture the misbehaving cars and the driver's face identification. An earlier study

recommended utilizing machine learning in fog nodes to anticipate busy locations.

1.9.3 Security and Privacy

The sensors' limited resources prevent a large computation cryptography approach

from being used. The current priority is to secure the system and duty of the fog

nodes to prevent the spread of clouds with harmful packets. Using the Diffie-

Hellman problem for cryptography regarding the use of hash collision cryptography

23Intelligent Transportation System

32

for traffic security ITS applications that use a light system and fog devices signal

light. Additionally, fog nodes must confirm the queries made by IoT devices when

the devices themselves must confirm the security of the fog node.

1.9.4 Autonomic Fog Management and Connectivity

To meet the real-time processing needs of ITS, tele-surveillance, and healthcare

applications, fog devices must be able to control themselves independently.

Additionally, it poses a problem to maintain a smooth connection between all

deployed devices in the fog computing architecture because of the expectation that

they would be diverse.

Fog computing faces several challenges that require collaborative efforts to address

and overcome. These challenges include the integration of drones as smart fog nodes

for applications such as traffic monitoring and tele-surveillance, the implementation

of machine learning in fog nodes for real-time data processing, ensuring security and

privacy despite limited sensor resources, and achieving autonomic fog management

and connectivity for efficient and smooth operations. Overcoming these challenges

is crucial for realizing the potential of fog computing in enabling efficient edge

computing solutions for various domains. Further research, innovation, and

standardization efforts are necessary to tackle these challenges and unlock the full

capabilities of fog computing.

1.10 Machine Learning Algorithms

To avoid imprecise or erroneous predictions, the data collected / generated must go

through pre-processing, merging, modifying, and learning. the computational

intensity and speed of a specific technique are two significant characteristics to

consider while employing ML. techniques. The best algorithm is chosen based on

the user application and should be fast enough to track changes in the input data and

provide the desired output in a reasonable amount of time. ML algorithms create a

mathematical model using sample data, known as "training data," on which to make

predictions or choices. The training phase of supervised ML classifier development

involves training a specific classifier from a set of labeled data. As the size of the

training data increases, so do the classifiers. Some of the most popular ML

algorithms are detailed further below.

33

1.10.1 Naive Bayes

Based on Bayes' theorem, a naive Bayes classifier is a probabilistic classifier that

works by assuming that no pair of features are dependent. Naive Bayes is a simple

but powerful machine learning algorithm based on Bayes' theorem and the

assumption of independence between features. Despite its simplicity, Naive Bayes is

often effective and computationally efficient, so it is often used in a variety of

classification tasks. It is particularly suitable for text classification and spam

filtering.

1.10.2 Logistic Regression

Logistic regression is a machine learning algorithm commonly used for binary

classification tasks, where the goal is to predict whether an instance belongs to one

of two classes. Despite its name, logistic regression is more of a classification

algorithm than a regression algorithm. Logistic regression is a fundamental machine

learning algorithm that is widely used in various applications such as medical

diagnostics, spam detection, and credit scoring due to its simplicity, interpretability,

and effectiveness. Although it is designed for binary classification, it can be

extended to handle multiple classes through techniques such as one-vs-rest

regression and softmax regression.

1.10.3 Sequential Minimal Optimization

SMO is a machine learning algorithm designed to train SVMs in supervised

learning. SVM is used for classification and regression tasks, and SMO is a specific

algorithm used to efficiently solve the optimization problems associated with

training these models. Although SMO is an important algorithm for SVM training,

there are alternative approaches and optimizations to solve SVM problems, such as

the widely used libsvm library that implements more general optimization

techniques. Still, understanding SMO provides insight into the support vector

machine training process.

1.10.4 Instance-Based Learner

IBk is a machine learning algorithm used for classification and regression tasks. It is

part of the family of k-NN¹ algorithms, where the prediction of a new instance is

based on the majority class for classification or mean for regression of the k-nearest

neighbors in a function space. The main feature of the IBk algorithm is Instance-

34

based learning. This means that no explicit model is created during training. Instead,

save the training instance and use it to make predictions for new instances. In K-NN

Predictions for new instances are determined by examining the class labels for

classification or values for regression of the k-nearest neighbors in the training data

set. Small values of k give the model that is more flexible and sensitive to noise, and

large values of k gives the model that is smoother and less sensitive. Regression uses

the average of the k nearest neighbor target values as the prediction. IBk can be

computationally expensive, especially for large datasets, as it must calculate the

distance for each prediction. It is often more efficient when the dataset is small. IBk

performance can be sensitive to feature scaling. Therefore, it is often recommended

to normalize or standardize features to obtain a similar scale. IBk is a simple but

effective algorithm, especially in situations where the decision boundary is complex

and not easily captured by parametric models. It is widely used in various fields such

as pattern recognition, classification, and regression.

1.10.5 K-Star

K Star was developed in 2009. K Star was originally implemented as part of DiPro

toolset for generating counterexamples in probabilistic model checking. K. Star A

directed search algorithm also called K. It Finds the k shortest paths between the

given pair of vertices in the given directed weighted graph. K Star works on the fly.

This means that the graph does not have to be made explicitly available and stored in

main memory. K Star can be also be controlled using a heuristic function.

1.10.6 Multi Class Classifier

A multiclass classifier is a type of machine-learning algorithm that can assign

instances to one of three or more classes. Unlike binary classifiers, which distinguish

between two classes such as positive or negative, multiclass classifiers handle

scenarios where there are multiple possible classes. Some of the common Multi

Class algorithms are Support vector machine, Random Forest, K Nearest

Neighbours, Neural Networks and Decision Trees. The choice of algorithm often

depends on factors such as the size and type of the dataset, computational efficiency,

and the desired interpretability of the model.

35

1.10.7 Random Forest

A decision tree-based supervised machine learning approach called RF depends on

values from a random vector that is sampled separately and with the same

distribution across all of the trees in a forest. By averaging the results, this ensemble

method lowers over-fitting and bias-related error, leading to superior outcomes.

Random Forest is a powerful and versatile machine learning algorithm that belongs

to the ensemble learning category.

Ensemble learning combines the predictions of multiple models to create a more

robust and accurate model. Random forests are particularly effective for both

classification and regression tasks. The main features and characteristics of the

Random Forest algorithm are: Ensemble of Decision Trees: Random Forest is an

ensemble of Decision Trees. A decision tree is a discrete model that makes

predictions based on a series of hierarchical decisions. Random forests create

multiple decision trees and combine their predictions during the training phase.

During the training process. Random Forest randomly selects a subset of the training

data (with permutations) to train each decision tree. This process is called

bootstrapping. Additionally, at each decision point in the tree, a random subset of

features is also considered. Random Forest uses a technique called bagging, where

each decision tree is trained independently on a different subset of the data. The final

prediction is determined by aggregating the predictions of all trees. By training

multiple decision trees on different subsets of data and features, random forests

become more robust and less prone to overfitting compared to a single decision tree.

Overfitting occurs when a model learns the training data well enough but is unable

to generalize to new, unseen data. Random Forest provides a measure of feature

importance.

Analysing the contribution of each feature across multiple trees can help determine

which features have the greatest impact on predictions. The training of individual

decision trees in a random forest can be performed in parallel, resulting in a scalable

algorithm that can efficiently process large amounts of data. Random forests tend to

be less sensitive to outliers in a dataset. Because each tree is trained on a subset of

the data, the impact of outliers is reduced. Random Forest has been implemented in

various machine learning libraries such as Scikit-Learn in Python, making it highly

accessible and widely used.

36

1.10.8 Random Tree

Random Tree is a term often associated with two different machine learning

algorithms, Random Forest and Highly Randomized Trees Extra Trees. Both

algorithms fall into the category of ensemble learning and are used for classification

and regression tasks. Both Random Forest and Extra Trees are powerful algorithms

that leverage the concept of ensemble learning to improve predictive performance.

They are widely used in various applications such as classification, regression, and

feature importance analysis. The choice between random forests and extra trees may

depend on the specific properties of your data and the desired trade-offs between

computational efficiency and model accuracy.

1.10.9 Multi-Layer Perceptron

It is fully connected dense layers, which transform any input dimension to the

desired dimension. A multi-layer perception is a neural network that has multiple

layers. To create a neural network, we combine neurons so that the outputs of some

neurons are inputs of other neurons. A multi-layer perceptron has one input layer

and for each input, there is one neuron (or node), it has one output layer with a

single node for each output and it can have any number of hidden layers and each

hidden layer can have any number of nodes.

1.10.10 k-Nearest Neighbors

The k-nearest neighbor algorithm is a non-parametric, supervised learning classifier,

which uses proximity to make classifications or predictions about the grouping of an

individual data point. It is one of the popular and simplest classification and

regression classifiers used in machine learning today. While the KNN algorithm can

be used for either regression or classification problems, it is typically used as a

classification algorithm, working off the assumption that similar points can be found

near one another.

1.10.11 Supervised

Giving training data that has previously been "known" or "labeled" with the proper

response and consists of N input-output pairs (X,Y) is how supervised learning

functions. The ANN then generates an output 2 for each unknown X, which is then

compared against Y using an error cost or distance function. Finally, an iterative

process is used to minimize this mistake. Image Classification: Training with

37

image/label datasets are examples of supervised learning methods. A new image is

then presented later with the hope that the computer will pick up on the new object.

Regression: Giving the system marked historical data so it can forecast the future

result of an identical circumstance.

1.10.12 Unsupervised

Using unsupervised learning methods, it self-organizes and finds hidden patterns in

unlabeled input data to create neural networks. It can analyse data without sending

an error signal so that the potential fix can be assessed. Unsupervised learning can

occasionally be useful since it allows the algorithm to search the past for patterns

that weren't previously taken into account. Unsupervised learning is necessary

because manually inspecting huge datasets like those for speech recognition is

highly expensive. Clustering is a very basic but well-known example of

unsupervised learning.

1.10.13 Semi-Supervised

This category is a hybrid of the previous two. The algorithm is trained on a dataset

that contains both labeled and unlabeled data. It works by taking enormous amounts

of input data and labeling only a subset of it as training data. Reinforcement

learning, a related strategy, provides feedback to guide the computer program in

interacting with a dynamic environment. In this approach, a model is deployed using

a small set of labeled samples and a larger set of unlabeled samples. The goal is to

use labeled data to make predictions about unlabeled data and use the additional

information to improve model performance.

1.11 Fog Computing Real-Time Applications

Fog computing offers significant advantages in real-time applications. It is often

utilized in IoT applications that need real-time data. It functions as a more advanced

kind of cloud computing. It serves as a conduit between end users and the cloud. It

may be utilized in both scenarios—between humans and machines or between

machines and machines.

1.11.1 Mobile Big Data Analytics

Data acquired by IoT devices is gathered in large quantities, making cloud storage

ineffective. Fog computing, which uses nodes that are considerably closer to end

38

systems than cloud computing, is advantageous in such circumstances. It also gets

rid of additional issues like delays, traffic, processing speed, delivery time, response

time, data processing, data storage, and data transportation. IoT applications of the

future may use fog computing.

1.11.2 Dams Safety

Dam sensors transmit data to the cloud, where it is examined and if there are any

anomalies then officials are notified the issue here is the potentially deadly

information delay. Fog is utilized to address this, and because it is located close to

the end systems, it is simpler to send data, evaluate it, and provide immediate

response. In dam monitoring scenarios, sensors play a vital role in collecting data

related to dam conditions, such as water level, pressure, temperature, and structural

integrity. Traditionally, this data was transmitted directly to the cloud for analysis

and decision-making. To address this challenge, fog-based architecture, also known

as edge computing, is employed. Fog nodes, placed near the dam sensors, act as

local processing hubs. These fog nodes receive the data from the sensors and

perform real-time analysis and anomaly detection locally. By doing so, they

significantly reduce the data transmission time to the cloud and enable swift

evaluation of dam conditions.

1.11.3 Smart Utility Service

Here, saving time, money, and energy is the major goal. Data analysis must be

conducted every minute on current data. Since end users are primarily involved,

cloud computing may not be useful. These programmers daily notify users of which

appliances utilize the least amount of energy. Fog is an excellent option since IoT

generates a lot of network traffic that makes it difficult to transfer other data.

1.11.4 Health Data

When information needs to be shared between hospitals, strict security, and data

integrity are requirements. Fog may be used to achieve this because the data is

conveyed locally. The laboratories may utilize these fog nodes to update the patient's

lab information, which the adjacent hospitals can simply access. Since any clinician

may access this unified information, patients do not need to carry hard copies of

their medical histories or health concerns.

39

1.11.5 Smart Cities

The idea of a "smart city" has generated a great deal of attention in recent years

because it promises to improve the quality of life. An urban setting known as a

"Smart City" is one in which several sectors work together to produce sustainable

outcomes by analyzing real-time data. Building smart cities presents the problem of

assuring accuracy and speed in reaction times when assessing the condition of

infrastructure components like gas and oil pipelines, subways, and roadways.

Additionally, the enormous amount of data the sensors produce creates problems

with big data processing.

1.11.6 Tele-Surveillance

The concept of placing fog nodes next to CCTV24 cameras at shopping malls and

railway stations to get data from them to identify hazards like trespassing in security

zones and gunshots. A video content management system is employed in the fog

nodes to process and store the footage for the threat detection process.

Fog computing offers numerous benefits for real-time applications, particularly in

the context of the IoT. It serves as an advanced form of cloud computing, acting as a

bridge between end users and the cloud. Fog computing finds relevance in various

scenarios, including human-machine and machine-machine interactions. Some

notable real-time applications of fog computing include mobile big data analytics,

ensuring dam safety through immediate data analysis and response, smart utility

services for efficient energy consumption, secure health data exchange between

hospitals, the development of smart cities for sustainable outcomes, and tele-

surveillance systems for threat detection. Fog computing provides advantages such

as reduced delays, improved processing speed, enhanced data storage and

transportation, and localized data communication, making it a valuable solution in

these real-time scenarios.

24Closed-Circuit Television

40

Chapter-2
Literature Review

INTROD UCT ION

2.1 IoT Overview

2.2 Fog and Edge Computing

2.3 IoT and Fog Computing Applications

2.4 Fog Computing and Smart Cities

2.5 Resource Allocation and Task Scheduling Technique

41

A literature review is a critical and comprehensive summary and analysis of existing

scholarly research and publications relevant to a specific topic or research question.

Its primary purpose is to provide an overview of the existing knowledge, identify

research gaps, and establish the context and significance of the new study within the

academic discourse. By identifying relevant studies, analyzing key findings, and

synthesizing information from various sources, researchers can develop a well-

supported theoretical framework and justify their research objectives. A well-

conducted literature review showcases the researcher's ability to critically evaluate

and integrate existing knowledge, laying the foundation for a new study and

contributing to the advancement of the field. The chapter includes the previous

studies related to Fog, IoT25, Cloud computing, and machine learning algorithms for

developing task offloading and resource allocation models.

2.1 IoT Overview

According to IEEE26 Communication Magazine, the IoT is a framework that gives

every object a digital representation and online presence. More precisely, the IoT

intends to provide brand-new services and applications that connect the real and

virtual worlds. M2M27 communications serve as the foundational communication for

interactions between Things and cloud-based applications. Oxford Dictionaries

provides a summary definition that calls the Internet an element of “IoT the

interconnection via the Internet of computing devices embedded in everyday objects,

enabling them to send and receive data”.

Aalsadie (2022) discussed that billions of physical objects have been connected

thanks to the development of IoT cloud computing to share and gather data for

various uses. Despite significant developments, some latency-specific applications

are still impractical in the real world because of the limitations of current IoT

devices and the distance between the cloud and IoT devices. Fog computing, which

makes use of the availability of computing and storage resources at the edge of the

network close to the IoT devices, has been created to address the difficulties of

25 Internet of Things
26Institute of Electrical and Electronics Engineers
27Machine-to-Machine

42

latency-sensitive applications. Fog computing does, however, have several

drawbacks, including heterogeneity, storage, processing, and memory constraints.

As a result, it necessitates a suitable job scheduling technique for making the most

use of computing resources at the Fog layer. This article offers a thorough analysis

of several job scheduling techniques used in fog computing. It examines and

contrasts several task scheduling techniques created for a Fog computing

environment to highlight their benefits and drawbacks.

Abohamama (2022) says that applications for the IoT are now essential for raising

living standards. However, the resources of conventional cloud data centers are

under strain due to the growing volume of data produced by IoT devices. Because of

this, cloud data centers are unable to meet the needs of IoT applications, especially

those that demand fast response times. A more contemporary computing model

called Fog computing brings cloud resources out to the network's edge. Task

scheduling is still difficult under this computer paradigm, though. For bag-of-tasks

applications in the cloud-fog environment, a semi-dynamic real-time task scheduling

technique is presented in this paper. Task scheduling is formulated as an

optimization issue using permutations in the suggested scheduling technique. For

each scheduling cycle, a modified version of the genetic algorithm is employed to

give several permutations for jobs that have arrived. The jobs are then assigned to a

virtual machine with enough resources to meet the lowest expected execution time,

in the order determined by the best permutation. According to an optimality analysis

that was done, the suggested algorithm performs comparably to the best option. In

terms of make pan, total execution time, failure rate, average delay time, and elapsed

run time, the suggested method is also contrasted with the first fit, best fit, the

genetic algorithm, and the bee's life algorithm.

Atzori, Iera, and Morabito's (2010) comprehensively delve into the intricate

landscape of the IoT. The authors meticulously dissect the key components of IoT,

spanning architectures, communication protocols, and diverse application domains.

Their thorough analysis not only identifies challenges but also sheds light on the

myriad opportunities within the IoT realm. This work stands as an invaluable

resource, catering to researchers, practitioners, and policymakers alike, providing a

holistic understanding of the evolution and impact of IoT.

43

Bandyopadhyay and Sen (2011) focus on the applications of IoT, accentuating

technological challenges and standardization issues. This work is pivotal in bridging

the theoretical concepts of IoT with pragmatic considerations, serving as a practical

guide for industry professionals navigating the intricate landscape of IoT

implementation and standardization.

Berman, Cabrera, Jebari, and Marrakchi's (2022) contribution to Patterns introduces

the innovative "impact universe" framework. This framework serves as a compass

for assessing and prioritizing public interests in IoT deployments, addressing ethical

considerations and societal impacts. The work significantly contributes to the

ongoing discourse on responsible IoT development, offering crucial insights for

policymakers and industry leaders striving to align IoT innovations with societal

needs.

Borodin's (2014) article in Educational Resources and Technologies anticipates the

transformative potential of IoT in education. By envisioning the integration of IoT

into educational settings, the author foresees a paradigm shift in how information is

accessed and disseminated, laying the groundwork for discussions on leveraging IoT

for educational advancements.

Bubnova and Kryukova's (2014) work in Economics and Society explores the

intersection of IoT and customer-centric strategies in modern business practices.

Focusing on social client-oriented technologies, the authors illuminate the evolving

dynamics of customer engagement. This article serves as a valuable resource for

businesses seeking to leverage IoT to enhance customer experiences and adapt to the

dynamic landscape of market trends.

The China Internet Watch Team's report (2023) forecasts China's substantial

investment in the IoT, projecting spending to reach an impressive US$298 billion by

2026. The comprehensive analysis highlights key IoT market trends in China,

offering valuable insights into the nation's technological landscape and its strategic

positioning in the global IoT arena. The report serves as a vital resource for industry

stakeholders, businesses, and researchers seeking to understand and navigate China's

dynamic IoT market.

44

Chiang (2016) surveyed various articles on fog and IoT. The authors overviewed the

research opportunities of Fog Computing. They provide summarized information

about the opportunities and challenges of Fog, over the networking context of IoT.

The fundamental challenges discussed are like stringent latency requirements,

network bandwidth constraints, resource-constrained devices, cyber-physical

systems, uninterrupted services to the cloud, and security threats etc.

DeMedeiros, Hendawi, and Alvarez's (2023) survey, published in Sensors, focuses

on AI-based anomaly detection in IoT and sensor networks. This research critically

examines the integration of artificial intelligence into anomaly detection systems,

providing a thorough understanding of current trends and advancements. The survey

is a valuable reference for researchers and practitioners involved in IoT security,

offering insights into the evolving landscape of anomaly detection.

Duarte's (2023) exploration of the number of IoT devices becomes particularly

relevant in understanding the proliferation of connected devices. As the IoT

continues to expand, Duarte's work, available on Exploding Topics, offers valuable

data and insights into the sheer scale and growth of IoT devices. This information is

crucial for stakeholders, businesses, and policymakers shaping the future trajectory

of IoT.

Dubravac and Ratti's (2015) form part of the IoT report series by American

International Group. The document critically analyzes the trajectory of IoT,

exploring whether its development represents an evolutionary process or a

revolutionary shift. This whitepaper is a foundational resource for professionals,

policymakers, and academics seeking a nuanced understanding of IoT's historical

development and future implications.

Guinard, Trifa, Karnouskos, Spiessand Savio's (2010) delve into interacting with the

Service-Oriented Architecture-based IoT. The study emphasizes aspects like

discovery, query, selection, and on-demand provisioning of web services in the

context of IoT. This work is essential for researchers and practitioners involved in

IoT architecture and service provisioning, providing insights into the fundamental

principles shaping IoT interactions.

45

Guzuyeva's (2018) contribution in the proceedings of the IV International

Correspondence Scientific and Practical Conference focuses on the application of

information technology in large and small businesses. The research explores the role

of IT in different business scales, offering practical insights into the varied

applications of technology in contemporary business environments. This work

serves as a valuable reference for academics, business professionals, and

policymakers interested in the intersection of information technology and business

operations.

Hakan's (2023) focus on bibliometric analysis and scientific mapping of IoT,

featured in the Journal of Computer Information Systems, contributes to the

scholarly understanding of IoT research trends. The work employs bibliometric

techniques to map the landscape of IoT research, offering valuable insights into the

growth, trends, and focal points of the field. This research is particularly relevant for

academics, researchers, and institutions seeking to comprehend the current state and

future directions of IoT research through a quantitative lens.

Katal (2022) discussed the development of new methods to make cloud operations

more accessible has increased with the proliferation of IoT devices. The IoT has

grown over the past ten years as a result of ongoing developments in hardware,

software, and communication technologies, with a daily increase in the number of

linked items. The creation of an adequate system architecture capable of processing

and storing all of the data is required due to the enormous volume of data generated

by these devices. The separate idea of "Fog computing" and the integrated fog-to-

cloud computing paradigm is particularly important in this regard for decentralizing

the cloud and bringing services closer to the finished system. Fog computing's main

objective is to improve common IoT situations by minimizing delays and saving

traffic by bringing awareness to the entrance point. Fog computing applications

include real-time requirements, wireless networks, and low-power devices. An

appropriate Fog computing protocol should be portable, adaptable, and lightweight

in light of these factors.

Tzavaras, Mainas, and Petrakis (2023) presented an innovative OpenAPI framework

designed for the Web of Things. Published in the IoT journal, the paper introduces a

framework that leverages OpenAPI specifications to enhance the interoperability of

46

Web of Things applications. The authors provide insights into the development and

implementation of this framework, contributing to the ongoing discourse on

standardization and interoperability in the IoT domain.

Uckelmann, Harrison, and Michahelles (2011) propose an architectural approach for

the future IoT. This seminal work, presented in the book "Architecting the IoT," lays

out a comprehensive framework for understanding the architecture of IoT systems.

The authors explore crucial aspects such as communication protocols, data models,

and system components, providing a foundational resource for researchers,

practitioners, and educators involved in IoT architecture.

Van Kranenburg (2014) delivers an open lecture on the IoT, contributing valuable

insights to the discourse on IoT concepts and applications. This lecture, conducted at

MEPhI, covers fundamental aspects of IoT, fostering a deeper understanding of the

technology's implications in various domains.

Wagan (2022) conducted a comprehensive review focusing on the Internet of

IoMT28 and converging technologies with real-time applications. Published in the

Journal of King Saud University – Computer and Information Sciences, the paper

provides an in-depth exploration of IoMT, offering valuable insights into its

applications and the integration of trending technologies in the healthcare domain.

Wang (2013) presented a system framework for security management in enterprise

systems. Published in Systems and Behavioral Research Science, the research work

addresses critical aspects of security management, offering a systematic approach to

enhance the security posture of enterprise systems. The authors contribute valuable

knowledge to the field of enterprise security.

Wattics (2011) provides insights into smart metering, emphasizing its role in energy

management. As a key player in the energy management sector, Wattis offers

information on smart metering solutions, contributing to the broader understanding

of technologies aimed at optimizing energy consumption.

28Internet of Medical Things

47

Withers (2023) explores how organizations in the AP29 region can effectively

harness the power of the IoT. The article, featured in Computer Weekly, provides

strategic insights and recommendations for APAC businesses aiming to leverage IoT

technologies for enhanced operations and growth.

Wu, Sheng, and Zeadally (2013) delve into RFID, examining its opportunities and

challenges. Published in the book "Next-generation Wireless Technologies," the

chapter provides a comprehensive overview of RFID technology, shedding light on

its applications, benefits, and challenges that need to be addressed for widespread

adoption.

Xing, Li, Wilamowska-Korsak, and Zhang (2013) presented a comprehensive

review of Operations Research in service industries. Published in Systems and

Behavioral Research Science, the paper explores the applications of operation

research methodologies in optimizing service processes across various industries.

The authors contribute valuable insights into the role of operation research in

enhancing operational efficiency in service-oriented sectors.

Xu (2011) provides a comprehensive exploration of enterprise systems, examining

their state-of-the-art features and future trends. Published in the IEEE Transactions

on Industrial Informatics, the paper contributes to the understanding of evolving

enterprise technologies, making it a valuable resource for researchers and

professionals in the field.

Ystgaard (2023) conducted a comprehensive review focused on the theory,

principles, and design requirements of the human-centric IoT. Published in the

Journal of Ambient Intelligence and Humanized Computing, the paper emphasizes

the importance of user-centric design in IoT systems, contributing to the

development of more inclusive and user-friendly IoT technologies.

Yudidharma (2023) conducted a systematic literature review, focusing on messaging

protocols and electronic platforms used in the IoT for building smart homes.

Published in Procedia Computer Science, the review provides a comprehensive

overview of the state-of-the-art IoT protocols and platforms for smart home

29Asia-Pacific

48

applications. The authors contribute valuable insights into the technological

landscape shaping smart home development.

This section describes in detail the different communication protocols used in fog

computing and makes comparisons between them based on important criteria. The

explanation of the research difficulties for the communication protocols of fog

computing serves as its conclusion.

2.2 Fog and Edge Computing

Fog and edge computing, helps devices to get faster results by processing the data

simultaneously received from the devices. Fog computing helps in filtering

important information from the massive amount of data collected from the device

and saves it in the cloud by sending the filtered data.

Ahmad (2021) discussed that the number of people utilizing the Internet has

increased with the spread of smart gadgets worldwide. The primary goal of the fog

computing paradigm is to connect a vast array of intelligent objects billions of

objects to create a bright future for smart cities. Due to the widespread use of smart

gadgets, it is anticipated that these devices will produce enormous volumes of data

and transmit that data through the Internet. Fog Computing also refers to an edge-

computing architecture that lessens the problem by implementing knowledge

discovery at the edges utilizing a data analysis technique. To create a sustainable

infrastructure for smart cities, the IoT and Fog Computing techniques can cooperate.

The weighted round-robin scheduling technique is the one the author suggests be

used to execute the job from one fog node to another fog node and finally to the

cloud. First, IoT infrastructure for smart cities is designed using a Fog simulator and

the emergent Fog Computing idea. Then, data gathering and routing are done using

the spanning-tree routing protocol. The establishment of quick transmission and user

communication via 5th Generation networks is also envisaged. The effectiveness of

our suggested method is then assessed in terms of reaction time, latency, and data

use.

Bittencourt, Lopes, Petri, and Rana (2015) presented research on P2P, Parallel, Grid,

Cloud, and Internet Computing, this work is likely to explore virtual machine

migration in Fog computing. The authors may discuss the challenges and potential

49

benefits associated with migrating virtual machines in Fog computing environments,

contributing to the understanding of resource management in distributed systems.

Bose, Aujla, Singh, Kumar, and Cao (2019) investigated the application of

blockchain as a service for software-defined networks, focusing on potential denial-

of-service attacks. The authors may discuss how blockchain technology can be

leveraged to enhance the security of software-defined networks and address

challenges related to denial-of-service attacks.

Dsouza, Ahn, and Taguinod (2014) introduce a policy-driven security management

framework for fog computing in their 2014 paper presented at the IEEE

International Conference on Information Reuse and Integration. The work may

propose a preliminary framework and provide a case study, contributing valuable

insights to the development of security management strategies in fog computing

environments.

Huang, Yang, and Wang (2017) work is likely centered around secure data access

control in fog computing for the IoT. The authors may discuss innovative techniques

such as ciphertext update and computation outsourcing to ensure secure data access,

particularly crucial in the context of IoT where data privacy is paramount.

Kumar (2022) says that network's edge, Fog computing provides an integrated key

to enable communications, data collection, device management, services

capabilities, storage, and analysis. This makes it possible to install infrastructure that

is centrally controlled in a highly dispersed setting. The most important uses of Fog

computing for smart city infrastructure are covered in the current study. The most

crucial issue arises when operating a large number of IoT-based services in a smart

city context. To deliver novel services, thousands of smart things, cars, phones, and

people connect; in this situation, the fog computing infrastructure may be very

helpful from a data and communication standpoint. Three primary topics are the

subject of this section

a) The deployment of data and applications in fog nodes

b) 5th Generation connectivity leveraging the fog infrastructure

c) Fog-based data management and analytics

50

These fog computing applications are illustrated with working models from all

angles. The effective integration of smart city infrastructure has new use cases. An

increasing interest in smart cities has also been taken into account while presenting

the difficulties and prospects.

Martin (2017) discussed the OpenFog security requirements and its approaches. This

paper provided a security overview of OpenFog architecture and also provided a

survey on the functional requirements and the technical approaches. This paper aims

to simulate further dialogue on security in OpenFog and fostering future

development of novel technologies and practices.

Mebrek (2017) introduces a solution for the increasing demand for IoT devices

through the study of the Fog Computing suitability assessment. The authors focus on

energy consumption and the Quality of Service as two important aspects of the

performance of Fog computing. Therefore, they present the modeling of these two

metrics in the fog. The authors expressed the problem as constrained optimization

and solved it efficiently using Evolutionary Algorithms. The authors stated that their

approach stands out as an energy-efficient solution.

Mohamed (2017) says that Unmanned Aerial vehicle-based Fog Computing IoT

aims to utilize the advantages and features of both technologies to effectively

support IoT applications. This proposed Unmanned Aerial Vehicle Fog provided fast

deployment of Fog capabilities at remote or challenging locations to effectively

support dynamic IoT applications. The authors proposed that Unmanned Aerial

vehicles equipped with Fog computing capabilities can be used to travel to a specific

location when needed and remain in that location to support their IoT applications.

The authors discussed some scenarios for such deployments, their advantages, and

the issues involved when using the proposed model.

Naha (2018) surveyed trends, architecture, requirements, and research directions.

This survey paper is useful to industries and research communities to synthesize and

identify the requirements for Fog Computing. The authors overviewed Fog

definition, research trends, and the technical difference between Fog and cloud. The

authors investigated numerous proposed Fog architectures and discussed the

components of these architectures. The authors discussed the taxonomy of Fog

51

computing by considering the requirements, as well as authors discussed the

research gap in resource allocation and scheduling, fault tolerance, simulation tools,

and Fog-based microservices. Also addressed the limitations of current research

work, and presented open issues and future direction for Fog computing.

Pek, Buttyán, and Bencsáth (2013) survey likely provides an extensive overview of

security issues in hardware virtualization. The authors may cover various security

challenges associated with hardware virtualization, offering valuable insights into

securing virtualized environments.

Pooranian (2017) proposed a distributed Fog-based networked architecture that

preserves energy in Fog data centers. The authors present a new Internet of

Everything architecture for Fog centers to implement the resulting Fog of

Everything technology platform. The authors also present the energy-aware

algorithm adopt Fog data centers and obtain numerical performance, for a real-world

case study that shows that their approach saved energy consumption in Fog data

centers.

Ren, Zhu, Qi, Wang, and Sangaiah, A.K. (2019) explore identity management and

access control based on blockchain in edge computing for the industrial IoT. The

work may discuss how blockchain technology enhances security measures, ensuring

robust identity management and access control in industrial IoT environments.

Tao et al. (2019) published a survey of virtual machine management in edge

computing. The authors may provide a comprehensive overview of challenges,

techniques, and future directions in the management of virtual machines within the

context of edge computing.

Sabireen (2021) discussed that performance, security, latency, and network failure

are just a few of the problems that integrated cloud computing must contend with as

IoT applications continue to grow. These problems are solved by bringing cloud

computing closer to the IoT thanks to the development of fog computing IoT. The

main purpose of the fog is to deliver the data produced by the edge IoT devices.

Instead of sending the data to a cloud server, local processing, and data storage are

carried out at the fog node. When compared to the cloud, fog computing offers high-

quality, quick-response services. Fog computing may thus be the best choice for

52

enabling the IoT to provide a reliable and highly secure service to a large number of

IoT customers. It enables management of services and resource provisioning outside

of central control, closer to devices, at the network edge, or eventually at locations

designated by SLAs30. Fog computing is a prevalent element, not a substitute for

cloud computing While providing the option to connect with the cloud's data center,

it permits information processing at the edge. The author presents different

computing paradigms, fog computing features, an extensive reference architecture of

fog with its various levels, a thorough analysis of fog with IoT, different fog system

algorithms, and also systematically examines the challenges in fog computing,

which serves as a middle layer between IoT sensors or devices and cloud data

centers.

Satyakam (2021) says that Fog Computing is sometimes referred to as edge

computing, which broadens the cloud computing concept while increasing

productivity and reducing latency. With the help of cloud computing, Fog

computing is employed to keep up with the steadily expanding demand for IT31-

related services. With the rapid advancement of IT, fog computing is emerging as a

desirable method for retrieving and transforming data connected to IoT applications.

This article examines the idea, the architecture, and the use of Fog computing in

both current and future applications. Fog technology is quite sophisticated and

diverse. One of the main difficulties in running the research work objective is to

review recent research on resource distribution in the fog region. The purpose of this

survey is to understand the use of Fog computing and make some changes to current

technology.

Savya (2021) says that for smart manufacturing, Fog computing offers processing,

storage, and network services. The task requests, terminal equipment, and fog nodes,

on the other hand, are very heterogeneous in a smart factory. For example, different

task characteristics of terminal equipment include high real-time demands for fault

detection tasks, high calculation requirements for production scheduling tasks, high

storage requirements for inventory management tasks, and so on. The Fog nodes

also include a variety of processing capabilities, making powerful fog nodes with

30Service Level Agreements
31Information Technology

53

large computational resources competent to assist terminal equipment in processing

difficult tasks like factory inspection, defect detection, status analysis of devices,

and so forth. With the dispersed architecture that Fog computing offers at the

network's edges, access is low-latency, and application requests are handled more

quickly. With this increased computational power, new techniques for managing and

allocating resources may be created to benefit the Fog infrastructure.

Sood and Mahajan (2017) presented a Wearable IoT sensor-based healthcare system

designed for identifying and controlling the Chikungunya virus. The work likely

explores the integration of wearable IoT sensors into healthcare, aiming to enhance

real-time monitoring and management of viral outbreaks. The authors may discuss

the technical aspects of the system, potential applications, and the impact on public

health.

Syed (2016) discussed a fog computing pattern, contributing to the field of pattern

languages in programs. Patterns often encapsulate proven solutions to recurring

problems, and this work may offer insights into common challenges and effective

solutions within the context of fog computing.

Wadhwa and Aron (2018) presented at IEEE International Conference on Parallel &

Distributed Processing, likely offer a comprehensive exploration of Fog computing

integrated with the IoT. The paper may delve into the architecture, applications, and

future directions of this integration, shedding light on the evolving landscape of Fog

computing in conjunction with IoT.

Yuan and Li (2018) introduced a reliable and lightweight trust computing

mechanism for IoT edge devices. The authors may discuss how multi-source

feedback information fusion contributes to enhancing trust in IoT edge devices,

addressing reliability and security concerns associated with these devices. The

research is likely to be beneficial for understanding and implementing trust

mechanisms in IoT edge computing environments.

Both fog and edge computing aim to process data more efficiently, enabling faster

response times and reducing the need for long-distance data transmission and

storage. These technologies will continue to play a crucial role as we move towards

more interconnected and data-intensive systems.

54

2.3 IoT and Fog Computing Applications

Popular Fog computing applications include smart grids, smart cities, smart

buildings, vehicle networks, and software-defined networks. Despite the broad

utilization of cloud computing, some applications and services still cannot benefit

from this popular computing paradigm due to inherent problems of cloud computing

such as unacceptable latency, lack of mobility support, and location awareness.

Aljumah (2018) discussed Fog Computing related security issues. They stated that

Fog Computing poses a threat to privacy and security of the data and services. The

existing security and privacy mechanisms of cloud computing cannot be applied to

Fog computing due to the distributed structure, mobility, and heterogeneous nature.

This paper provides an overview of present issues in Fog computing.

Aljumah and Ahanger (2018) conducted a comprehensive examination of Fog

computing and its associated security issues, presenting their work at an

international conference. Reviews, such as theirs, are essential for synthesizing

existing knowledge and providing valuable insights into the security challenges

associated with Fog computing. This work is particularly valuable for those seeking

a consolidated understanding of these issues.

Alonso (2017) proposed Fog computing using public resource computing and

storage. Authors introduced the idea to use public-resource computing and storage

techniques to shift the workload of the cloud. In this idea, the devices work as

participants, who form a data center between cloud and end devices. The participant

can be any type of device, from a traditional personal computer to smartphones or

tablets, etc. The authors simulate the use of participating nodes in video transfer

applications and their results show that the proposed system can be used to solve the

bandwidth and computation issue that affects the cloud storage system the author

concluded that their system is a feasible solution for applications that process or

store public data.

Alrawais, Alhothaily, Hu, and Cheng (2017) delve into the intersection of Fog

computing and the IoT, emphasizing security and privacy issues. Given the

proliferation of IoT devices and the crucial role of Fog computing in their

ecosystem, this research likely scrutinizes challenges related to data security and

55

user privacy. The findings are likely to be pertinent for professionals engaged in

designing and securing IoT systems.

Alwarafy (2020) presents a comprehensive survey addressing security and privacy

issues in edge-computing-assisted IoT. Published in the IEEE IoT Journal, their

work offers a systematic examination of security and privacy concerns in the context

of edge computing and IoT. The authors provide insights into the current state of

research and outline potential directions for addressing security challenges in this

evolving landscape.

Badidi, and Ragmani (2020) propose an architecture for QoS32fog service

provisioning, contributing to the optimization of Fog computing resources.

Published in Procedia Computer Science, their work focuses on enhancing the

provisioning of services in fog environments while considering QoS requirements.

The authors offer a detailed architecture and discuss its implications, providing

valuable insights for researchers and practitioners aiming to improve service quality

in fog computing.

Chiang and Zhang (2016) provide an overview of research opportunities at the

intersection of fog computing and the IoT. Published in the IEEE IoT Journal, their

work addresses the evolving landscape of research possibilities within the context of

fog computing and IoT. The authors discuss key challenges, potential applications,

and future directions, offering valuable insights for researchers and practitioners

exploring this dynamic field.

Delfin (2019) explores the emergence of Fog computing as a new era in Cloud

computing. Presented at the International Conference on Computer, Mathematics,

and Control, their work contributes to defining the landscape of Fog computing as a

distinct paradigm. The authors discuss the characteristics and potential applications

of Fog computing, providing valuable insights for researchers, practitioners, and

enthusiasts aiming to understand the evolving dynamics of cloud computing.

Din (2018) Published in IEEE Access in 2018work focuses on trust management

techniques for the IoT. The study likely offers a survey of existing trust mechanisms,

32Quality of Service

56

addressing the unique challenges posed by the IoT environment. Trust is crucial in

IoT systems, and this research is likely to provide valuable insights for ensuring

secure and reliable IoT deployments.

Ema (2019) assesses the suitability of integrating Fog computing alongside Cloud

computing. Contributes to the ongoing discourse on the complementary roles of Fog

and Cloud computing. The authors discuss the advantages and challenges of using

Fog computing alongside cloud resources, offering valuable insights for researchers

and practitioners navigating the integration of these computing paradigms.

Gandotra and Lall (2020) focus on the evolution of air pollution monitoring systems,

particularly for green 5thGeneration, transitioning from cloud to edge computing

their work contributes to the development of environmentally conscious solutions

for air quality monitoring. The authors discuss the shift from traditional cloud-based

systems to edge computing, providing valuable insights for researchers and

practitioners involved in environmental monitoring and the deployment of green

technologies.

González-Martínez (2015) presented a comprehensive survey on the intersection of

cloud computing and education, offering a state-of-the-art analysis. Published in

Computers & Education, their work is instrumental in understanding the

transformative impact of cloud technologies on educational practices. The authors

delve into various facets, from infrastructure to pedagogical approaches,

contributing a valuable resource for educators, policymakers, and researchers in the

field.

Heck (2018) investigates the current status and future trajectories of IoT applications

within the realms of fog and edge computing. The research work provides a

roadmap for understanding the evolving landscape of IoT deployment. The authors

discuss potential applications and challenges, contributing valuable insights for

researchers, developers, and industry professionals involved in the convergence of

IoT, fog, and edge computing.

Henze (2020) addresses the critical issue of data handling requirements in cloud

storage systems, providing insights into compliance measures. Published in the

IEEE Transactions on Cloud Computing, their work contributes to the evolving

57

landscape of cloud security. By emphasizing the importance of adhering to data

handling standards, the authors offer valuable guidance to practitioners and

researchers navigating the complexities of secure cloud storage.

Huttunen (2019) explores the synergy of big data, cloud computing, and data science

in the domains of finance and accounting their work sheds light on the

transformative impact of cutting-edge technologies in financial practices. The

authors provide valuable insights into the applications and implications of big data

and cloud computing in the financial sector.

Kaur (2020) conducted a systematic literature review addressing security issues

within the Fog computing environment. Published in the International Journal of

Wireless Information Networks, their work critically examines the current state of

security concerns in Fog computing. The authors provide a comprehensive

overview, identifying challenges and proposing potential solutions, making it a

valuable resource for researchers and practitioners navigating the security landscape

of Fog computing.

Khan (2017) presented a comprehensive review of Fog computing security, focusing

on current applications and security solutions. Published in the Journal of Cloud

Computing, their work provides a detailed analysis of security challenges in Fog

computing environments. The authors explore existing applications and propose

security solutions, contributing valuable insights for researchers, practitioners, and

policymakers concerned with the secure implementation of Fog computing

technologies.

From the view of Lai (2021) discussed that the application of the IoT and Fog

computing are essential to the development of smart cities because they allow for the

administration and interchange of massive amounts of data. The expansion of

transportation, tourism, industries, as well as business, has been made possible in

recent years by the two major sectors of Fog computing and the IoT. Therefore, the

establishment of a smart city will require careful research as well as approaches to

use technology innovation to increase the city's strengths. Increase the city's power

on numerous fronts. To address the difficulties of network scalability and large data

processing, we have explored the advantages of Fog computing in this study using

an IoT architecture that is integrated with Fog computing. As a result, the IoT

58

system's design is created in a way that allows the smart city to operate more

effectively through network transmission, information processing, and intelligent

perceptions.

Li (2016) provides an overview of the progress and challenges in mobile edge

computing. Presented at the IEEE Mobile Cloud, their work addresses the dynamic

landscape of mobile edge computing, discussing advancements and potential

hurdles. The authors contribute valuable insights into the current state of research

and development in mobile edge computing, making it a useful resource for

researchers and practitioners exploring the integration of computing resources at the

network edge.

Mao (2017) conducted a survey focusing on mobile edge computing from the

communication perspective. Published in the IEEE Communications Surveys &

Tutorials, their work offers a comprehensive analysis of mobile edge computing,

emphasizing communication aspects. The authors delve into key challenges,

solutions, and research directions, providing valuable insights for researchers,

practitioners, and industry professionals involved in mobile edge computing.

Marbukh (2019) FoNUM33 for the effective management of Fog computing

resources, the research work contributes to the optimization of resource utilization in

fog computing environments. The author introduces FoNUM as a framework,

discussing its implications and potential applications. This work is valuable for

researchers and practitioners seeking to enhance the efficiency and utility of Fog

computing resources.

Matrouk (2021) says that applications for the IoT have emerged as the most

significant methods in the world for facilitating interactions between people and

objects to improve quality of life in recent years. Consequently, as more devices are

employed in these applications, massive volumes of data will be generated. In 2012,

Cisco put out the concept of Fog computing, which sits in between end users 'IoT

devices and cloud computing. While Fog computing does not completely replace

Cloud computing, it does lessen its downsides, increase its efficiency, and offer

storage and computing capabilities at the edge of the internet. The job is a tiny

33 Focuses on Fog Network Utility Maximization

59

portion of work that needs to be finished in a certain amount of time. Task

scheduling becomes difficult in Fog computing because of the varied and scattered

resources it incorporates. To find the best solution for the NP-hard issue of task

scheduling, efficient task scheduling techniques must be used. In the preceding

years, several scheduling algorithms were suggested; most of them were used in

cloud computing, while a smaller number were used in fog computing. The primary

current scheduling methods in fog computing are reviewed and analyzed in-depth in

this study.

Mebrek (2017) proposes an efficient green solution addressing energy consumption

and delay considerations in the context of IoT-fog-cloud computing. Presented at the

IEEE NCA34, their work contributes to the development of environmentally

sustainable solutions for the integration of IoT, fog, and cloud computing. The

authors discuss the challenges and benefits of their proposed approach, offering

insights for researchers and practitioners aiming to enhance the efficiency of energy

usage in such computing environments.

Naha (2018) conducted a comprehensive survey examining trends, architectures,

requirements, and research directions in Fog computing. Published in IEEE Access,

their work provides an extensive overview of the evolving landscape of Fog

computing. The authors delve into key aspects, offering insights into trends,

architectural considerations, and future research directions. This survey is a valuable

resource for researchers, practitioners, and policymakers interested in the state of

Fog computing.

Parikh, Dave, Patel, and Doshi (2019) explore security and privacy issues in cloud,

fog, and edge computing. This research likely offers a comparative analysis of

security challenges across these computing paradigms, providing insights into the

unique considerations for each. As computing architectures continue to evolve,

understanding the nuanced security and privacy issues is crucial, making this work

relevant for researchers and practitioners alike.

34 Network Computing and Applications

60

According to Priyadarshinee (2021) by identifying the crucial success criteria in the

Indian context, the paper offers a two-stage SEM-ANN35 model for the

establishment of Smart cities using Fog Computing and the IoT. The study offers a

brand-new element, called fog computing. The IoT is further broken down into three

independent variables: IoP36, IoS37, and IoE38. A study of 13 smart cities and 379

respondents was used. ANN39 and SEM40, which quantify both linear and non-linear

interactions respectively, are used to analyze the data. The results of SEM show that

Fog computing has significantly benefited from the IoT, IoP, and IoS. The sole

exception in the study for the direction of future research in this field is that IoE

hurts Fog computing. IoT was shown to have a significant impact on Fog computing

in the subsequent layer of ANN analysis using the Structural Equation Modeling

accepted variables as input Fog computing. IoT was shown to have a significant

impact on Fog computing in the subsequent layer of ANN analysis using the SEM-

accepted variables as input Fog computing. Results from the Structural Equation

Modeling and neural network are also compared.

Sha (2020) conducted a survey examining edge computing-based designs

specifically addressing security concerns in the IoT. Published in Digital

Communication and Networks, their work explores the intersection of edge

computing and IoT security. The authors provide an overview of existing designs,

shedding light on the current landscape of security solutions for IoT within the

context of edge computing.

Stojmenovic and Wen (2014) presented at the Federated Conference on Computer

Science and Information Systems, introduced the Fog computing paradigm. This

foundational work likely outlines various scenarios where Fog computing can be

applied and explores associated security issues. As pioneers in the field, the authors

contribute key insights into the potential applications and security considerations of

Fog computing.

35Structural Equation Modeling-Artificial Neural Network
36Internet of People
37Internet of Services
38Internet of Energy
39Artificial Neural Networks
40 Structural Equation Modelling

61

Yi (2015) conducted a survey addressing security and privacy issues in Fog

computing. Presented at the International Conference on Wireless Algorithms,

Systems, and Applications, their work contributes to understanding the multifaceted

challenges surrounding security and privacy in Fog computing environments. The

authors explore existing issues and propose potential solutions, offering valuable

insights for researchers, practitioners, and policymakers concerned with the secure

implementation of Fog computing technologies.

Zhang (2018) provide a comprehensive examination of security and trust issues

within Fog computing. As Fog computing becomes increasingly integral to network

architectures, understanding the associated challenges becomes paramount. The

authors likely explore various dimensions of security concerns, ranging from data

integrity to trust establishment. The survey format indicates a broad analysis of

existing literature, offering valuable insights for researchers, practitioners, and

decision-makers navigating the evolving landscape of Fog computing security.

The study's findings support the building of additional Smart Cities and assist India's

government reach its goal of creating 100 SC41 as it moves toward sustainable

development IoT and Fog computing are revolutionizing industries by connecting

everyday objects to the internet and processing data closer to the source. They find

applications in smart cities, healthcare, manufacturing, and agriculture. In smart

cities, they monitor traffic and enhance public safety. Healthcare benefits from

remote patient monitoring, while manufacturing gains real-time quality control.

Agriculture uses IoT for precision farming. These technologies enable real-time data

analysis and control, transforming the way we live and work by increasing

efficiency and reducing latency in various sectors.

2.4 Fog Computing and Smart Cities

Fog computing is a technology that is rapidly influencing emerging digital

technologies and applications. There are many challenges in maintaining the data

through Fog computing technologies, these challenges are mentioned along with

their security concerns that help for the transition from cloud to Fog

41Smart Cities

62

Abbas, Shaheen, Elhoseny, Singh, and Majid (2018), introduce a novel approach to

developing sustainable smart cities using self-regulated agent systems and Fog

computing. It employs systems thinking to address the complexities of urban

environments, offering valuable insights into creating intelligent and eco-friendly

cities. The integration of self-regulated agent systems and Fog computing showcases

a forward-looking perspective on urban development.

Ahmed (2019) delivers a thorough examination by presenting a comprehensive

taxonomy and a set of requirements tailored for Fog computing applications. It

systematically categorizes various applications and delineates crucial criteria that are

integral to their successful implementation within Fog computing environments. The

work serves as a valuable resource for both researchers and practitioners, offering a

structured guide for navigating the intricate landscape of Fog computing

applications. With its detailed classification and outlined criteria, the study

contributes significantly to enhancing the understanding and practical deployment of

Fog computing technologies.

Adel (2020) says that the architecture dispersed throughout a region is referred to as

Fog computing architecture. This architectural arrangement primarily focuses on

software for the aim of constructing a good network, as well as physical and logical

network components. Users may communicate flexibly thanks to Fog computing

architecture, which also makes sure that storage services are kept up to speed for

handling data. However, it has been noted that the real-time application aspect of

Fog computing architecture has greatly increased its relevance in the field of

education. The survey's primary goal is to provide a comprehensive literature

evaluation of the technology of Fog computing in the IoT system for education. The

survey also concentrates on assessing the crucial elements that play a significant role

in the fields of education as well as looking into the limitations and results related to

the use of Fog computing technologies in educational systems from the perspectives

of privacy, security, and agility.

Al-khafajiy, Baker, Asim, Guo, Ranjan, Longo, Puthal, and Taylor (2020) this

research introduces COMMITMENT, a fog computing trust management approach,

addressing the critical aspect of trust in distributed environments. The proposed

63

model contributes to enhancing trustworthiness in fog computing systems, making it

a significant addition to the field of trust management in decentralized computing.

Alavi, Jiao, Buttlar, and Lajnef (2018) focused on the integration of the IoT in smart

cities, this paper presents a state-of-the-art review and outlines future trends. It

provides an extensive overview of IoT-enabled smart cities, offering valuable

insights into current advancements and potential directions for future development.

Arcaini, Riccobene, and Scandurra (2015) research work delves into the modeling

and analysis of MAPE-K42 feedback loops for self-adaptation in software systems.

By focusing on the MAPE-K feedback loop, the authors provide insights into the

mechanisms of self-adaptation, contributing to the broader field of autonomic

computing.

Atlam, Walters, and Wills (2018) according paper comprehensively explores fog

computing in conjunction with the IoT. It offers a critical analysis of the role of Fog

computing in IoT scenarios, highlighting its potential benefits and challenges. The

work serves as a valuable resource for researchers, practitioners, and policymakers

interested in the intersection of fog computing and IoT.

Badraddin (2019) explore the effectiveness of service decomposition in Fog

computing architecture for the IoT. It investigates how breaking down services in

Fog computing environments can enhance the efficiency of IoT applications. The

findings contribute to optimizing the design and deployment of services in Fog

computing for improved IoT functionality.

Baouya, Chehida, Bensalem, and Bozga (2020) presented at the Mediterranean

Conference on Embedded Computing, this paper explores the joint use of Fog

computing and blockchain for massive IoT deployment. It investigates the synergies

between Fog computing and blockchain technologies, providing insights into

potential applications and benefits in large-scale IoT scenarios.

Bellavista, Berrocal, Corradi, Das, Foschini, and Zanni (2019) they surveyed offers

an in-depth examination of Fog computing in the context of the IoT. It covers a wide

42 Monitor, Analyze, Plan, Execute, and Knowledge

64

range of topics, including architectures, communication protocols, and application

domains specific to Fog computing for IoT. The survey is a valuable resource for

researchers and practitioners seeking a comprehensive understanding of the

intersection of Fog computing and IoT.

According to Bonomi (2012), they surveyed that the characteristics of Fog

Computing make it an appropriate platform for critical IoT services and applications

like connected cars, smart grids, smart cities, and wireless sensor and actuator

networks. The author mentioned three main applications that are suitable for the Fog

computing architecture. First, connected vehicles, where cars are connected to other

cars and the surrounding environment. Second, smart grid, is an intelligent power

supply system for widely distributed suppliers and consumers. Third, wireless sensor

networks, are widely geographically distributed sensors for environment monitoring

systems.

Bosman, Lukkien, and Verhoeven (2011) work focuses on gateway architectures for

service-oriented application-level gateways. It addresses the challenges and

considerations in designing gateways that facilitate communication between service-

oriented applications. The research is particularly relevant for those involved in the

development and optimization of gateway systems.

Bourque and Fairley's (2014) research work outline the knowledge areas essential

for software engineering practitioners. As a widely recognized resource, Software

Engineering Body of Knowledge serves as a guide for educators, professionals, and

organizations in understanding the key concepts and practices in software

engineering.

Brogi, Forti, and Ibrahim (2018) researcher investigates the cost aspects associated

with deploying fog applications. By addressing the economic considerations of

deploying applications in Fog computing environments, the authors contribute to the

understanding of the financial implications and challenges in Fog application

deployment.

Cheng (2018) proposed easy programming of IoT services, authors stated the issues

in current programming models. As per author the most of the existing Fog

Computing frameworks either lack services programming models or defined

65

programming models based on their own private data model and interfaces. So, the

openness and interoperability of smart cities are quite limited. To tackle this problem

authors proposed an approach to design and implement a new Fog Computing

framework, named Fog Flow, for IoT smart city platforms. The proposed framework

may allow developers to program elastic IoT services easily over the cloud and

edges. In this paper to showcase how smart city use cases can be used with Fog

Flow authors describe different use cases and implement the application for anomaly

detection of energy consumption in smart cities.

Dang (2017) addressed the data security and performance issues. For this, the

authors proposed a Region-based Trust-Aware technique for trust-based

computation allocation to fog nodes of the region. The authors also proposed

privacy-aware role-based access control for fog nodes and also developed a mobility

management service that handles the changes in users and fog device’s locations.

Ghobaei-Arani (2020) discusses the fundamental difficulty in fog computing is

scheduling. Tasks that need computational intensity and tasks that require data

intensity are separated into two categories in a Fog environment. The task execution

time is shortened because the scheduler migrates the data to the high-productivity

resource when scheduling jobs that need intensive computation. On the other hand,

it is tried to minimize the amount of data transfer when scheduling the tasks needing

data intensity. As a result, data transfer takes less time.

Hamza and Attila (2020) explore approaches to integrating blockchain with Fog

computing, addressing the intersection of these two emerging technologies. The

work provides insights into the challenges and opportunities associated with

combining blockchain and Fog computing, contributing to the ongoing discourse on

secure and decentralized systems.

Hutun, Sariand Austerberg (2019) investigated the security implications of Fog

computing in the IoT, this paper provides insights into potential security challenges

and solutions. It contributes to the growing body of knowledge on securing IoT

ecosystems, particularly in the context of Fog computing.

Khakimov (2018) discussed the study of Fog Computing Structure. As the authors

discussed, the growth of mobile traffic, the support of mobility, and geometric

66

distribution are no less important. So, the emergence of Cloud computing for

centralized storage, retrieval, and management of information, and integration to

different mobile applications is an important task, for Fog computing is introduced

by Cisco, which is designed for local processing of tasks on Fog devices. In this

paper, authors emulated the operations of network nodes under Fog computing

conditions.

Kumari (2019) says that current power grid system has to be upgraded since there is

a rising daily demand for electricity. The contemporary, ICT-based smart grid has

already taken the place of the conventional electricity system. As the volume,

velocity, and diversity of the data generated by Singapore's smart meters fluctuate, it

is difficult to store, handle, and evaluate. Cloud computing, which offers real-time

response for several applications, is used to store and analyze the data. Fog

computing is a novel technique that places most of the computer resources near to

the end users, and has evolved to address the latency issue during data processing.

To bridge the gap between the processing power of remote data centers and SDs43 in

SG44 systems, it functions as a bridge between SG and Cloud computing. In the

forthcoming fifth generation, it is necessary to set up an advanced sensors and

measurement system with a communication network backbone to address the

difficulties 5th Generation. To determine the amount of energy needed by smart

devices at the fog layer, we have addressed the architecture of SG about Fog

computing in this work. Additionally, the setting of 5thGeneration network

infrastructure is examined about the communication and computing components.

The authors investigate the impact of Fog computing on reaction time, transmission

delay, and energy management expenses for applications with a high sensitivity to

delays.

Luigi (2010) considered a seminal work, this survey by Atzori, Iera, and Morabito

provides a comprehensive overview of the IoT. It covers key aspects such as

architectures, communication protocols, and application domains, offering a

foundational understanding of IoT concepts. The survey has been widely cited and

remains a fundamental reference in the IoT literature.

43Smart Devices
44Smart Grid

67

According to Qasem (2020), Fog computing is a novel network architecture and

computing paradigm that performs some processing tasks using user or near-user

devices (network edge). As a result, it gives cloud computing greater flexibility than

that offered by ubiquity networks. In this research, a flexible hierarchical Fog

computing-based smart city is suggested. By utilizing several network designs,

including Cloud computing, autonomous network architecture, and ubiquitous

network architecture, the suggested design seeks to solve the drawbacks of the

earlier methods. In light of this, the suggested method reduces the latency of data

processing and transmission with allowed real-time applications, distributes the

processing jobs among edge devices to lower the cost of data processing, and

enables cooperative data interchange among the applications of the smart city.

The architecture consists of five primary layers that may be raised or combined

depending on how much data is processed and sent in a given application.

Connection layer, real-time processing layer, neighborhood connecting layer,

primary processing layer, and data server layer are the related layers. Utilizing

simulating fog computing scenarios, a case study of a unique smart public parking,

travel, and direction adviser was built, and the findings demonstrated a considerable

reduction in real-time application latency, as well as cost and network use as

compared to the Cloud computing paradigm. Additionally, compared to a stationary

Fog-computing design, the suggested technique does not significantly compromise

time, cost, or network consumption while increasing the scalability and

dependability of the users' access.

According to Songhorabadi (2020), the development of smart cities today,

particularly in location-aware, latency-sensitive, and security-critical applications

(like emergency fire events, patient health monitoring, or real-time manufacturing),

heavily depends on more sophisticated computing paradigms that can meet these

requirements. Because it is situated closer to the end devices, Fog computing, a

strong Cloud computing supplement, plays a significant role in this respect.

However, the methods used in smart cities are typically cloud-based, which limits

the flexibility and dependability as well as the security and time-sensitive services.

68

This research work suggests a systematic literature review (SLR45) for the cutting-

edge Fog-based technologies in smart cities to circumvent the limits of the cloud and

other associated computing paradigms, such as edge computing. In addition, a

proposed taxonomy is divided into three types based on the content of the examined

studies: service-based, resource-based, and application-based. Additionally, each

class's evaluation criteria, tools, techniques, merits, and demerits are examined in

this SLR. Additionally, each class's proposed algorithm types are specified. By

categorizing future trends and difficulties into useful sub-classes, it is possible to

give complete and distinct open topics and challenges while also taking into

consideration different viewpoints.

Velasco (2018) reviewed distributed and ultra-dense Fog Computing infrastructure,

which can be allocated at the extreme edge of wired and wireless networks for

telecom operators to provide multiple unified, cost-effective, and new 5thGeneration

services, such as Network Function Virtualization, Mobile Edge Computing, and

services for third parties e.g., smart cities, vertical industries or IoT. The proposed

architecture consists of three main building blocks: a scalable node that is

seamlessly integrated into the Telecom infrastructure; a controller, focused on

service assurance that is integrated into the management and orchestration

architecture of the Telecom operator, and services running on top of the Telecom

infrastructure.

Zhang (2020) discussed building "smart cities" makes extensive use of Fog

computing and IoT technologies, which has the potential to significantly improve

the administration and interchange of urban information. Fog computing and the

IoT, two emerging network technologies, may be utilized to make it simpler to

create smart cities, which are beneficial for the growth of urban business, industry,

and other industries as well as tourist and transit management. As a result, the

creation of a smart city will significantly strengthen the city's capacity for overall

growth.

45Systematic Literature Review

69

We examine the benefits of Fog computing and suggest a Fog computing-based IoT

architecture that successfully addresses the issues of huge data processing and

network scalability. Based on this, a layered fog computing network architecture is

suggested to improve the city's functioning through different intelligent perceptions,

information processing, and network transmission techniques.

2.5 Resource Allocation and Task Scheduling Technique

Task scheduling and resource allocation are mandatory parts of cloud computing

research. The efficiency of resource uses depends on the scheduling and load-

balancing methodologies, rather than the random allocation of resources. Cloud

computing is widely used for solving complex tasks

Aazam (2015) discussed a system for supplying resources in a Micro data center

using fog. This document unequivocally indicates that resources are calculated and

managed based on variable customer service client relinquish likelihood. Based on

previously predicted resources from the service provider, this model offers the best

service possible to its clients. This mechanism is evaluated using the Cloud Sim

toolkit, and a probabilistic model is utilized to estimate the availability of resources.

This technique aids in determining the precise number of resources that the client

will require. Additionally, it decreases resource waste, boosts revenue, and may be

used in a wide range of cloud service provider scenarios.

Aazam (2015) provided a method to estimate resources for a Fog-based mini data

center and created a pricing structure for an IoT. Issues including resource

estimation, reservations, and pricing strategy for current and potential clients

depending on their attributes were all tackled in this research work. Using data from

previous resource usage by cloud service users, resources are allotted to existing

clients. As a result, resource prediction and pre-allocation are also based on user

behavior and the likelihood that resources will be used in the future. This method

makes it simpler for all types of cloud service providers to anticipate how their

customers will use their resources.

70

Abdul-Qawy (2015) introduces the power of information and communications

technology ICT46 as it becomes a vital component of our infrastructure that is

essential to our way of life by enabling the connecting of heterogeneous devices in

various ways. To mention few, examples include personal computing, sensing,

surveillance, smart homes, entertainment, transportation, and video streaming. The

Internet is a vital living system that is continually changing and growing, giving rise

to new technologies, applications, protocols, and algorithms. As wireless

communication trends pick up speed, mobile broadband, and Internet access are

becoming increasingly innovative. Communication devices that don't require

infrastructure are becoming more common, intelligent, powerful, connectable,

compact, affordable, and simple to install. This introduces a new direction for ICT

civilization in the future the IoT. The IoT, formerly known as Machine-to-Machine

communications, has recently gained prominence in the ICT industry and research

communities. We present an overview of the IoT paradigm, its concepts, principles,

and prospective advantages in this article. We concentrate on the key IoT

technologies, developing protocols, and well-known applications. This introduction

might be useful for anyone who wants to learn more about the IoT and get involved

in its development.

Abomhara (2014) discussed connecting common things, connectivity fosters the

growth of the IoT. Because even little interactions between these things might

contribute to collective intelligence in an IoT network, the connectivity of these

objects is crucial. It makes things compatible with and accessible via networks. By

connecting smart items and apps, this connection can open up new commercial

prospects for the IoT. The IoT requires connectivity that goes beyond just attaching

a Wi-Fi module and calling it a day. Network compatibility and accessibility are

made possible via connectivity. Accessibility involves joining a network, whereas

compatibility gives everyone the same capacity to use and create data. If this seems

familiar, it's probably because Metcalfe's Law applies to the IoT

46Information and Communications Technology

71

Attar and Sutagundar (2018) research work provides a survey on resource

management for fog-enhanced services and applications. It comprehensively reviews

existing approaches and strategies for managing resources in Fog computing

environments. The survey serves as a valuable resource for researchers and

practitioners seeking an overview of the state-of-the-art in fog computing resource

management.

Bitam (2018) discussed the better distribution of a set of jobs among all the Fog

computing nodes and suggested a BLA47. When compared to the genetic algorithm

and particle swarm optimization algorithms, the suggested approach performs better

in terms of execution time and memory allocation. However, the suggested

technique has a low degree of scalability. Additionally, it ignores the dynamic work

scheduling. Furthermore, the approach has only been evaluated by the BLA, authors

on tiny datasets, and task execution reaction time is lengthy.

Chen (2014) discussed the main function of the IoT is data collection from its

surroundings, which is made possible by the dynamic changes that occur around the

devices. These devices' states fluctuate dynamically, for instance, whether they are

sleeping or waking up, connected or not, and in various contexts that include

temperature, location, and speed. The quantity of devices fluctuates dynamically

with a person, place, and time in addition to the status of each gadget. Device

context, such as location and speed, as well as the states of devices, such as sleeping

and waking up, connected and/or disconnected, also alter dynamically. Additionally,

the quantity of devices may fluctuate.

Confais (2017) proposes a first-class object store service for fog facilities. The

proposed system is built with Scale-out Network Attached Storage 2 system and

Inter Planetary File System 3, a Bit Torrent-based object store spread throughout the

fog infrastructure. Authors used Scale-out Network Attached Storage on each site to

reduce inter-site exchanges that are mandatory for metadata management in Inter

Planetary File System implementation. This experiment gives direction to improve

the performance and fault tolerance of Fog.

47Binary Lion Algorithm

72

Edemacu and Bulega (2014) explore the resource sharing between M2M and H2H48

traffic under a time-controlled scheduling scheme in Long-Term Evolution

networks. The research addresses the challenges of efficiently allocating resources to

accommodate both M2M and H2H communications, contributing to enhanced

network performance.

As per the research, Giordano (2016) Global Smart City projects are made possible

by new IoT applications that make use of ubiquity in connection, big data, and

analytics. With the help of these brand-new apps, users will be able to monitor,

manage, and control devices remotely as well as extract valuable insights and

information from huge streams of real-time data. The adoption of new paradigms is

necessary to support this novel approach. To develop control systems based on the

decentralization of control functions across distributed autonomous and cooperative

entities that are operating at the edge of the network, agent technology is integrated

with the emerging notion of Fog computing in this study. The Rainbow platform

aims to minimize the computation's distance from the physical component. Using

adaptive and decentralized algorithms that take advantage of the concepts of

collective intelligence, multi-agent systems running on top of Rainbow develop

smart services.

As per Gu (2015) a methodology for heuristic resource management in fog was put

forth by the author. For the formulation of this problem, mixed linear programming

and mixed nonlinear programming serve as the fundamentals. To cut costs in

Medical Cyber-Physical Systems, they proposed a two-step nonlinear heuristic

approach. They demonstrated that this method performs better than previous

algorithms by comparing it to the existing greedy technique. Due to the high

computing complexity of the mixed integer linear programming model, they used a

two-phase linear heuristic approach to lower the cost of medical cyber-physical

systems.

Hamdoun, Rachedi, and Ghamri-Doudane (2015) the paper introduces an

interference-aware bipartite graph approach for radio resource sharing in MTC49

48Human-to-Human
49Machine Type Communication

73

within Long-Term Evolution Advanced Networks. The work addresses the

challenges of efficient radio resource allocation for MTC applications, contributing

to improved communication reliability and performance.

Hassan (2015s) authors focus on the most current research directions in this area to

highlight the IoT idea in general and discuss the major issues of the IoT ecosystem.

IoT a new technology that expresses a contemporary wireless communications

network, may be characterized as an intelligent and interoperable node connected to

a dynamic global infrastructure network. It also aims to execute the connection

notion of everything from anywhere at any time. The IoT environment has a wide

range of challenges that have an impact on their performance. These challenges can

be categorized into two groups: i) General challenges, like communication,

heterogeneity, virtualization, and security; and ii) Unique challenges, like WSN50,

and QoS, which is thought of as a factor that unites both general and special

challenges.

As per Heer (2011) is focused on the security problem in IP-based IoT systems. The

author claimed that the internet serves as the foundation for all device connectivity

in an IoT system. Security concerns in IP51-based IoT systems are therefore a major

problem. Additionally, the capabilities and life cycle of every IoT system object

should be taken into account while designing the security architecture. It also

incorporates the use of security standards and a trusted third party. It is also desired

to have a security architecture that can grow to accommodate both small- and large-

scale IoT objects. The study made the point that because the IoT has spawned a new

kind of cross-network communication between various objects, standard end-to-end

internet protocols are unable to accommodate this communication. Therefore, to

assure end-to-end security, new protocols need to be established taking the

translations at the gateways into account. All communication-related levels have

their security concerns and needs. As a result, if just one layer's criteria are met, the

system will be susceptible, hence security needs to be provided for all layers.

50Wireless Sensor Networks
51Internet Protocol

74

Hoang and Dang (2017) present paper an optimization approach for task scheduling

in fog-based regions and the cloud. The work addresses the coordination and

scheduling challenges in distributed fog and cloud environments. Optimizing task

scheduling enhances resource utilization and performance in fog computing

architectures.

Jia, Hu, Zeng, Xu, and Yang (2018) authors present a double-matching resource

allocation strategy designed for Fog computing networks with a focus on cost

efficiency. This strategy aims to optimize the allocation of resources to tasks in a

way that enhances cost-effectiveness. The work contributes to the economic viability

of fog computing networks.

Kimovski (2018) introduces an adaptive nature-inspired fog architecture, presenting

a novel approach to designing Fog computing systems. The architecture draws

inspiration from natural systems to enhance adaptability and efficiency in fog

environments. By presenting this innovative perspective, the authors contribute to

the development of more resilient and self-adapting Fog computing infrastructures.

Liu (2018) proposed object tracking using fog-based intelligent surveillance in

public spaces. In this system, Fog computing platform was deployed to accelerate

the proposed tracking approach. The tracker was constructed to take multiple

positions’ detections. The detection position was then adjusted as per the optical

flow of the object and the alternate template was stored with the template update

mechanism, and all were computed at the fog layer.

Li, Zhao, Gong, and Zhang (2019) researcher address energy-efficient computation

offloading and resource allocation in fog computing environments for the Internet of

Everything. The authors propose strategies to optimize the allocation of resources

and the offloading of computations, contributing to the energy efficiency of fog-

based Internet of Everything systems.

Liu, Qi, Zhou, and Wu (2018) the authors propose a task-scheduling algorithm for

fog computing environments based on classification mining. This algorithm

leverages data classification techniques to optimize task scheduling in fog

computing systems. The work addresses the challenge of efficient resource

75

utilization in dynamic fog environments, contributing to the improvement of task

execution in such settings.

Liu, Yang, Wang, and Mao (2018) propose a dispersive stable task scheduling

algorithm designed for heterogeneous fog networks. This algorithm aims to optimize

task scheduling by considering the diverse characteristics of nodes in heterogeneous

fog environments. The work contributes to the efficient utilization of resources in

fog networks with varying capabilities.

Mohan and Thangavel (2013) focus on resource selection in grid computing

environments, incorporating trust evaluation using feedback and performance

metrics. The work addresses the challenges of selecting trustworthy and efficient

resources in grid environments, contributing to the overall reliability of grid-based

computing systems.

Ni, Zhang, Jiang, Yan, and Yu (2017) research work introduces a resource allocation

strategy for Fog computing based on priced timed Petri nets. This modeling

approach enables the efficient allocation of resources in fog environments,

considering both time and cost factors. The strategy contributes to the effective

utilization of resources in Fog computing architectures.

Paharia (2018) says that Fog Computing is a protective mechanism against

Distributed Denial of Service attacks. The authors proposed an architecture to block

the malicious traffic generated by the Distributed Denial of Service attack from user

to cloud. Fog functions as a filtering layer for the traffic generated. This study

primarily works to improve the overall performance of the network and enhances the

reduction in traffic forwarded to the cloud.

Pham et al. (2017) research work introduces an innovative and cost-effective

approach for task scheduling, focusing on collaborative efforts between cloud and

fog computing. The primary goal is to dynamically allocate tasks in a manner that

optimizes both cost and performance considerations. By adopting a collaborative

strategy, the proposed approach enhances resource utilization efficiency and

improves the overall execution of tasks. This novel method not only addresses the

challenges of task allocation in a dynamic environment but also contributes to

achieving a balance between cost-effectiveness and high performance. The

76

integration of cloud and fog computing in task scheduling demonstrates a forward-

thinking solution that can potentially bring about significant advancements in

optimizing computational resources and task execution efficiency.

Prakash and Ravichandran (2012) research authors propose an efficient resource

selection and binding model for job scheduling in grid computing environments.

This model aims to optimize the allocation of resources for executing jobs,

contributing to improved efficiency and performance in grid computing systems.

Rahmani (2015) says that IoT communication is dominated by wireless nodes. Many

wireless protocols are tuned to utilize less power for functioning, limited

communication, or increased coverage range due to resource limitations at the

perception layer. Currently, the sector offers a wide range of various approaches. To

speed communication with the cloud layer and combine these many wireless

protocols, the fog layer is in a perfect position. As a result, system reliability is

increased, security is provided, communications between devices are routed, and the

administration of sensor and actuator subnetworks is aided. Furthermore, this layer

enables the compatibility of diverse protocols by detecting and comprehending the

representation format. Non-IP-based devices may now be seen and reached over the

Internet thanks to the Fog layer.

According to Ravi (2016), Fog's architectural design makes it simple to operate and

communicate with the devices on the platform. The physical layer is the

foundational component of a Fog computing system. This layer is in charge of

connecting many tools or devices to a common platform and facilitating information

flow. There are devices, terminals, sensors, and virtual sensors in the physical layer.

The nodes of this layer are managed according to their purposes, and sensors in this

layer are decentralized to detect data from surrounding places faster and

communicate it to a higher layer of the architecture. The monitor layer, which is the

second layer in the Fog computing architecture, keeps an eye on resource utilization

as well as the performance of nodes and sensors. The preprocessing layer, which is

the next layer in the Fog computing architecture, is in charge of maintaining the

record data and carrying out information analysis.

77

Saini (2019) says that a worldwide network made up of people, intelligent things,

smart gadgets, information, and data transformed thanks to the IoT. It goes without

saying that as more gadgets connect to the internet, the difficulties in protecting the

information they broadcast and the communications they start grow. IoT device

usage has increased significantly over the years, mostly in the home and in

manufacturing. With the former, a whole ecosystem centered on Amazon's Echo

devices that make use of the Alexa Voice Service has been created. Apple, Google,

and Microsoft have all done the same. The onus of protecting the devices falls to the

platform providers because they are separate, closed platforms. We focus on cyber

security in manufacturing and associated industries in this study. As more and more

equipment and devices are brought online, sectors including manufacturing, oil and

gas, refining, pharmaceuticals, food and beverage, water treatment, and many more

are continually trying to add the necessary levels of security. Manufacturers of

devices and plant operations managers are under continual pressure to safeguard

their physical assets from cyber threats. Additionally, there are significant

differences between each of these businesses' data types, IoT device topologies,

threat management challenges, and compliance requirements.

In the research study done by Shalini (2019), paradigm of Cloud computing has

been advanced or extended by Fog computing. It is a sophisticated distributed

system that works over the whole network; it keeps data near to the user and speeds

up information delivery. In this study, the architecture of Fog computing is

discussed. The various levels are used to describe how Fog computing functions.

The downsides of Cloud computing and how Fog computing addresses them were

explored, along with certain obstacles, unresolved problems, and Fog computing

applications in many sectors.

Skarlat (2016) provided a method to estimate resources for a Fog-based mini data

center and created a pricing structure for an IoT. Issues including resource

estimation, reservations, and pricing strategy for current and potential clients

depending on their attributes were all tackled in this research work. Using data from

previous resource usage by cloud service users, resources are allotted to existing

clients. As a result, resource prediction and pre-allocation are also based on user

behavior and the likelihood that resources will be used in the future. This method

78

makes it simpler for all types of cloud service providers to anticipate how their

customers will use their resources CSP52. Fog colonies are small data centers made

up of a lot of Fog cells. The network may switch from centralized to decentralized

processing with the help of the Fog colonies, which also facilitate requests from the

fog cells for resource provisioning tasks. By managing fog cells, Fog orchestration

manages the Fog colony and offers resource provisioning services via the Fog cloud

interface.

Sun and Zhang (2017) present a resource-sharing model based on a repeated game in

Fog computing environments. The model explores the dynamics of resource sharing

over time, considering the repeated interactions between nodes. The proposed

approach contributes to a deeper understanding of resource-sharing dynamics in Fog

computing systems.

Wang (2019) proposes to address the issue of terminal devices with constrained

computational capabilities, excessive energy consumption, and offer a job

scheduling HH53 algorithm for various fog nodes. The IPSO54 method and the

IACO55 algorithm is combined in the HH algorithm. MATLAB is used by the

writers to evaluate their work. Results of the experiment demonstrate that the

algorithm outperforms IPSO, IACO, and RR56on three performance criteria Make-

span, energy consumption, and reliability. After all, the clustering of tasks and fog

nodes is not covered by this approach.

The research study was done by Yin (2018), As an extension of cloud computing,

Fog computing has been proposed to offer processing, storage, and network service

at the network edge. If the intermediary layer between the industrial cloud and

terminal device is taken into account, Fog computing can offer a plethora of

computational and storage capabilities, such as defect detection and status analysis

of devices in assembly lines. However, the deployment of novel virtualization

technologies in the job scheduling and resource management of Fog computing is

hampered by limited resources and low-latency services. As a result, we create a

52Cloud Service Providers
53 Hybrid Heuristic
54Improved Particle Swarm Optimization
55Improved Ant Colony Optimization
56Round Robin

79

new work scheduling model by taking containers into account. Then, to guarantee

task completion on time and maximize the number of concurrent jobs for the Fog

node, a task scheduling algorithm is built. Finally, by the properties of the

containers, we suggest a reallocation strategy to decrease task delays. The outcomes

show that our suggested task scheduling technique and reallocation strategy may

successfully decrease task delays and increase the number of processes running

concurrently in Fog nodes. Considers the function of containers in a task scheduling

paradigm. To increase the number of concurrent jobs for the Fog node and ensure

that tasks are completed on time, they also created a task scheduling algorithm.

Additionally, they suggested a reallocation strategy to decrease task latency based

on the features of the containers. When a job's request is approved, the task

scheduler distributes it. The work is delivered directly if it can only be finished in

the cloud or the fog node. The task scheduler will need to choose where to put it as

long as the cloud and the fog node both successfully execute the task. Low-

computing tasks are carried out at fog nodes, whilst high-computing tasks are sent to

the cloud. The suggested algorithm and reallocation method shorten task delays and

increase the efficiency with which Fog nodes use their resources. However, the

authors overlook the computing time on the cloud, which in a practical scenario

should be considered. To shorten task execution time, the picture positioning of

containers is also an important issue that has to be resolved.

Yin, Luo, and Luo (2018) address task scheduling and resource allocation in Fog

computing with a focus on containers for smart manufacturing. This work explores

the use of containerization technology to enhance the efficiency of task scheduling

and resource allocation in fog environments, specifically in the context of smart

manufacturing.

Yang, Wang, Zhang, Chen, Luo, and Zhou (2018) introduced a maximal energy-

efficient task scheduling algorithm tailored for homogeneous fog networks. The

focus is on optimizing energy consumption in Fog computing environments with

uniform node characteristics. The proposed algorithm aims to achieve efficient task

scheduling while minimizing energy usage, contributing to sustainability in Fog

computing.

80

Yang, Zhao, Zhang, Chen, Luo, and Wang (2018) introduced a delay energy-

balanced task scheduling algorithm designed for homogeneous fog networks. The

algorithm aims to balance both delay and energy considerations in the scheduling of

tasks, contributing to improved overall system performance. DEBTS addresses the

trade-off between latency and energy consumption in fog computing environments.

Yuan (2017) proposed a fast search and find density peaks-based fog node location

technique. The authors used a density peaks-based fog node location strategy to

locate the fog nodes and determine their resources. To locate fog node authors

treated this problem as a clustering problem with different attributes. To perform

this, they proposed an improved Fast Search and Find of Density Peaks-based fog

node location algorithm, which uses time-sensitive features of IoT applications and

improves the fast search and finds density peaks clustering algorithm to make this

clustering algorithm more robust and adaptable.

Zhenqi, Haifeng, Xuefen, and Hongxia (2013) research focus on the uplink

scheduling algorithm for massive M2M and H2H services in Long-Term Evolution

networks. The study addresses the specific challenges associated with coordinating

uplink communications for diverse services, contributing to the optimization of

network resources.

The literature review is very promising for future research in Fog Computing and its

different applications in Smart Cities. In above literature reviewed different proposed

Fog Computing architectures. The literature also identified challenges like security and

privacy issues, scheduling, and allocation of resources, etc. These challenges can be

achieved using research in fog computing, IoT, and traffic congestion through ML57

revealing the significant impact of ML techniques in addressing traffic-related

challenges in IoT-based fog computing environments. Fog computing is a

decentralized architecture that extends Cloud computing capabilities to the edge of

the network, enabling real-time data processing and reducing latency for IoT

devices. ML algorithms are leveraged to analyze the massive data generated by IoT

devices, predict traffic patterns, and optimize traffic flow. The review highlights the

use of ML-based traffic prediction models, such as time-series forecasting, neural

57 Machine Learning

81

networks, and support vector machines, to accurately predict traffic congestion and

provide timely information to drivers and transportation authorities. Moreover, the

integration of fog computing and ML facilitates real-time data analytics and

decision-making, enabling adaptive traffic management and intelligent resource

allocation to alleviate congestion and improve overall traffic efficiency. The

literature demonstrates the potential of Fog computing and ML in transforming

transportation systems, reducing traffic congestion, and enhancing the overall

transportation experience in smart cities and urban environments.

82

Chapter - 3
Research Methodology

INTROD UCT ION

3.1 Significance of Research

3.2 Research Gaps

3.3 Problem Statement

3.4 Objectives

3.5 Hypothesis

3.6 Scope of Study

3.7 Research Methodology

 3.7.1 Sources of Information

 3.7.2 Data Collection

 3.7.3 Through Participation in Conference and Paper Published

 3.7.4 Performance Evaluation

 3.7.5 Machine Learning Predictive Model Development

3.8 Tools and Technique

 3.8.1 Weka Tools and Technique

 3.8.2 Experimental Setup

 3.8.3 Hypothesis testing tool

3.9 Applied Methodology

 3.9.1 Fog-Cloud Smart Task Offloading Model

 3.9.2 Task Offloading

 3.9.3 Workflow Diagram

3.10 Performance Metrics for Supervised and Unsupervised Algorithm

 3.10.1 Internal Validation

 3.10.2 External Validation

 3.10.3 Simulation Setup

83

Research methodology is the systematic and scientific approach used to conduct

research, investigate problems, and gather data for a specific purpose. It involves

techniques and procedures to identify, collect, analyze, and interpret data, addressing

research questions or solving research problems

3.1 Significance of Research

Research methodology is the systematic approach to solving research problems, it

involves selecting appropriate methods for data collection, analysis, and

interpretation to ensure the validity and reliability of results. Key components

include defining research questions, conducting literature reviews, choosing

qualitative, quantitative, or mixed methods, and employing tools like surveys,

experiments, or case studies. The proper methodology enables rigorous and

reproducible findings, essential for advancing knowledge in their field.

Understanding and applying the right methodology is crucial for producing high-

quality, impactful research that withstands academic scrutiny.

The methodology ensures the research's validity, reliability, and reproducibility. Key

aspects include selecting tools like surveys, experiments, or case studies, and

applying statistical or thematic analysis techniques. A well-defined methodology is

crucial for producing credible, high-quality research that contributes meaningfully to

the academic field.

3.2 Research Gaps

Fog computing has attracted a great number of researchers so, it is a trending topic

for research. The literature study motivates research in Fog Computing by

introducing a bright future and its application of it. The researchers stated that Fog

Computing will show how today's IoT and cloud computing work. The researchers

also stated the challenges to be faced in the implementation of Fog Computing in

real-life applications. Currently, researchers are working on the implementation of

fog for commercial applications. The challenge for further studies and solutions

from experts is that we need to keep ourselves updated for online publications and

updates from the Open Fog consortium related to Fog Computing.

Even though fog computing has emerged as a potential standard paradigm that offers

services to different IoT and mobile devices at the network edge, there are still many

https://paperpal.com/blog/academic-writing-guides/what-is-research-methodology
https://paperpal.com/blog/academic-writing-guides/what-is-research-methodology
https://paperpal.com/blog/academic-writing-guides/what-is-research-methodology

84

research issues that need to be resolved. Reaching the desired performance level,

computing resource provisioning in terms of task offloading, and achieving the best

response time with reduced latency are some examples of research challenges due to

the heterogeneous nature of fog in terms of node capabilities while residing within

the IoT domain.

Fog-Cloud Collaboration is a computing model that uses both fog and cloud

computing. Fog computing processes data close to the source, reducing latency,

while cloud computing handles large-scale data storage and processing. Together,

they provide efficient, flexible data management, enhancing IoT performance,

improving security, and supporting real-time applications. This collaboration

optimizes resource usage, offering a scalable, sustainable solution for complex

computing needs.

Figure 3.1: Data Processing Challenges at Cloud Data Center (Deafallah, 2022)

Figure 3.1 shows cloud data centers encounter several significant challenges in data

processing due to the vast scale and complexity of their operations. Managing and

processing big data from various sources requires robust distributed storage systems

and parallel processing capabilities. Data security and privacy are crucial concerns,

necessitating stringent access controls, encryption, and compliance with privacy

regulations. Latency and network congestion can impact data processing

85

performance, motivating the use of content delivery networks and edge computing

strategies. Scalability, resource allocation, energy efficiency, data backup, and

disaster recovery planning are essential for maintaining optimal performance.

Moreover, addressing data processing bottlenecks, handling heterogeneous data

formats, complying with data privacy regulations from multiple jurisdictions, and

enabling real-time data processing pose additional challenges. Cloud data centers

continuously innovate and leverage advanced technologies to overcome these

challenges, ensuring efficient and reliable data processing services for their users.

3.3 Problem Statement

Our research aims to understand the importance of cloud computing and fog

computing. Fog computing solves problems like delay in response, insufficient

bandwidth, no immediate response, security, and reduces the latency issue of cloud

computing. The central problem focuses on:

“Smart Fog is a Collaborative Approach to Share Computational Power of Fog

Devices for Fog Computing in Smart City IoT Network”

The research work studies the level of computational work, latency issue, and the

efficiency of fog computational devices over various parameters like processing

speed, scheduling, and task allocation in the fog layer, using fog computing and

Machine Learning algorithms to reduce the problem and find trends, issue,

challenges, suggestion, and future potential of computing problem in Fog

Computing environment will share computational power to IoT devices with low

computational power. Overall, the research work finds the use of fog computing

networks to solve the future journey.

3.4 Objectives

The objectives of the research are clearly defined goals that guide the study,

focusing on specific outcomes to be achieved. They include exploring new areas,

describing phenomena, explaining relationships, predicting future events, and

applying findings to solve real-world problems. Research objectives are specific

goals that guide the focus and outcomes of a study. These objectives can vary widely

but generally include exploration, description, explanation, prediction, application,

evaluation, theory development, action, documentation, and innovation. These

86

objectives ensure that the research remains focused, relevant, and systematic. They

also help in evaluating the success and impact of the study. The purpose of this

research work is to propose a “SMART FOG” protocol based on a technique to

connect FOG computational devices which enables devices to share their resources

within the Fog network and reduces the latency issue of cloud computing.

1. To study IoT-based architectures and protocols for understanding the

connectivity between IoT devices.

2. Analyse the current IoT infrastructure and evaluate various layers of

communication protocols to design the SMART FOG Protocol-based

technique.

3. Exploring the challenges to be faced in implementing the SMART FOG

protocol-based technique on computation-enabled devices.

4. To explore the task scheduling and allocation techniques for Fog

Computing nodes in SMART FOG.

5. Determine the fault tolerance mechanism in SMART FOG protocol-

based technique by allocating tasks to multiple recipients.

6. Discover the efficiency of fog computational devices over various

parameters like processing speed, scheduling, and task allocation in fog

layer.

Our research work focuses on the above-stated objective which aims to use the

computational power of computation-enabled devices to collaboratively perform

tasks and speed up the processing.

3.5 Hypothesis

The hypothesis is nothing but a tentative statement to predict the expected outcomes

of a study. Defining hypothesis helps in designing new experiments and

observations. The following hypotheses were tested for the system in the proposed

research work.

This hypothesis is subdivided into H01 to H06 to explore the efficiency and various

measures of the Smart Fog protocol-based system compared to cloud-based systems,

aiming to comprehensively evaluate their impact and effectiveness. The sub

hypothesis from Ha1 to Ha6 are as follows:

87

1. H01: There is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure

execution time.

2 H02: There is no significant difference between SMART FOG protocol-

based System and cloud-based system based on the performance measure

latency.

3 H03: There is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure

energy consumed.

4 H04: There is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure

cost of execution.

5 H05: There is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure of

total network usage.

6 H06: There is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure

computational power consumed.

Dividing the main hypothesis into these sub-hypotheses enables researchers to

methodically investigate different facets of the Smart Fog protocol-based system and

compare its efficiency and performance against a cloud-based counterpart. This

methodical approach facilitates a thorough assessment of Fog Computing

technology and its potential benefits in comparison to traditional cloud solutions

within IoT environments.

88

3.6 Scope of Study

As studying about advances in new computational paradigm and the use of cloud

computing and IoT have great futuristic applications. This emerging IoT introduces

many challenges which cannot be handled by today’s cloud computing. In this

research work we deal with the IoT Environment features like low latency, high

distribution, large-scale sensor network, and mobility support and device

heterogeneity. This proposed SMART FOG system allows us to create a

collaborative environment for IoT network. In the proposed system, we are going to

implement SMART FOG protocol-based technique which will allow Fog nodes to

share computing and storage power to IoT devices that have low computational

power within IoT network. The proposed system will be able to schedule the tasks

assigned to fog node for easy processing and efficient resource management. The

proposed work is focused on creating a resilient environment using SMART FOG

which will create trust in fog computing. As fog computing is in its infancy, there

are still many open challenges are present. The SMART FOG will create trust

between fog clients and fog environment by providing fault-tolerant and secure

technique for fog computing. This research will identify some of these challenges

and try to find a solution in the proposed system.

3.7 Research Methodology

The research methodology deals with the hypothesis which is the outcome of the

objectives with the results. The proposed study attempts to implement SMART

FOG, a collaborative approach using Fog Computing. The research involves

quantitative and qualitative approaches. The SMART FOG collaboratively used

computational power and storage of devices connected within Fog layer. The fog

layer acts as an intermediate between IoT networks and Cloud centers. In this

research, we have identified different open challenges in fog computing and tried to

resolve some of them using SMART FOG. The hypothesis is nothing but a tentative

statement to predict the expected outcomes of a study. Defining hypotheses helps in

designing new experiments and observations. The following hypothesis is being

tested for the system in the proposed research work. The hypothesis has arrived at

the expected outcome of the system. “SMART FOG protocol-based technique to

create Fog Computing environment will share computational power to IoT devices

with low computational power”.

89

3.7.1 Sources of Information

Information is gathered from journals, articles, and publications about fog

computing are the main sources of information. The OpenFog consortium provided

white papers which are very useful as the main source of information. The OpenFog

community provided papers on the taxonomy of Fog Computing, basic architectural

design, and structure of fog computing and their multiple layers of implementation.

For further information, various articles from industrial experts who are connected

to Fog Computing will act as a lighthouse in the dark.

3.7.2 Data Collection

The universe for the present study is comprised of smart city applications, all

peoples within a smart city, and cloud centers. The universe also includes the

devices within the IoT network, fog devices, etc. The smart city sample application

is being randomly selected to implement SMART FOG and the overall performance

and efficiency are being evaluated.

As per the SMART FOG applications, the IoT network generates some amount of

data using sensors that are being used in computing and to test the performance of

SMART FOG. The data generated in this research work is application-oriented. If

we consider security surveillance applications for smart cities then the data is

collected of images of events, video streams collected from cameras, and being used

for further applications. The main input to the proposed system is requests from IoT

devices for shared computational power.

Cloud -Fog Simulators for Data Collection

The primary goal of the research work is to examine and find the technologies

associated with the SMART FOG project. To find new emerging technologies that

can impact the cloud system in SMART FOG computing and also improve the

reliability of Predictive models based on Artificial Intelligence and Machine

Learning Algorithms is being developed to resolve computing problems.

iFogSim Simulators

Many available simulators can simulate the scenarios of cloud-fog computing

environments such as EdgeCloudSim, MobIoTSim, SimpleIoTSimulator, IBM

BlueMix, Google IoT Sim, and EmuFog. Most of the available simulators are

90

similar in their functionalities, programming language, or architecture. Therefore,

we limited our study to only eight main simulators. The simulators are analyzed both

from theoretical and practical perspectives. In theoretical comparisons, all eight

simulators (iFogSim, iFogSim2, FogNetSim++, EdgeCloudSim, FogComputingSim,

PureEdgeSim, YAFS, and LEAF) are compared based on their technical and non-

technical characteristics, whereas for practical comparison use iFogSim, are in terms

of their execution time, memory usage, and CPU consumption for simulating

different applications under varying complexities.

Figure 3.2: iFogSim Architecture (Muhammad, 2023)

The iFogSimToolkit provides a platform for modeling and simulation of resource

management techniques in edge, Fog computing, and cloud environments. A newer

version of iFogSim, adds distributed clustering, mobility, and microservices

management as new features. Furthermore, it includes new example scenarios to

validate and demonstrate their extension for the iFogSim. the architecture used by

iFogSim is shown in Figure 3.2.

Due to the IoT revolution, almost everything is becoming a source for data

generation. As a result, a tremendous amount of data is generated every second.

Huge amount of data processed on workstations. typical data sources include

mobiles, various types of sensors and actuators including thermostats, engines of

airplanes, factories, mobiles, computers, automobiles such as driverless cars, metros,

human health data, smart devices such as Google Home, Alexa Echo Dots, smart

homes, smart shoes, watches, and, in general, all wearables, etc., and the number of

items on the list increases all of the time. These data need to be pre-processed before

91

something useful can be derived from them because only some of the generated data

are relevant or useful. This section will look at the various sources from which data

is generated.

3.7.3 Through Participation in Conference and Paper Published

To collect insight into the subject and dive deeper into the details of fog computing,

Cloud Computing, Artificial Intelligence, and Machine Learning algorithms

following conferences were attended.

a) International Virtual Conference “Emerging Era of Applications of

Computer: The Survey on Fog Computing and its Applications” on 15th

-16th of January 2022 Organized by Pacific University Udaipur.

b) “Use of Clustering Machine Learning Algorithms in Fog Computing for

Task Scheduling and Resource Allocation” has been published in

European Chemical Bulletin (ISSN: 2063-5346), Volume 11, Issue 8,

2022 Date of Publication: - August 2022.

c) National Seminar on “Implementation of Academic Bank of Credit

(ABC) in Higher Education Institutes” on 21st March 2023 Organized by

Avinashilingam Institute for Home Science and Higher Education for

Women University Udaipur.

d) IP Awareness Training Program under “National Intellectual Property

Awareness Mission” Organized by Intellectual Property Office, India on

18, January 2023.

e) “A Comparative Study of Various Classification Machine Learning

Algorithms in Fog Computing: Task Scheduling” has been published in

Industrial Engineering Journal (ISSN 0970-2555), Volume: 52, Issue 5,

No. UGC Care Approved, Group I, Peer Reviewed Journal 4, May: 2023.

I am grateful to all Conference Organizers and my fellow presenters and researchers

who not only provided me with the platform to showcase my talent but also helped

me with rich technical experience by actively participating in a conference to collect

data. These gatherings have provided me the stage for scholarly exchange which

helped me a lot in coming out with Machine learning solutions for traffic congestion

problems.

92

3.7.4 Performance Evaluation

The performance of the developed machine learning predictive model is analyzed

using various performance measures such as prediction accuracy, incorrectly

classified instances, kappa score, and various confusion matrix parameters such as

true positive rate, false positive rate, precision, recall, and F1-score. Compare the

performance of the model with existing traffic prediction models and assess its

effectiveness in predicting traffic congestion and optimizing transportation systems.

3.7.5 Machine Learning Predictive Model Development

Designed and developed a machine learning predictive model for smart fog systems

using the gathered data and insights from the literature review. Utilize appropriate

machine learning algorithms such as regression, Random Forest, Random Tree,

Bayes net, naïve Bays, SMO, IBK, Logistic Regression, K-Star, and Multiclass

classifier in addressing cloud issues.

3.8 Tools and Technique

A method known as SMART FOG uses nearby fog nodes to complete tasks to

utilize cloud centers less frequently and with less delay. Therefore, to put this system

into place, firstly build an IoT network and cloud application that can handle

requests from the IoT network and store the data on servers. After that, an interface

protocol is created to essentially connect the cloud and Internet of Things network

and process requests that he can process rather than sending them to the cloud.

Finally, the IoT network receives the results.

In the proposed system, the requesting IoT device can use the publish method to

submit a request to the closest fog devices, and the nearest fog device that is

available will accept the request and subscribe to share computing power. A few

further security precautions are required and are being implemented in SMART

FOG to safeguard the connection to prevent attacks like Man-In-the-Middle or

identity theft.

Fog computing requires various tools, techniques, and algorithms to optimize data

processing and management close to the network edge. Key components include

Network Management Software-defined networking tools that optimize traffic

routing and resource allocation. Virtualization technology tools like Docker deploy

93

applications in isolated environments efficiently Data Analytics Real-time analytics

tools, such as Apache Kafka and Apache Storm, process data streams at the fog

layer, Weka 3.8.6. Machine Learning Algorithms like decision trees, K-Nearest

Neighbor, Logistic regression, K-Star, IBK, J48, Bagging, MLP clustering, and

neural networks analyze and predict data trends locally, and Resource Management

Algorithms include load balancing and task scheduling algorithms to optimize

resource utilization and performance. These tools and techniques collectively

enhance the efficiency, scalability, and security of fog computing systems.

To evaluate the performance and effectiveness of the smart fog systems, various

metrics and statistical methods were employed. Percentage analysis, measures of

central tendency, measures of dispersion, cumulative frequency, correlation

coefficient, and regression analysis were used to analyze the collected mining data.

Hypothesis testing was performed using the Chi-Square test. The study involved the

simulation of data and model building, utilizing multiple regression analysis. A

conceptual model based on regression was developed to examine the significance of

different technologies. Additionally, the study aimed to assess the usefulness of loT,

Artificial Intelligence, and Machine Learning-based models in addressing

commuting problems. The Weka tool and Python were used for simulation and

predictive analysis. Overall, the study employed a research design that combined

qualitative and quantitative research approaches. The qualitative nature of the study

facilitated the exploration of various concepts and ideas, leading to findings and

recommendations for improving fog computation.

3.8.1 Weka Tools Techniques

The Weka Experimenter is a tool within the Weka software package that allows

users to design, run, and analyze machine learning experiments systematically. It is

particularly useful for comparing multiple machine learning algorithms and

configurations on various datasets, helping researchers and practitioners make

informed decisions about which algorithms work best for their specific tasks. Here’s

a more detailed explanation of the Weka Experimenter’s key features and

functionalities.

94

Experiment Design: The Experimenter allows users to design experiments by

specifying different machine learning algorithms, datasets, and evaluation metrics.

Users can choose from a wide range of classification, regression, and clustering.

Algorithms available in Weka. They can also select multiple datasets to test the

algorithms’ performance across different data domains.

Parameter Sweeping: Users can explore the effect of different parameter settings

on the performance of machine learning algorithms. The Experimenter enables

parameter sweeping, where users can specify a range of values for certain

parameters of the algorithms. The Experimenter then systematically runs

experiments with different parameter combinations to find the optimal settings.

Cross-Validation and Evaluation Metrics: The Experimenter supports various

techniques for evaluating machine learning models, including cross-validation (k-

fold cross-validation, leave-one-out cross-validation, etc.). Users can select different

evaluation metrics such as accuracy, precision, recall, F1-score, and others to assess

the performance of the algorithms.

Batch Execution: The Experimenter can run experiments in batch mode, allowing

users to schedule multiple experiments to run sequentially or concurrently. This

feature is particularly useful for running large-scale experiments overnight or on

computing clusters.

Result Analysis and Comparison: After the experiments are completed, the

Experimenter provides detailed summary reports and visualizations of the results.

Users can compare the performance of different algorithms on various datasets using

statistical tests and visualizations like charts and graphs. This comparative analysis

helps users identify the best-performing algorithms and configurations for their

specific problem domains.

Reproducibility: The Experimenter ensures the reproducibility of experiments by

allowing users to save the experiment configurations and results. Researchers can

share these configurations and results with others, making it easier to validate and

replicate experiments.

95

Integration with Other Weka Tools: The Experimenter seamlessly integrates with

other Weka tools and interfaces, allowing users to utilize preprocessing techniques,

attribute selection methods, and various machine learning algorithms available in

Weka.

The Weka Experimenter provides a user-friendly environment for designing, and

running. And analyzing machine learning experiments. Its capabilities make it a

valuable tool for researchers and practitioners who want to systematically evaluate

and compare different machine-learning algorithms and configurations on multiple

datasets. Some key tools and techniques available in Weka Explorer include:

• Preprocessing Tools

• Classification Algorithms

• Clustering Algorithms

• Attribute Selection

• Evaluation Techniques

• Visualization Tools

Figure 3.3: Weka Tool K-Star

Figure 3.3 shows the preprocessing tool in Weka applied to This interface includes

details about the number of instances, number of attributes, relation, selected

attribute tab, etc. In the present scenario, the details of the Time attribute are shown

in the selected attributes tab.

96

3.8.2 Experimental Setup

CCTV applications process data recorded by cameras deployed at STL58. The source

task, located at the STL, sends 10 Mbps of video data to a processing task that

requires 30,000 MIPS and is responsible for traffic monitoring, enforcing traffic

laws, and automatic incident detection. The 200 kbit/s of resulting data are sent to

the sink task located in the cloud for further analysis and storage. 16 of these

applications are running in our scenario, one for each STL.

Although the computational and network load required by the CCTV applications is

constant during the entire simulation, the reported power consumption varies over

time. This is because we allocate the static power consumption of fog nodes

proportionally to applications running on them and fog nodes are utilized

inefficiently in this experiment. Especially at night when only a few taxis are on the

road, the relative power demanded by the CCTV applications rises.

3.8.3 Hypothesis Testing Tool

To test the famed null hypothesis, three types of statistical methods were used. The

applied tests were the Pearson Chi-Square test, ANNOVA Test, and T-Test.

Chi-Square Test:

The Chi-Square test is a statistical method used to determine if there is a significant

association between categorical variables. It compares observed frequencies with

expected frequencies, assessing whether any differences are statistically significant.

58 Seasonal and Trend decomposition using Loess

97

3.9 Applied Methodology

In this section, the proposed model, and the interaction among its components with

the essential interfacing requirements are demonstrated. The proposed model

consists of three layers concerning intelligent task offloading in fog cloud systems. It

is composed of both fog and cloud servers. The underlying fog-cloud environment is

comprised of distributed resources that are heterogeneous in terms of network

hierarchy starting from the very basic physical layer of a network to the centralized

cloud environment. Heterogeneous means these devices are dispersed at different

geolocations and not stationary. The host servers, which perform as computing

resources, intended for providing services to various application tasks, are enriched

with a diverse set of resources. It is based on two types of applications, i.e., delay-

sensitive applications and computation-intensive applications.

3.9.1 Fog-Cloud Smart Task Offloading Model

Mainly the architecture includes three layers with a smart task offloading

management system which includes predictive and prescriptive constructs as shown

in the figure below. The three layers included are the IoT or physical layer, Fog node

layer, and the Cloud layer.

Offloading Management System is an intelligent framework designed to optimize

task offloading decisions in distributed computing environments, particularly in fog

computing and edge computing systems. The starting point in a task offloading

procedure possess five main features:

1) Policy Repository regarding Offloading criteria

2) Recent status of fog snapshot

3) Receive, analyse, and offload the tasks

4) Prediction construct

5) Prescriptive construct

The entire process is activated by the Smart OMS. Its formation consists of a Policy

Repository regarding Offloading criteria, monitoring & organizing offloading

procedures, a recent snapshot of fog competence & readiness, a Prediction construct,

and a Prescriptive construct.

98

3.9.2 Task Offloading

The volatile demand from IoT and mobile devices, which may not be predicted or

anticipated immediately due to the unpredictability of the fog resources, the issue

has to be handled. The main goal of this study is to provide a predictive and

prescriptive approach for cost-effective task offloading and resource scheduling that

will maximize the cost of these devices executing their applications. As a result,

this research work cover addresses the mentioned issues and offers suggestions for

how to fix them. Furthermore, some tasks share the same fog resources; as a result,

there may be resource conflicts in some situations that could result in deadlock,

some tasks experience delayed responses, and it's possible that new tasks won't be

able to acquire resources at all, which is where latency comes into play. To ensure

the equitable use of the underlying resources, it must be decided to improve fog

performance by offloading some activities to adjacent nodes.

Figure 3.4: Task offloading Criteria (Satyakam, 2021)

Figure 3.4, shows Task offloading is a crucial process in fog computing and edge

computing environments, where computational tasks are transferred from resource-

constrained IoT devices to more capable fog nodes or cloud servers.

The decision-making process for task offloading considers various conditions, such

as resource constraints, network latency, load balancing, security, privacy, data

evaluation, storing bulk data, execution time, energy consumption, and other

specific criteria. By balancing these factors, task offloading aims to optimize

99

resource utilization, reduce latency, improve energy efficiency, and enhance overall

system performance. Offloading computationally intensive tasks to more powerful

nodes, considering network conditions, and ensuring data privacy and security play

key roles in achieving efficient and effective task offloading in distributed

computing systems.

Figure 3.5: Flow Diagram: SMART FOG Task Offloading (Li, 2019)

100

Figure 3.5 shows the various steps used for the task offloading as shown above in

the figure. In the proposed flowchart, a task is generated on an IoT node, and the

node evaluates its capability to execute machine learning algorithms locally. If the

IoT node lacks resources or the task complexity exceeds its capacity, the task is

offloaded to the cloud. Alternatively, if the IoT node can handle the task, it executes

the machine learning algorithms. The task is then sent to a fog node, which assesses

its resources and executes machine-learning algorithms like classification and

clustering. If the fog node is unable to handle the task, it may offload it back to the

cloud. After the completion of tasks, results are delivered to the IoT node or end-

user, based on application requirements and data privacy considerations. This

dynamic process ensures optimal resource utilization, reduced latency, and enhanced

performance in the IoT and fog computing environments.

3.9.3 Workflow Diagram

workflow diagram illustrating the progression of research and development in the

field of SMART FOG. The workflow diagram illustrates the progression of research

and development in the field of SMART FOG. It starts with understanding cloud,

IoTs, and fog computing concepts and then delves into analyzing IoT-based

architectures and protocols. Next, the focus shifts to evaluating various layers of

communication protocols and devising improved task scheduling and allocation

techniques for fog computing nodes.

101

Figure 3.6: Workflow Diagram

Figure 3.6 shows depict the implementation and functioning of the Smart Offloading

Management System, which optimizes task offloading decisions. It also highlights

the identification and incorporation of fault tolerance mechanisms in SMART FOG

to ensure system reliability. Furthermore, the diagram emphasizes the importance of

measuring the performance of fog computational devices and the SMART FOG

system. Finally, the challenges faced during the implementation of SMART FOG

are outlined, underscoring the need to overcome hurdles to achieve successful

deployment and operation.

102

3.10 Performance Metrics for Supervised and Unsupervised

 Algorithms
Performance metrics for supervised algorithms include accuracy, precision, recall,

F1-score, and area under the ROC curve, which assess the model's prediction

quality. For unsupervised algorithms, metrics like silhouette score, Davies-Bouldin

index, and clustering accuracy evaluate the coherence and separation of clusters.

These metrics help determine how well the algorithms perform their respective tasks

in various data analysis scenarios.

According to Figure 3.7, various studies to find the quality and performance of the

various clustering algorithms various measures are being suggested but finding one

is a challenging task in unsupervised learning. Some of the major performance

evaluation clustering methods or clustering validity indexes can be classified as

external, internal, and relative as shown in the figure below.

Figure 3.7: Cluster validity index (Wang, 2019)

3.10.1 Internal Validation

Figure 3.8 shows internal validation criteria are being used when we are not having

additional information about the datasets. In such cases, the quality of the clustering

algorithm can be measured by the two basic approaches partitioned and

Hierarchical.

103

Figure 3.8: Internal Validation Method (Wang, 2019)

In situations where external information or ground truth labels are unavailable,

internal validation criteria play a crucial role in assessing the quality of clustering

algorithms. These methods evaluate clustering results based solely on the data's

characteristics and clustering structure.

3.10.2 External Validation

External validation methods are considered with the supervised learning or

classification problems. External validation methods can be also incorporated if

additional information or class labels are available in the particular clustering

problems that have the class labels for the training sets. For applying external

validation various aspects are to be taken into consideration which are as follows

• Required to find clustering tendency for a particular dataset

• Find the correct number of clusters.

• Use internal methods for measuring the quality of clusters first.

• Now compare the internal method results with the external information.

• Make a comparison between the two sets of clusters to find the best one.

Figure 3.9 shows to find the clustering tendency for a given dataset, internal

clustering validation methods are utilized to measure the quality of clusters without

relying on external information. These methods, such as the Silhouette Score,

Davies-Bouldin Index, and Dunn Index, help identify the correct number of clusters

that yield the highest quality results. By comparing the internal validation outcomes

with external information, obtained through external validation methods like

104

Adjusted Rand Index or Normalized Mutual Information when available, the

clustering results can be evaluated against known class labels or ground truth data.

The best clustering solution is determined by considering both internal and external

validation results, aiming to achieve consistency and high-quality clusters.

Figure 3.9: External Validation Method (Wang, 2019)

The external criteria are applied as in the clustering algorithm suppose C = {C1,

C2…...Cm} represent the clustered partition and P = {P1, P2…. Ps} represent the

true partition obtained from expert knowledge or class labels.

TP59: The no. of data points found in the same particular cluster, both C and P.

59 True Positive

105

FP60: The no. of data points found in the same particular cluster in C but in a

different cluster.

FN61: The no. of data points found in different clusters in C but in the same cluster

in P.

TN62: The no. of data points found in different clusters, both in C and in P.

The no. of data points found in the same cluster in C:

m1 = TP + FP.

The no. of data points found in the same cluster in P:

m2 = TP + FN.

M = TP + FP + FN + TN.

These external validation methods help assess the accuracy, consistency, and

robustness of clustering algorithms by comparing their results with known ground

truth information or externally provided criteria. By utilizing these validation

techniques, researchers and practitioners can make informed decisions about the

suitability and performance of clustering algorithms for their specific applications

and datasets.

Matching Sets

The first category in external criteria includes the measuring parameters like recall,

precision, TP, TN, FP, FN, error, F- measure, etc. Precision can be calculated by

number of the true positives

Recall measures the percentage of data points properly included in the same

particular cluster:

The F-measure is a combination of precision and recall

60 False Positive
61 False Negative
62 True Negative

106

The F-measure, also known as the F1 score, is a metric used to evaluate the accuracy

of a classification model, particularly in binary classification tasks. It combines both

precision and recall into a single measure, providing a balanced assessment of a

model's performance.

Peer-to-peer Correlation

The second category includes the following methods: Peer-to-peer correlation refers

to the degree of similarity or correlation between individuals or entities within a peer

group or network.

Jaccard coefficient: The Jaccard coefficient is used to find the similarity of the

identified clusters C to the true values in P

The Rand coefficient is also similar to the Jaccard coefficient although used to

measure considering the total data set (accuracy).

The Folkes and Mallows coefficient also finds the similarity between the particular

clusters generated by particular clustering algorithms as independent markers

Hubert statistical coefficient

107

Peer-to-peer Correlation includes Jaccard coefficient, Hubert statistical coefficient,

Rand coefficient, and Folkes and Mallows coefficient which helps in finding the

association between the entities.

Measures Based on Information Theory

Measures based on information theory assess the amount of information present in a

system. Key metrics include entropy, reflecting dataset uncertainty, and mutual

information, quantifying shared information between variables. Entropy can be

considered as the reciprocal of the purity measure to find the degree of disorder

among clusters:

Mutual information is used to measure the reduction in uncertainty in clustering:

These measures find utility across disciplines like machine learning and signal

processing for optimizing systems and analyzing data. Mutual information quantifies

the reduction in uncertainty about cluster assignments when clustering a dataset. By

measuring the amount of shared information between data points and cluster labels,

mutual information assesses how well clustering reduces uncertainty by revealing

underlying patterns or structures in the data.

Optimization Metrics

Optimization metrics in fog computing are essential for measuring the efficiency and

performance of distributed computing at the network edge. These metrics enable the

assessment and improvement of resource utilization, latency reduction, and overall

system optimization in fog-based architectures.

The goals of resource allocation, task scheduling, and workflow scheduling are to

maximize the resources of fog nodes by optimizing the job execution process.

Resource allocation, task scheduling, and workflow scheduling in fog computing

aim to maximize fog node resources by optimizing job execution. Key objectives

include efficient task allocation, minimizing delays, and improving overall system

performance

108

Figure 3.10: Optimization Metrics (Marbukh, 2019)

Figure 3.10 shows optimization metrics such as makespan, latency, throughput,

energy consumption, load balancing, and quality of service play a crucial role in

achieving these goals. By considering these metrics and employing appropriate

algorithms and techniques, fog computing systems can enhance resource utilization,

reduce delays, and provide efficient and reliable execution of tasks and workflows.

Optimization metrics in fog computing are critical for achieving optimal

performance, resource management, and latency reduction at the network edge.

They guide decision-making, ensuring that fog architectures deliver on their promise

of efficient and responsive edge computing solutions.

Performance Metrics

Performance metrics in fog computing are vital for evaluating the efficiency and

effectiveness of edge computing systems. These metrics provide valuable insights

into processing speed, resource utilization, and data transfer rates, enabling the fine-

tuning and improvement of fog-based architectures.

109

Performance metrics in task scheduling for fog computing refer to the parameters

used to evaluate and measure the effectiveness and efficiency of the task scheduling

process. These metrics provide insights into the performance of the system and help

in assessing the quality of the scheduling algorithm or approach. Common

performance metrics include makes pan (total time taken to complete all tasks),

latency (response time between task submission and completion), throughput

(number of tasks completed per unit of time), resource utilization (percentage of

resources utilized), and fairness (equitable distribution of resources and workload

among fog nodes). These metrics allow for quantitative assessment and comparison

of different task scheduling techniques, enabling the selection of optimal approaches

for improved performance in fog computing environments. The parameters of

performance metrics are as follows:

Latency

One of the most crucial variables for evaluating the effectiveness of any task-

scheduling system is latency. Other names for latency include delay and reaction

time. The sum of the transmission delay and the computing latency is the total

latency.

• 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑖: latency,

• 𝑇𝐿𝑖: transmission latency

• Computational latency of task ‘i’.

Execution Time

Execution time is the length of time it takes for a system to complete a task. CPU or

execution time does not account for the time spent waiting for I/O or other

operations to complete.

• 𝐸𝑥𝑒𝑇𝑖𝑚𝑒𝑖: overall execution time,

• 𝐹𝑇𝑖: finish time

• STi: the start execution time of task ‘i’.

110

Make Span

Make span is a key goal of task scheduling that shows how long it will take to

execute a process in its entirety.

• 𝐶𝑇𝑙: time when the last task is completed

• 𝑆𝑇𝑓: starting time of the first task.

Throughput

The number of tasks finished in a system's throughput is measured in units of time.

Throughput, in the context of computing and systems, refers to the rate at which

tasks or operations are completed or processed within a given time frame. It is a

performance metric that measures the efficiency and productivity of a system,

indicating how many tasks or units of work are accomplished in a specific period.

The measurement of throughput is typically expressed in terms of tasks per second,

operations per second, or any other appropriate unit of time. Higher throughput

indicates that the system can handle a greater volume of work and is more capable of

processing tasks efficiently.

Deadline

The deadline is the amount of time between when a task is submitted and when it

must be finished. The completion of each activity at the designated deadline is

crucial in real-time applications. Missing a task deadline may be disastrous,

especially for difficult real-time applications like air traffic control Jamil (2022).

Meeting task deadlines is critical in real-time applications as it ensures timely

processing and response. In fog computing, where tasks are distributed across fog

nodes, the deadline parameter becomes crucial for efficient task scheduling. The

deadline specifies the maximum acceptable delay for task completion, and

scheduling algorithms must consider this constraint to ensure tasks are allocated to

appropriate nodes that can meet the specified deadlines. Failure to meet task

deadlines in time-sensitive applications can have severe consequences, such as

compromising safety, system failures, or financial losses. Therefore, in fog

computing environments, effective task scheduling algorithms are designed to

111

prioritize tasks based on their deadlines, optimizing resource allocation and ensuring

timely task completion within the given constraints.

Performance metrics in fog computing are instrumental in optimizing edge

computing solutions. They facilitate informed decision-making, resource allocation,

and system enhancements, ensuring that fog architectures deliver the required speed,

efficiency, and responsiveness in the evolving digital landscape.

3.10.3 Simulation Setup

For the predictive construct, both supervised and unsupervised machine learning

algorithms were used. A simulated environmental setup was constructed to evaluate

and appraise the research model being proposed which is SMART FOG system

which included an improvised task offloading approach. The experimental

environment used is Anaconda Jupiter Python and R. The model is trained through

various supervised and unsupervised learning algorithms which include KNN63,

Decision Tree, MLP64, Logistic Regression algorithm, Lazy IBK, Naive Bayes,

SVM65 being used.

This research work aims to address various aspects of smart fog systems It

encompasses a mixed methods approach, combining quantitative analysis and

qualitative insights. The research objectives include studying commuting and cloud

issues, analyzing technologies for enhancing computation, addressing

implementation issues, and identifying the most appropriate machine learning

approach for fog computing. The research begins with a comprehensive literature

review to identify gaps in existing research and frameworks. Its performance is

evaluated using various performance measures, comparing it with existing models.

Recommendations and strategies are proposed to overcome these challenges.

63K-Nearest Neighbor
64Multilayer Perceptron
65Support Vector Machine

112

Chapter- 4
Smart Fog Protocol-Based Techniques

INTROD UCT ION

4.1 Analysing IoT Infrastructure for Smart Fog Protocol Design

 4.1.1 Message Queue Telemetry Transport protocol

 4.1.2 Constrained Application Protocol

 4.1.3 Advanced Message Queuing Protocol

 4.1.4 Data Distribution Service

4.2 Task Scheduling and Allocation in Smart Fog Computing Nodes

4.3 Challenges in Implementing Fog Computing

4.4 Hypothesis Testing Results

4.5 Multiple Regression Model

4.6 Use of Machine Learning Approaches in Task Scheduling

 4.6.1 Logistic Regression

 4.6.2 IBK (Stratified Cross-Validation: 10-Fold)

 4.6.3 K-Star (Stratified Cross-Validation: 10-Fold)

 4.6.4 Adaboostm1 (Stratified Cross-Validation: 10-Fold)

 4.6.5 Comparative Analysis of Classification Algorithms

4.7 Clustering Algorithms Used for Task Scheduling

4.7.1 Canopy Clustering

4.7.2 Hierarchical Clustering

4.7.3 Make Density-Based Clustering

113

Across the globe, billions of devices are today communicating and exchanging data

with each other. IoT communication protocols protect and ensure the security of the

data being exchanged between these devices. This research work covers the most

popular protocols in use today.

4.1 Analyzing IoT Infrastructure for Smart Fog Protocol Design

The Smart Fog Protocol-Based Technique involves the utilization of intelligent fog

nodes at the edge of the network to process data locally and reduce the burden on

centralized cloud servers. To design this technique, various layers of communication

protocols are essential. The physical layer focuses on selecting appropriate

communication technologies for IoT devices, while the data link layer ensures

reliable data transmission. The network layer facilitates efficient communication

paths between fog nodes and IoT devices, while the transport layer ensures orderly

data delivery and minimizes latency. At the top layer, the application layer enables

seamless integration with fog-based services and applications, optimizing real-time

data processing at the edge and offering advantages in latency reduction, bandwidth

optimization, and scalability for IoT applications.

4.1.1 Message Queue Telemetry Transport Protocol

This publish/subscribe message transport protocol is open source and highly

lightweight, making it a great choice for connecting tiny devices to restricted

networks. It was developed to function in environments with low bandwidth, such as

sensors and mobile devices, and on networks that are not completely stable. Because

of this feature, it is the protocol of choice for connecting devices that have a tiny

code footprint. It is also the protocol of choice for wireless networks that have

different amounts of delay as a result of bandwidth limits or unstable connections. It

accomplishes this by operating on top of TCP/IP66, which is the foundation of the

Internet. MQTT is comprised of these three primary parts: Subscriber. Publisher and

Broker in this protocol's most fundamental process, the publisher is responsible for

creating and sending information to subscribers via a broker. This information is

then received by the subscribers. The authorization of subscribers and publishers is

checked by the broker as part of the broker's primary responsibility, which is to

66Transmission Control Protocol and Internet Protocol

114

maintain data security. This protocol is favored for usage in IoT devices because it

can deliver well-organized information routing features to low-bandwidth networks

as well as tiny, low-cost, low-memory, and power devices. MQTT employs three

different degrees of quality of service to assure the dependability of its messages.

MQTT is a communication protocol that can go in both directions, meaning that

clients may both generate and receive data through the process of publishing

messages and subscribing to topics. IoT devices that are equipped with connectivity

in both directions can concurrently deliver sensor data and receive configuration

information and control commands. MQTT makes it considerably simpler to

validate clients using contemporary authentication methods and encrypt

communications using TLS67.

CoAP message flows involve lightweight and efficient communication between IoT

devices and servers. CoAP messages include GET, PUT, POST, and DELETE

methods, enabling device data exchange. Devices send requests to servers, which

respond with corresponding acknowledgments or data. CoAP's simplicity and low

overhead make it ideal for resource-constrained IoT devices.

4.1.2 Constrained Application Protocol

CoAP is a Web transfer protocol designed for use in the IoT with restricted devices

and networks. It is meant for applications that have a limited capacity to connect

utilizing LWM2M68, such as smart energy and building automation, and it may be

implemented through a UDP69.LWM2M makes it possible to remotely manage IoT

devices and provides interfaces for safely monitoring and controlling those devices.

The design of CoAP is based on the well-known REST70 paradigm. According to

this model, servers make resources available under a URL71, and clients may access

these resources by utilizing methods such as GET, PUT, POST, and DELETE. Both

the CoAP and HTTP protocols have many similarities; however, the CoAP protocol

has been improved for the IoT, and more especially for machine-to-machine

communication. It has a minimal overhead, combined with the ability to proxy and

67Transport Layer Security
68Light-Weight Machine-To-Machine Communication
69User Datagram Protocol
70Representational State Transfer
71Uniform Resource Locator

115

cache messages, and it asynchronously exchanges messages. The architecture of

CoAP is broken down into two primary categories: messaging, which is in charge of

the dependability and duplication of messages, and request/response, which is in

charge of communication between clients and servers.

The message layer sits above UDP and is in charge of the communication protocol

that enables IoT devices and the internet to exchange messages with one another.

Confirmable messages, non-confirmable messages, acknowledgment messages, and

reset messages are the four distinct varieties of CoAP communications. When two

endpoints communicate with one another, a CON72is a message that can be relied

upon. It is repeated until the receiving end sends an acknowledgment message, at

which point it is stopped. The message ID of an ACK73 the message is identical to

the message ID of a CON message. If the server is unable to successfully manage

the incoming request, it may respond with a RST rather than an ACK. Unreliable

NON74 messages, in which the server does not acknowledge the message, can be

used for transferring messages that are not vital to the operation of the system. To

avoid sending duplicate messages, NON-messages are given unique message

identifiers.

The Request/Response layer is the second tier of the CoAP abstraction layer.

Requests can be sent using either CON or NON-messages in this layer. In situations

in which a server can instantly react to a request, the request is communicated using

a CON message, followed by an ACK message that contains the answer or the error

code that was generated by the server. The message ID is not included in either the

request or the response's token, which means they have their unique token. When the

server is in a position where it is unable to instantly react, it will send an ACK

message that has no content as the response. After the response is complete, a new

CON message that includes the response is sent back to the client. The client then

acknowledges the response that it has received in this new CON message.

72Confirmable Message
73Acknowledgement
74Non-confirmable

116

4.1.3 Advanced Message Queuing Protocol

Figure 4.1, shows AMQP is an open standard application layer protocol that was

developed with the goals of providing increased security and dependability while

still being easy to deploy and interoperable. Because TCP is employed as a transport

protocol, it is a connection-oriented protocol. This means that to transmit data, both

the client and the broker need to first establish a connection with one another.

AMQP provides two levels of quality of service for the dependable delivery of

messages: the unsettle format, which is comparable to MQTT's QoS0, and the settle

format. The primary distinction between AMQP and MQTT standards is that AMQP

brokers are composed of two primary parts: exchange and queues. MQTT brokers

only have one primary part. Exchange is in charge of both receiving messages from

publishers and delivering them to the appropriate queues. Subscribers establish

connections to the queues, which in essence stand in for the topics, and begin

receiving sensory input as soon as it becomes available.

Figure 4.1: AMQP Architecture (Macarulla, 2016)

AMQP architecture is a messaging protocol designed for reliable and efficient

message communication between distributed systems. It employs a client-server

model with message brokers as intermediaries. Producers send messages to the

broker, which then delivers them to appropriate consumers based on routing rules

and message queues.

4.1.4 Data Distribution Service

DDS is a middleware protocol for data-centric connection that was developed by the

object management group. It offers commercial and mission-critical IoT applications

low-latency data communication, exceptional dependability, and a scalable design.

This protocol enables the use of multicasting techniques during data transmission

and enables high-quality QoS to be provided by applications and devices with a tiny

117

memory footprint. Both a DCPS75 layer and a data-local reconstruction layer make

up DDS's communications paradigm. These levels are referred to as the interface

layers.

Throughout the publish/subscribe process, the DCPS layer is the one that is in

charge of binding the values of data objects included inside an application. At the

application level, the DLRL76 is a layer that is used for integrating DDS, but its use

is optional.

4.2 Task Scheduling and Allocation in Smart Fog Computing Nodes

The previous survey results were analyzed and a detailed treatment of the

fundamentals of scheduling and scheduling types, such as task scheduling, workflow

scheduling, resource allocation, and the many optimization measures used to

evaluate these methods. Classification and extensive assessment of existing

scheduling algorithms, with a special emphasis on intelligent dynamic scheduling

strategies based on machine learning, fuzzy logic, reinforcement learning, and deep

reinforcement learning, with descriptions of their strengths and shortcomings.

Identification of research gaps and problems for task scheduling and resource

allocation in fog computing for future research efforts in this subject through the

presentation of various simulation settings and tools utilized in diverse studies.

75Data-Centric Publish-Subscribe
76Data Local Reconstruction Layer

118

Comparison of Traditional Scheduling Algorithms

Table 4.1, shows compares several traditional scheduling algorithms based on their

type and the specific performance measures they optimize.

Table 4.1: Comparison of Traditional Scheduling Algorithms

Name
Type of

Scheduling

Optimize the following Performance Measure

Latency
Execution

Time

Network

Usage

Energy

Consumption
Cost

FCFS77
Task

Scheduling
Optimized Unoptimized Optimized Optimized Unoptimized

PERA78
Task

Scheduling
Optimized Unoptimized Unoptimized Unoptimized Optimized

WRR79
Task

Scheduling
Optimized Unoptimized Unoptimized Unoptimized Unoptimized

FCFS
Resource

Scheduling
Optimized Unoptimized Optimized Optimized Unoptimized

FCFS task scheduling algorithm when applied in Fog and cloud environment

suggests that FCFS in Fog environment optimizes latency, total network usage, and

energy consumption when compared with FCFS in cloud environment. PERA, a

Priority-based task scheduling algorithm optimizes latency and cost.

FCFS is a task-scheduling algorithm that optimizes latency, network usage, and

energy consumption but does not focus on minimizing execution time or cost

efficiency. Priority-based Scheduling also deals with task scheduling, optimizing

latency and cost, while neglecting execution time, network usage, and energy

consumption. Weighted Round Robin, another task scheduling algorithm, primarily

optimizes latency without targeting execution time, network usage, energy

consumption, or cost. The combined FCFS, Delay Priority, and Concurrent

approach, a resource scheduling method, optimizes latency, network usage, and

energy consumption but does not focus on execution time or cost efficiency. Each

algorithm is tailored to enhance specific aspects of performance, demonstrating the

trade-offs inherent in scheduling decisions

77First-Come, First-Served
78Packetized Ensemble Resource Allocation
79Weighted Round Robin

119

Integer Linear Programming

Table 4.2 compares various Integer Linear Programming scheduling algorithms

based on their type and the performance measures they optimize.

Table 4.2: Integer Linear Programming

Name
Type of

Scheduling

Optimize the following Performance Measure

Latency Makespan QoS Cost

ILP80
Resource

Scheduling
Optimized Unoptimized Optimized Optimized

MILP81
Resource

Scheduling
Unoptimized Unoptimized Optimized Optimized

ILP, a resource scheduling algorithm based on integer linear programming when

used in Fog environment optimizes the latency, QoS, and cost when compared with

a cloud environment. ILP is a resource scheduling algorithm that optimizes latency,

Quality of Service, and cost but does not focus on minimizing makespan. Min-CCV

and Min-V, also resource scheduling algorithms, prioritize QoS and cost efficiency,

without optimizing latency or makespan.

Comparison of Heuristic Scheduling Algorithms

Table 4.3, shows compare various heuristic scheduling algorithms based on their

type and optimized performance measures.

Table 4.3: Comparison of Heuristic Scheduling Algorithms

Name
Type of

Scheduling

Optimize the following Performance Measure

Latency Makespan QoS Cost
Energy

Consumption

Network

Usage

SJF82 Task Optimized Unoptimized Unoptimized Unoptimized Optimized Unoptimized

PTPN83 Resource Unoptimized Unoptimized Optimized Unoptimized Optimized Unoptimized

MCCV
84

Resource Unoptimized Unoptimized Optimized Optimized Unoptimized Unoptimized

EDF
&LFC85

Resource Optimized Optimized Unoptimized Optimized Unoptimized Unoptimized

DOTS86 Resource Optimized Unoptimized Unoptimized Optimized Unoptimized Unoptimized

TIPS87
Task /

Resource
Unoptimized Unoptimized Optimized Unoptimized Unoptimized Unoptimized

80Integer Linear Programming
81Mixed Integer Linear Programming
82Shortest Job First
83Preemptive Task Priority Network
84Minimum Critical-Cycle Variance
85Earliest Deadline First and Least Slack Time
86Dynamic Optimization of Time Sequences
87Time-Invariant Power Scheduling

120

SJF task scheduling algorithm optimizes latency and energy consumption. Similarly,

PTPN resource allocation algorithm highly optimizes QoS and energy consumption.

SJFfor task scheduling optimizes latency and energy consumption but not

makespan, QoS, cost, or network usage. PTPN for resource scheduling focuses on

optimizing QoS and energy consumption, neglecting other factors.

Min-CCV and Min-V for resource scheduling enhance QoS and cost efficiency but

do not optimize latency, makespan, energy consumption, or network usage. EDF &

Static LFC for resource scheduling optimize latency, makespan, and cost, leaving

QoS, energy consumption, and network usage unoptimized. DOTS for resource

scheduling focuses on minimizing latency and cost but does not optimize makespan,

QoS, energy consumption, or network usage. Finally, TIPS for both task and

resource scheduling prioritizes QoS without addressing latency, makespan, cost,

energy consumption, or network usage.

Comparison of Fuzzy-Based Scheduling Algorithms

Table 4.4, shows a Comparison of Fuzzy-Based Scheduling Algorithms Fog

computing is not a replacement for cloud computing but instead, an extension of

cloud computing that enhances the already established cloud architecture. Here’s

how While the server nodes of cloud computing are located within the internet, fog

computing has them at the edge of the networks. With this parameter, fog computing

enhances cloud computing by functionally managing data from mobile devices thus

reducing latency and improved response time.

Table 4.4: Comparison of Fuzzy-Based Scheduling Algorithms

Name
Type of

Scheduling

Optimize the following Performance Measure

Latency Makespan QoS Cost
Energy

Consumption

Network

Usage

RFN88
Resource

Scheduling
Optimized Unoptimized Unoptimized Unoptimized Optimized Unoptimized

FLPSO89
Resource

Scheduling
Unoptimized Unoptimized Optimized Unoptimized Unoptimized Unoptimized

FPFTS90
Resource

Scheduling
Optimized Unoptimized Unoptimized Unoptimized Optimized Optimized

EDA91
Resource

Scheduling
Optimized Unoptimized Optimized Unoptimized Optimized Optimized

88 Rule-based Fuzzy Network
89 Fuzzy Logic and Particle Swarm Optimization
90 Fuzzy-Possibilistic Fuzzy Time Series
91 Estimation of Distribution Algorithm

121

RFN, a fuzzy-based scheduling algorithm is a resource scheduling algorithm that

optimizes latency and energy consumption. Similarly, FLPSO algorithm highly

optimizes QoS.

Fog computing is not a replacement for cloud computing but instead, an extension of

cloud computing that enhances the already established cloud architecture. Here’s

how – While the server nodes of cloud computing are located within the internet, fog

computing has them at the edge of the networks. With this parameter, fog computing

enhances cloud computing by functionally managing data from mobile devices thus

reducing latency and improved response time.

4.3 Challenges in Implementing Fog Computing

Implementing Fog computing faces challenges such as heterogeneous device

integration, security concerns at the edge, resource optimization, reliability

maintenance, and scalability issues. Ensuring seamless interoperability between

diverse devices, managing security risks at the edge, and optimizing resource

allocation are crucial tasks. Additionally, maintaining reliability in a decentralized

environment and addressing scalability concerns pose significant challenges that

require comprehensive solutions. Fog computing is really necessary. There are,

however, many obstacles to overcome to put it into practice:

Data Privacy

By placing fog nodes in the network's periphery, fog computing makes them

available to a wider audience of end users. This makes the fog nodes more of a

target for cyber-attacks as they collect a greater volume of sensitive data than the

distant cloud.

Security

As fog computing requires authentication of devices at several gateways, the

possibility of a rogue user using a spoofed IP address to access the data stored in a

specific fog node is the most crucial security concern. This resulted in the

installation of intrusion detection systems throughout the whole platform.

122

Network Management

Because they are linked to disparate hardware types, managing the fog's nodes,

network, and inter-node connections can be arduous without software-defined

networking and network function virtualization approaches.

Positioning the FOG Servers

Positioning Fog servers, or Fog nodes, is essential in Fog Computing architecture to

enhance performance by bringing data processing closer to the data sources. This

proximity reduces latency, conserves bandwidth, and improves network efficiency,

particularly for real-time applications like autonomous vehicles, industrial

automation, and smart grids. Effective placement involves a distributed and

hierarchical network topology to balance load and prevent bottlenecks, considering

workload characteristics and dynamically adjusting based on network conditions. It

also requires modular and scalable deployment to accommodate varying demands,

ensuring high availability through redundancy. Security is paramount, with robust

measures to protect sensitive data and compliance with local regulations.

Additionally, energy efficiency is critical, achieved through strategic placement with

reliable power sources and green computing practices. Practical scenarios include

smart cities for traffic management and public safety, industrial IoT for predictive

maintenance and automation control, healthcare for remote monitoring and

telemedicine, and retail for in-store analytics and reliable point-of-sale systems. To

maximize the service provided by fog computing and reduce maintenance costs, it is

necessary to analyze the work performed in each node of the servers before deciding

where to arrange the group of fog servers.

Positioning Fog servers effectively is a multifaceted challenge that requires careful

consideration of proximity to data sources, network topology, workload distribution,

scalability, security, and energy efficiency. By strategically placing these nodes,

organizations can leverage the benefits of Fog computing, such as reduced latency,

improved bandwidth utilization, enhanced data security, and greater overall network

efficiency. This approach is particularly beneficial in applications requiring real-

time processing and analysis, making it a vital component of modern distributed

computing architectures.

123

Energy consumption is a critical consideration in Fog Computing systems due to the

extensive deployment of fog nodes across distributed environments. These fog

nodes, which are responsible for processing and managing data at the edge of the

network, often operate in resource-constrained settings with limited power sources.

Energy consumption is significant because of the large number of fog nodes used in

fog computing systems. Our research work focuses on the above-stated objective

which aims to use the computational power of computation-enabled devices to

collaboratively perform tasks and speed up the processing.

4.4 Hypothesis Testing Results

The null hypothesis H01 as stated Smart Fog protocol-based technique to create a

Fog Computing environment will not share computational power with IoT devices

with low computational power and other aspects are being categorized into various

sub-hypotheses H01, H02, H03, H04, H05, and H06 to compare the impact of various

aspects related to efficiency and various measures of SMART FOG protocol-based

system with the cloud-based system.

H01: There is no significant difference between SMART FOG protocol-based

system and cloud-based system based on the performance measure execution time.

An alternative hypothesis is as follows

Ha1: There is a significant difference between SMART FOG protocol-based system

and cloud-based system based on the performance measure execution time.

When comparing Fog Computing to Cloud Computing in terms of average

execution time, it's essential to consider how each architecture processes tasks and

their implications for task completion speed. Fog Computing, which processes tasks

closer to the edge of the network, can potentially reduce latency and speed up

execution times, particularly for time-sensitive tasks, by minimizing the distance

data needs to travel. However, the effectiveness of Fog Computing depends on

factors such as task complexity, resource availability at the edge, and network

efficiency. Cloud Computing, while offering scalability and computational power,

may introduce latency due to the distance between edge devices and centralized data

centers, impacting average execution time. The choice between Fog Computing and

124

Cloud Computing should be based on the specific requirements of the application,

considering factors such as task type, network latency, resource availability, and

scalability needs.

Figure 4.2: Fog Vs Cloud System Based on Average Execution Time

Figure 4.2, shows comparative analysis between Fog fog-based systems and Cloud

cloud-based systems based on reduction in execution time as shown below confirms

that there is a large reduction in execution time with the use of Smart Fog-based

systems as compared to Cloud-based systems.

0

2000

4000

6000

8000

10000

12000

14000

Fog Based System Execution Time

Cloud Based SystemExecution Time

125

Table 4.5: Execution Time Reduced due to Fog Computing Environment

Table 4.5 shows Execution Time Reduced due to Fog Computing Environment in

Fog system 8:10, 9:9, 7:10, 6:10, 6:6, 4:10, and 2:6 there is a large reduction in

execution time with values 9872, 3008, 7866, 5417, 4533, 4024, and 8703

respectively. So, it is very clear that Fog layer plays an important role in the

execution time reduction. The Smart Fog system 9:9 which means 9 areas and 9

cameras takes a lower execution time of 7315 as compared to the cloud system 9:9

with an execution time of 10323. The experimental outcomes are further represented

or categorized into high and low as shown below in the crosstabulation table.

Table 4.6 shows the FOG SYSTEM operates over two distinct execution time

ranges, categorized into "Low" and "High." The "Low" range includes values from 0

to 500, while the "High" range covers values from 501 to 10000. Similarly, the

126

CLOUD SYSTEM is categorized into "Low" and "High" ranges, with the "Low"

range spanning from 0 to 250 and the "High" range covering 251 to 10000.

Table 4.6: Classification of Fog and Cloud for Execution Time

Obs
Fog

System

Execution

Time
Rank

Cloud

System

Execution

Time
Rank

1 Fog-1:1 312 Low Cloud-1:1 684 High

2 Fog-1:2 210 High Cloud-1:2 933 High

3 Fog-1:3 359 High Cloud-1:3 1198 High

4 Fog-1:4 502 High Cloud-1:4 1133 High

5 Fog-1:5 692 High Cloud-1:5 1348 High

6 Fog-2:2 384 High Cloud-2:2 1203 High

7 Fog-2:3 525 Low Cloud-2:3 531 High

8 Fog-2:4 494 High Cloud-2:4 690 High

9 Fog-2:5 677 Low Cloud-2:5 1048 Low

10 Fog-2:6 769 Low Cloud-2:6 8703 Low

11 Fog-2:7 1122 Low Cloud-2:7 1153 High

12 Fog-2:8 1032 High Cloud-2:8 1502 High

13 Fog-2:9 1193 Low Cloud-2:9 1632 Low

14 Fog-2:10 1278 Low Cloud-2:10 1547 High

15 Fog-3:5 1010 Low Cloud-3:5 3429 High

16 Fog-3:6 1253 Low Cloud-3:6 1877 Low

17 Fog-3:10 2036 High Cloud-3:10 2237 High

18 Fog-4:4 893 High Cloud-4:4 1328 High

19 Fog-4:5 1121 High Cloud-4:5 1513 High

20 Fog-4:10 1816 Low Cloud-4:10 4024 High

21 Fog-5:5 1400 Low Cloud-5:5 1908 High

22 Fog-5:10 2091 High Cloud-5:10 2686 High

23 Fog-6:6 1648 High Cloud-6:6 6181 High

24 Fog-6:10 1986 High Cloud-6:10 7403 High

25 Fog-7:10 2229 High Cloud-7:10 10095 High

26 Fog-8:10 2636 High Cloud-8:10 12508 High

27 Fog-9:9 7315 High Cloud-9:9 10323 High

28 Fog-10:5 2254 High Cloud-10:5 3373 High

Table 4.7 shows specific ranges chosen to comprehensively understand each

system's performance across varying operational scenarios. By distinguishing

between lower and higher values, managing and optimizing the behaviours of the

system becomes easier, ensuring they operate efficiently under different conditions.

The "Low" range typically represents scenarios with minimal operational load, while

the "High" range accounts for more intensive usage, allowing for tailored strategies

to maintain optimal performance.

127

Table 4.7: Type of System (Fog or Cloud) and Average Execution Time

Crosstabulation: Type of System (Fog or Cloud) and Average

Execution Time

Type

Average Execution

Time Total

 High Low

System

(Fog or Cloud)

Cloud-Based System 24 4 28

Fog Based System 17 11 28

Total 41 15 56

Table 4.8 shows the approach for calculating the expected value from the row total

of average execution time and column total of type of system (Fog or Cloud) also

the total number of observations is 56.

 Table 4.8: Expected Frequency

Calculation of Expected Frequency

Total Average

Execution Time

Total Type

(Fog or Cloud)

Expected

Frequency

Expected

Frequency

41 28 (41* 28) / 56 20.5

15 28 (15* 28) / 56 7.5

41 28 (41* 28) / 56 20.5

15 28 (15* 28) / 56 7.5

Table 4.9: 2 Calculation

Observed and Expected Frequency for the calculation of 2

Observed

Frequency (OF)

Expected

Frequency (EF)
(OF - EF)2

(OF - EF)2

/ EF

24 20.5 12.25 0.5975

4 7.5 12.25 1.6333

17 20.5 12.25 0.5975

11 7.5 12.5 1.6333
 Total () 4.4616

Degree of Freedom = (r-1) * (c-1)

 = (2-1) * (2-1)

 = 1

Table value @ 5% level of significance = 3.84

Therefore,

128

The calculated value of Chi-Square is found to be 4.4616

The tabulated value of Chi-Square is found to be 3.84

Accordingly, table 4.9 represents the calculation of Chi-Square test value using the

observed and expected frequencies. The results confirm that the calculated value of

Chi-Square 4.4616 is greater than the tabulated value of 3.84 at a 5% level of

significance. So, it is clear that the null hypothesis is rejected.

It concludes that there is a significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure execution

time. A notable contrast in performance, measured by execution time, emerged

between the SMART FOG protocol-based and cloud-based systems. The findings

reveal that the SMART FOG system exhibited superior performance with notably

shorter execution times compared to its cloud-based counterpart.

H02: There is a significant difference between SMART FOG protocol-based

systems and cloud-based systems based on the performance measure latency.

An alternative hypothesis is as follows

Ha2: There is no significant difference between SMART FOG protocol-based

system and cloud-based system based on the performance measure latency.

129

Figure 4.3: Fog Vs Cloud System Based on Latency

Figure 4.2, shows a comparative analysis between Fog fog-based system and Cloud-

based system based on reduction in latency, as shown above, confirms that there is a

large reduction in latency with use of Smart Fog based systems as compared to

Cloud-based systems. In Fog system 10:5, 4:4, 2:5, 2:4, 2:3, 2:2, 1:5, 1:4, 1:3, 1:2,

and 1:1 there is a large reduction in latency value such as 453. 523, 198.926,

190.698, 198.131, 199.715, 201.366, 191.913, 197.730, 199.413, 201.161, and

194.086 respectively. So, it is very clear that Fog layer plays an important role in

latency reduction.

0

200

400

600

800

1000

1200

1400

1600

1800

Latency (Fog) Latency (Cloud)

130

Table 4.10: Latency Reduced due to Fog Computing Environment

Table 4.10, shows that Smart Fog system 10:5 which means 10 areas and 5 cameras

takes a lower latency value of 218.62 as compared to the cloud system 10:5 with a

latency value of 672.14. The experimental outcomes are further represented or

categorized into high and low as shown below in the crosstabulation table.

Table 4.11 shows latency for the FOG SYSTEM is categorized into "Low" and

"High" ranges, with the "Low" range including values from -5600.0000 to 1.0000

and the "High" range covering values from 1.0001 to 2100.0000. Similarly, the

CLOUD SYSTEM latency is divided into "Low" and "High" ranges, where the

"Low" range spans from 1.0001 to 15000.0000, and the "High" range includes

values from -55000 to 1.0000.

System Latency (Fog) Latency (Cloud)

Latency Reduced Using

Fog System

Fog/Cloud-1:1 16.414 210.499 194.086

Fog/Cloud-1:2 9.493 210.654 201.161

Fog/Cloud-1:3 11.278 210.692 199.413

Fog/Cloud-1:4 13.064 210.794 197.730

Fog/Cloud-1:5 18.946 210.859 191.913

Fog/Cloud-2:2 9.493 210.859 201.366

Fog/Cloud-2:3 11.278 210.993 199.715

Fog/Cloud-2:4 13.064 211.195 198.131

Fog/Cloud-2:5 20.707 211.405 190.698

Fog/Cloud-2:6 211.577 211.599 0.022

Fog/Cloud-2:7 211.787 211.857 0.070

Fog/Cloud-2:8 211.941 211.965 0.024

Fog/Cloud-2:9 212.107 212.184 0.077

Fog/Cloud-2:10 212.376 212.365 -0.011

Fog/Cloud-3:5 331.999 211.814 -120.186

Fog/Cloud-3:6 212.108 212.150 0.042

Fog/Cloud-3:10 366.026 365.965 -0.062

Fog/Cloud-4:4 13.064 211.990 198.926

Fog/Cloud-4:5 218.450 212.354 -6.096

Fog/Cloud-4:10 557.410 557.302 -0.108

Fog/Cloud-5:5 217.757 212.806 -4.952

Fog/Cloud-5:10 672.095 672.236 0.141

Fog/Cloud-6:6 493.522 493.557 0.035

Fog/Cloud-6:10 748.737 748.728 -0.008

Fog/Cloud-7:10 803.448 803.375 -0.073

Fog/Cloud-8:10 844.404 844.350 -0.054

Fog/Cloud-9:9 847.908 847.990 0.083

Fog/Cloud-10:5 218.625 672.148 453.523

131

Table 4.11: Classification of Fog and Cloud for Latency

Obs
Fog

System
Latency Rank

Cloud

System
Latency Rank

1 Fog-1:1 16.41 Low Cloud-1:1 210.50 High

2 Fog-1:2 9.49 Low Cloud-1:2 210.65 High

3 Fog-1:3 11.28 Low Cloud-1:3 210.69 High

4 Fog-1:4 13.06 Low Cloud-1:4 210.79 High

5 Fog-1:5 18.95 Low Cloud-1:5 210.86 High

6 Fog-2:2 9.49 Low Cloud-2:2 210.86 High

7 Fog-2:3 11.28 Low Cloud-2:3 210.99 High

8 Fog-2:4 13.06 Low Cloud-2:4 211.19 High

9 Fog-2:5 20.71 Low Cloud-2:5 211.41 High

10 Fog-2:6 211.58 High Cloud-2:6 211.60 High

11 Fog-2:7 211.79 Low Cloud-2:7 211.86 High

12 Fog-2:8 211.94 Low Cloud-2:8 211.97 High

13 Fog-2:9 212.11 Low Cloud-2:9 212.18 High

14 Fog-2:10 212.38 High Cloud-2:10 212.37 Low

15 Fog-3:5 332.00 High Cloud-3:5 211.81 Low

16 Fog-3:6 212.11 Low Cloud-3:6 212.15 High

17 Fog-3:10 366.03 High Cloud-3:10 365.96 Low

18 Fog-4:4 13.06 Low Cloud-4:4 211.99 High

19 Fog-4:5 218.45 High Cloud-4:5 212.35 Low

20 Fog-4:10 557.41 High Cloud-4:10 557.30 Low

21 Fog-5:5 217.76 High Cloud-5:5 212.81 Low

22 Fog-5:10 672.10 Low Cloud-5:10 672.24 High

23 Fog-6:6 493.52 Low Cloud-6:6 493.56 High

24 Fog-6:10 748.74 High Cloud-6:10 748.73 High

25 Fog-7:10 803.45 High Cloud-7:10 803.37 Low

26 Fog-8:10 844.40 High Cloud-8:10 844.35 Low

27 Fog-9:9 847.91 Low Cloud-9:9 847.99 High

28 Fog-10:5 218.62 Low Cloud-10:5 672.15 High

Table 4.12 shows specific ranges are chosen to provide a comprehensive

understanding of each system's performance across various latency conditions. By

distinguishing between lower and higher latency values, it becomes easier to

optimize the systems' behaviors, ensuring they operate efficiently under different

scenarios. This categorization aids in tailoring strategies to maintain optimal

performance by addressing minimal and intensive latency conditions separately.

132

Table 4.12: Type of System (Fog or Cloud) and Latency

Crosstabulation: Type of System (Fog or Cloud) and Latency

Type
Latency

Total
High Low

System

(Fog or

Cloud)

Cloud-Based System 20 8 28

Fog Based System 10 18 28

Total 30 26 56

Table 4.13 shows the approach for calculating the expected value from the row total

of latency and column total type of system (Fog or Cloud) also the total number of

observations is 56.

 Table 4.13: Expected Frequency

Calculation of Expected Frequency

Total of

Latency

Total Type

(Fog or Cloud)

Expected

Frequency

Expected

Frequency

30 28 (30 * 28) / 56 15

26 28 (26 * 28) / 56 13

30 28 (30 * 28) / 56 15

26 28 (26 * 28) / 56 13

Table 4.14:2 Calculation

Observed and Expected Frequency for the calculation of 2

Observed

Frequency (OF)

Expected

Frequency (EF)
(OF - EF)2

(OF - EF)2 /

EF

20 15 25 1.67

8 13 25 1.92

10 15 25 1.67

18 13 25 1.92
 Total () 7.18

Degree of Freedom = (r-1) * (c-1)

 = (2-1) * (2-1)

 = 1

Table value @ 5% level of significance = 3.841

Therefore,

The calculated value of Chi-Square is found to be 7.18.

The tabulated value of Chi-Square is found to be 3.841.

133

Accordingly, table 4.14 represents the calculation of Chi-Square test value using the

observed and expected frequencies. The results confirm that the calculated value of

Chi-Square 7.18 is greater than the tabulated value of 3.841 at a 5% level of

significance. So, it is clear that the null hypothesis is accepted.

It concludes that there is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure latency. A

notable contrast in performance, measured by latency, emerged between the

SMART FOG protocol-based and cloud-based systems. The findings reveal that the

SMART FOG system exhibited superior performance with notably shorter latency

compared to its cloud-based counterpart.

H03: There is no significant difference between SMART FOG protocol-based

system and cloud-based system based on the performance measure energy

consumed.

An alternative hypothesis is as follows

Ha3: There is significant difference between SMART FOG protocol-based system

and cloud-based system based on the performance measure energy consumed.

134

Figure 4.4: Fog Vs Cloud System Based on Energy Consumption (Joules)

Figure 4.4, shows a comparative analysis between Fog fog-based system and Cloud-

based system based on reduction in energy consumption as shown below confirming

that there is a large reduction in energy consumption with the use of a Smart Fog

based system as compared to Cloud-based systems. In Fog system 10:5, 5:5, 4:5,

4:4, 3:5, 2:5, 2:4, 2:3, 2:2, 1:5, 1:4, 1:3, 1:2, and 1:1 there is a large reduction in

energy consumption such as 273694.729, 384391.984, 316112.779, 331766.905,

211288.876, 177375.370, 137333.715, 96247.432, 129245.955, 96035.138,

103230.811, 53272.127 and 36660.736 respectively.

2400000

2500000

2600000

2700000

2800000

2900000

3000000

3100000

3200000

3300000

Energy Consumed (Fog) Energy Consumed (Cloud)

135

Table 4.15: Energy Consumption Reduced due to Fog Computing Environment

Table 4.15 shows that The Smart Fog system 10:5 which means 10 areas and 5

cameras takes a lower energy consumption of 2903894.713 as compared to the cloud

system 10:5 with an energy consumption of 3177589.443. The experimental

outcomes are further represented or categorized into very high to very low as shown

below in the crosstabulation table.

Table 4.16 shows that energy consumption ranges for both FOG SYSTEM and

CLOUD SYSTEM are tailored to categorize their respective usage levels

effectively. FOG SYSTEM's categories range from "Very High" (below -1150.0000)

for extremely low consumption to "Very Low" (400.0000 to 400000.0000) for

higher usage scenarios. In contrast, CLOUD SYSTEM starts with "Very Low"

(below -1550.0000) and goes up to "Very High" (400.0000 to 400000.0000).

System

Energy Consumed

(Fog)

Energy Consumed

(Cloud)

Energy Consumption Reduced

Using Fog

Fog/Cloud-1:1 2666906.9783 2703567.7143 36660.736

Fog/Cloud-1:2 2670956.3531 2724228.4804 53272.127

Fog/Cloud-1:3 2668402.4564 2771633.2679 103230.811

Fog/Cloud-1:4 2668904.0258 2764939.1634 96035.138

Fog/Cloud-1:5 2669934.3309 2799180.2862 129245.955

Fog/Cloud-2:2 2668603.1406 2764850.5729 96247.432

Fog/Cloud-2:3 2670441.5028 2807775.2177 137333.715

Fog/Cloud-2:4 2671749.8597 2849125.2299 177375.370

Fog/Cloud-2:5 2675762.8380 2887051.7140 211288.876

Fog/Cloud-2:6 2928104.6330 2926944.7498 -1159.883

Fog/Cloud-2:7 2969367.4582 2968703.5879 -663.870

Fog/Cloud-2:8 3009438.8046 3007902.8161 -1535.989

Fog/Cloud-2:9 3048411.7523 3048899.5858 487.834

Fog/Cloud-2:10 3089402.5999 3088658.5915 -744.008

Fog/Cloud-3:5 2677098.6434 2993796.5055 316697.862

Fog/Cloud-3:6 3049029.0903 3048668.7878 -360.303

Fog/Cloud-3:10 3178035.5090 3176881.5438 -1153.965

Fog/Cloud-4:4 2676983.1865 3008750.0915 331766.905

Fog/Cloud-4:5 2773838.5932 3089951.3720 316112.779

Fog/Cloud-4:10 3177518.9069 3177179.7693 -339.138

Fog/Cloud-5:5 2792816.8478 3177208.8314 384391.984

Fog/Cloud-5:10 3177556.9957 3177196.9814 -360.014

Fog/Cloud-6:6 3176917.6581 3177369.9354 452.277

Fog/Cloud-6:10 3177409.1509 3177226.8895 -182.261

Fog/Cloud-7:10 3177797.6631 3177507.3385 -290.325

Fog/Cloud-8:10 3177042.9305 3177065.2212 22.291

Fog/Cloud-9:9 3177160.0221 3177118.2621 -41.760

Fog/Cloud-10:5 2903894.7132 3177589.4426 273694.729

136

Table 4.16: Classification of Fog and Cloud for Energy Consumption

O

bs

.

Fog

System

Energy

Consum-

ption

Rank
Cloud

System

Energy

Consum-

ption

Rank

1 Fog-1:1 2666906.98 Very Low Cloud-1:1 2703567.71 Very High

2 Fog-1:2 2670956.35 Very Low Cloud-1:2 2724228.48 Very High

3 Fog-1:3 2668402.46 Very Low Cloud-1:3 2771633.27 Very High

4 Fog-1:4 2668904.03 Very Low Cloud-1:4 2764939.16 Very High

5 Fog-1:5 2669934.33 Very Low Cloud-1:5 2799180.29 Very High

6 Fog-2:2 2668603.14 Very Low Cloud-2:2 2764850.57 Very High

7 Fog-2:3 2670441.50 Very Low Cloud-2:3 2807775.22 Very High

8 Fog-2:4 2671749.86 Very Low Cloud-2:4 2849125.23 Very High

9 Fog-2:5 2675762.84 Very Low Cloud-2:5 2887051.71 Very High

10 Fog-2:6 2928104.63 High Cloud-2:6 2926944.75 Low

11 Fog-2:7 2969367.46 High Cloud-2:7 2968703.59 Low

12 Fog-2:8 3009438.80 Very High Cloud-2:8 3007902.82 Low

13 Fog-2:9 3048411.75 Very Low Cloud-2:9 3048899.59 Very High

14 Fog-2:10 3089402.60 High Cloud-2:10 3088658.59 Low

15 Fog-3:5 2677098.64 Very Low Cloud-3:5 2993796.51 Very High

16 Fog-3:6 3049029.09 High Cloud-3:6 3048668.79 Low

17 Fog-3:10 3178035.51 High Cloud-3:10 3176881.54 Low

18 Fog-4:4 2676983.19 Very Low Cloud-4:4 3008750.09 Very High

19 Fog-4:5 2773838.59 Very Low Cloud-4:5 3089951.37 Very High

20 Fog-4:10 3177518.91 High Cloud-4:10 3177179.77 Low

21 Fog-5:5 2792816.85 Very Low Cloud-5:5 3177208.83 Very High

22 Fog-5:10 3177557.00 High Cloud-5:10 3177196.98 Low

23 Fog-6:6 3176917.66 Very Low Cloud-6:6 3177369.94 Very High

24 Fog-6:10 3177409.15 High Cloud-6:10 3177226.89 Low

25 Fog-7:10 3177797.66 High Cloud-7:10 3177507.34 Low

26 Fog-8:10 3177042.93 Low Cloud-8:10 3177065.22 High

27 Fog-9:9 3177160.02 High Cloud-9:9 3177118.26 Low

28 Fog-10:5 2903894.71 Very Low Cloud-10:5 3177589.44 Very High

Table 4.17 shows, specific ranges are chosen to provide a comprehensive

understanding of each system's performance across various Energy Consumption

conditions. By distinguishing between Very Low, Low, High, Very High values, it

becomes easier to optimize the systems' behaviors, ensuring they operate efficiently

under different scenarios.

137

Table 4.17: Type of System (Fog or Cloud) and Energy Consumption

Crosstabulation: Type of System (Fog or Cloud) and Energy

Consumption

Count

Type

Energy Consumption

Total

Very

Low Low High

Very

High

System (Fog or

Cloud)

Cloud 0 11 1 16 28

Fog 16 1 10 1 28

Total 16 12 11 17 56

Table 4.18, shows the approach for calculating the expected Frequency value from

the row total of energy consumption and column total of type of system (Fog or

Cloud) also the total number of observations is 56.

 Table 4.18: Expected Frequency

Calculation of Expected Frequency

Total of Energy

Consumption

Total Type

(Fog or Cloud)

Expected

Frequency

Expected

Frequency

16 28 (16 * 28) / 56 8.0

12 28 (12 * 28) / 56 6.0

11 28 (11 * 28) / 56 5.5

17 28 (17 * 28) / 56 8.5

16 28 (16 * 28) / 56 8.0

12 28 (12 * 28) / 56 6.0

11 28 (11 * 28) / 56 5.5

17 28 (17 * 28) / 56 8.5

Table 4.19: 2 Calculation

Observed and Expected Frequency for the calculation of 2

Observed

Frequency (OF)

Expected

Frequency (EF)
(OF - EF)2

(OF - EF)2

/ EF

0 8.0 64.00 8.00

11 6.0 25.00 4.17

1 5.5 20.25 3.68

16 8.5 56.25 6.62

16 8.0 64.00 8.00

1 6.0 25.00 4.17

10 5.5 20.25 3.68

1 8.5 56.25 6.62

 Total () 44.93

138

Degree of Freedom =(r-1) * (c-1)

 = (2-1) * (4-1)

 = 3

Table value @ 5% level of significance = 7.81

Therefore,

The calculated value of Chi-Square is found to be 44.93

The tabulated value of Chi-Square is found to be 7.81

Accordingly, table 4.19 represents the calculation of Chi-Square test value using the

observed and expected frequencies. The results confirm that the calculated value of

Chi-Square 44.93 is much greater than the tabulated value of 7.81 at a 5% level of

significance. So, it is clear that the null hypothesis is rejected.

It concludes that there is significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure energy

consumed. A notable contrast in performance, measured by energy consumption,

emerged between the SMART FOG protocol-based and cloud-based systems. The

findings reveal that the SMART FOG system exhibited superior performance with

notably lower energy consumption as compared to its cloud-based counterpart.

H04: There is significant difference between SMART FOG protocol-based system

and cloud-based system based on the performance measure cost of execution.

An alternative hypothesis is as follows

Ha4: There is no significant difference between SMART FOG protocol-based

system and cloud-based system based on the performance measure cost of

execution.

139

340103.8971

628126.8047

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Cost of execution (Fog) Cost of execution (Cloud)

Figure 4.5: Fog Vs Cloud System Based on Cost of Execution (ms)

Figure 4.5, shows comparative analysis between Fog based system and Cloud based

system based on a reduction in cost of execution as shown below confirms that there

is a large reduction in cost of execution with the use of a Smart fog-based system as

compared to Cloud-based systems.

140

Table 4.20: Cost of Execution Reduced due to Fog Computing Environment

Table 4.20 shows Fog system 10:5, 6:10, 5:5, 4:5, 4:4, 3:10, 3:5, 2:9, 2:8, 2:6, 2:5,

2:4, 2:3, 2:2, 1:5, 1:4, 1:3,1:2 and 1:1 there is large reduction in cost of execution

such as 288022.9075, 99741, 60402, 544960.7869, 448159.0806, 98363.99866,

448989.3741, 500691.6121, 98355.60871, 399548.7862, 251468.8792,

194700.9629, 136452.056, 183234.7721, 183234.7721, 136151.0813, 146352.5429,

75525.04129 and 51974.7142 respectively. The Smart Fog system 10:5 which

means 10 areas and 5 cameras takes a lower cost of execution of 340103.8971 as

compared to the cloud system 10:5 with a cost of execution of 628126.8047. The

experimental outcomes are further represented or categorized into very high to very

low as shown below in the crosstabulation table.

Table 4.21 shows the FOG SYSTEM's "Very High" (below -950.0000) indicates

exceptionally low costs due to optimized processes. "High" (-950.0001 to 30.0000)

System Cost of execution (Fog)

Cost of execution

(Cloud)

Cost of execution Reduced Using

Fog System

Fog/Cloud-1:1 4121.285714 56096 51974.71429

Fog/Cloud-1:2 9862.171429 85387.21272 75525.04129

Fog/Cloud-1:3 6241.457143 152594 146352.5429

Fog/Cloud-1:4 6952.542857 143103.6241 136151.0813

Fog/Cloud-1:5 8413.228571 191648.0007 183234.7721

Fog/Cloud-2:2 6525.971429 142978.0275 136452.056

Fog/Cloud-2:3 9132.257143 203833.2201 194700.9629

Fog/Cloud-2:4 10987.14286 262456.0221 251468.8792

Fog/Cloud-2:5 16676.42857 416225.2147 399548.7862

Fog/Cloud-2:6 374426.8214 472782.4301 98355.60871

Fog/Cloud-2:7 432926.0167 431984.8335 -941.1832586

Fog/Cloud-2:8 469736.0268 487558.4228 17822.39598

Fog/Cloud-2:9 44988.81339 545680.4254 500691.6121

Fog/Cloud-2:10 603102.4201 602047.6234 -1054.796652

Fog/Cloud-3:5 18570.22857 467559.6027 448989.3741

Fog/Cloud-3:6 545864.0268 545353.2181 -510.8087055

Fog/Cloud-3:10 728759.2027 827123.2013 98363.99866

Fog/Cloud-4:4 18406.54286 488759.6234 470353.0806

Fog/Cloud-4:5 155720.5371 603880.4261 448159.889

Fog/Cloud-4:10 728026.8047 727546.002 -480.8026788

Fog/Cloud-5:5 182626.4171 727587.204 544960.7869

Fog/Cloud-5:10 728080.804 727570.404 -510.3999999

Fog/Cloud-6:6 727174.4013 727815.6047 641.2033483

Fog/Cloud-6:10 727871.2013 827612.8054 99741.60402

Fog/Cloud-7:10 728422.0033 728010.404 -411.5993303

Fog/Cloud-8:10 727352.0027 727383.6047 31.60200911

Fog/Cloud-9:9 727518.006 727458.802 -59.20401781

Fog/Cloud-10:5 340103.8971 628126.8047 288022.9075

141

suggests moderate expenses with efficient operations, while "Low" (30.0001 to

90000.0000) represents typical costs within budget. "Very Low" (90001.0000 to

600000.0000) signifies higher expenses possibly from less optimized setups.

For the CLOUD SYSTEM, "Very Low" (below -950.0000) and "Low" (-950.0001

to 31.0000) denote economical costs and efficient management. "High" (31.0001 to

100000.0000) reflects standard expenses akin to FOG SYSTEM's "Low" range,

while "Very High" (100000.0001 to 600000.0000) indicates higher costs due to

complex tasks.

Table 4.21: Classification of Fog and Cloud for Execution

Obs.
Fog

System

Cost of

Execution

Classi-

fication

Cloud

System

Cost of

Execution
Rank

1 Fog-1:1 4121.29 Low Cloud-1:1 56096.00 High

2 Fog-1:2 9862.17 Low Cloud-1:2 85387.21 High

3 Fog-1:3 6241.46 Very Low Cloud-1:3 152594.00 Very High

4 Fog-1:4 6952.54 Very Low Cloud-1:4 143103.62 Very High

5 Fog-1:5 8413.23 Very Low Cloud-1:5 191648.00 Very High

6 Fog-2:2 6525.97 Very Low Cloud-2:2 142978.03 Very High

7 Fog-2:3 9132.26 Very Low Cloud-2:3 203833.22 Very High

8 Fog-2:4 10987.14 Very Low Cloud-2:4 262456.02 Very High

9 Fog-2:5 16676.43 Very Low Cloud-2:5 416225.21 Very High

10 Fog-2:6 374426.82 Very Low Cloud-2:6 472782.43 Very High

11 Fog-2:7 432926.02 High Cloud-2:7 431984.83 Low

12 Fog-2:8 469736.03 Low Cloud-2:8 487558.42 High

13 Fog-2:9 44988.81 Very Low Cloud-2:9 545680.43 Very High

14 Fog-2:10 603102.42 Very High Cloud-2:10 602047.62 Very Low

15 Fog-3:5 18570.23 Very Low Cloud-3:5 467559.60 Very High

16 Fog-3:6 545864.03 High Cloud-3:6 545353.22 Low

17 Fog-3:10 728759.20 Very Low Cloud-3:10 827123.20 Very High

18 Fog-4:4 18406.54 Very Low Cloud-4:4 488759.62 Very High

19 Fog-4:5 155720.54 Very Low Cloud-4:5 603880.43 Very High

20 Fog-4:10 728026.80 High Cloud-4:10 727546.00 Low

21 Fog-5:5 182626.42 Very Low Cloud-5:5 727587.20 Very High

22 Fog-5:10 728080.80 High Cloud-5:10 727570.40 Low

23 Fog-6:6 727174.40 Low Cloud-6:6 727815.60 High

24 Fog-6:10 727871.20 Very Low Cloud-6:10 827612.81 Very High

25 Fog-7:10 728422.00 High Cloud-7:10 728010.40 Low

26 Fog-8:10 727352.00 Low Cloud-8:10 727383.60 High

27 Fog-9:9 727518.01 High Cloud-9:9 727458.80 Low

28 Fog-10:5 340103.90 Very Low Cloud-10:5 628126.80 Very High

142

Table 4.22 These classifications help ranges guide cost-effective strategies and

resource allocation cost of execution based on operational needs. specific ranges are

chosen to provide a comprehensive understanding of each system's performance

across various Energy Consumption conditions. By distinguishing between Very

Low, Low, High, Very High values, it becomes easier to optimize the systems'

behaviors, ensuring they operate efficiently under different scenarios.

Table 4.22: Type of System (Fog or Cloud) and Cost of Execution

Crosstabulation: Type of System (Fog or Cloud) and

Cost of Execution

Count

Type

Cost of Execution
Total

Very

Low
Low High

Very

High

System (Fog

or Cloud)

Cloud 1 6 5 16 28

Fog 16 5 6 1 28

Total 17 11 11 17 56

Table 4.23 shows the approach for calculating the expected value from the row total

of cost of execution and column total of type of system (Fog or Cloud) also the total

number of observations is 56.

 Table 4.23: Expected Frequency

Calculation of Expected Frequency

Total Cost of

Execution

Total Type

(Fog or Cloud)

Expected

Frequency

Expected

Frequency

17 28 (17 * 28) / 56 8.5

11 28 (11 * 28) / 56 5.5

11 28 (11 * 28) / 56 5.5

17 28 (17 * 28) / 56 8.5

17 28 (17 * 28) / 56 8.5

11 28 (11 * 28) / 56 5.5

11 28 (11 * 28) / 56 5.5

17 28 (17 * 28) / 56 8.5

143

Table 4.24: 2 Calculation

Observed and Expected Frequency for the calculation of 2

Observed

Frequency (OF)

Expected

Frequency (EF)
(OF - EF)2

(OF - EF)2 /

EF

1 8.5 56.25 6.62

6 5.5 00.25 0.05

5 5.5 00.25 0.05

16 8.5 56.25 6.62

16 8.5 56.25 6.62

5 5.5 00.25 0.05

6 5.5 00.25 0.05

1 8.5 56.25 6.62

 Total () 26.65

Degree of Freedom = (r-1) * (c-1)

 = (2-1) * (4-1)

 = 3

Table value @ 5% level of significance = 7.81

Therefore,

The calculated value of Chi-Square is found to be 26.65

The tabulated value of Chi-Square is found to be 7.81

Accordingly, table 4.24 represents the calculation of the Chi-Square test value using

the observed and expected frequencies. The results confirm that the calculated value

of Chi-Square 26.65 is greater than the tabulated value of 7.81 at a 5% level of

significance. So, it is clear that the null hypothesis is accepted.

It concludes that there is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure cost of

execution. A notable contrast in performance, measured by cost of execution,

emerged between the SMART FOG protocol-based and cloud-based systems. The

findings reveal that the SMART FOG system exhibited superior performance with a

notably lower cost of execution as compared to its cloud-based counterpart.

144

H05: There is no significant difference between SMART FOG protocol-based

system and cloud-based system based on the performance measure of total network

usage.

An alternative hypothesis is as follows

Ha5: There is a significant difference between SMART FOG protocol-based system

and cloud-based system based on the performance measure of total network usage.

Figure 4.6: Fog Vs Cloud System Based on Total Network Usage (B/s)

Figure 4.6, shows that comparative analysis between Fog-based system and Cloud

based system based on reduction in total network usage as shown confirms that there

is large reduction in total network usage with use of Smart Fog based system as

compared to Cloud-based systems.

0

200000

400000

600000

800000

1000000

1200000

1400000

Total network usage (Fog) Total network usage (Cloud)

145

Table 4.25: Total Network Usage Reduced due to Fog Computing Environment

Table 4.25 Total Network Usage Reduced due to Fog Computing Environment Fog

system10:5, 9:9, 8:10, 5:5, 4:10, 4:5, 4:4, 3:10, 3:5, 2:8, 2:7, 2:5, 2:4, 2:3, 2:2, 1:5,

1:4, 1:3, 1:2 and 1:1 there is large reduction in total network usage such as 813124,

100000, 100000, 889585, 100000, 717690, 600582.6, 100000, 560311.2, 200000,

100000, 376389.8, 300487.8, 226130, 151466.2, 187988.4, 150136.4, 112806.6,

75270.6, and 38142.7 respectively.

The Smart Fog system 10:5 which means 10 number of areas and 5 cameras reduces

total network usage of 233479 as compared to the cloud system 10:5 with high total

System

Total network

usage (Fog)

Total network usage

(Cloud)

Reduction in Total

Network Usage

Using Fog System

Fog/Cloud-1:1 2309.9 40452.6 38142.7

Fog/Cloud-1:2 5537.8 80808.4 75270.6

Fog/Cloud-1:3 8357.7 121164.2 112806.5

Fog/Cloud-1:4 11383.6 161520 150136.4

Fog/Cloud-1:5 13887.4 201875.8 187988.4

Fog/Cloud-2:2 10055.6 161521.8 151466.2

Fog/Cloud-2:3 16103.4 242233.4 226130

Fog/Cloud-2:4 22457.2 322945 300487.8

Fog/Cloud-2:5 27266.8 403656.6 376389.8

Fog/Cloud-2:6 484368.2 484368.2 0

Fog/Cloud-2:7 464879.8 564879.8 100000

Fog/Cloud-2:8 545391.4 745391.4 200000

Fog/Cloud-2:9 725903 725903 0

Fog/Cloud-2:10 806414.6 806414.6 0

Fog/Cloud-3:5 44826.2 605137.4 560311.2

Fog/Cloud-3:6 725904.8 725904.8 0

Fog/Cloud-3:10 1015474.4 1115474.4 100000

Fog/Cloud-4:4 44812.4 645395 600582.6

Fog/Cloud-4:5 88728.2 806418.2 717690

Fog/Cloud-4:10 1031034.2 1131034.2 100000

Fog/Cloud-5:5 118114 1007699 889585

Fog/Cloud-5:10 1046594 1046594 0

Fog/Cloud-6:6 1024814.6 1024814.6 0

Fog/Cloud-6:10 1062153.8 1062153.8 0

Fog/Cloud-7:10 1077713.6 1077713.6 0

Fog/Cloud-8:10 1093273.4 1193273.4 100000

Fog/Cloud-9:9 994831 1094831 100000

Fog/Cloud-10:5 233479 1046603 813124

146

network usage of 1046603. The experimental outcomes are further represented or

categorized into very high to very low as shown below in the crosstabulation table.

Table 4.26 shows the network usage ranges for both FOG SYSTEM and CLOUD

SYSTEM effectively categorize their activity levels. In FOG SYSTEM, "No

Change" denotes 0 usage, typical during idle periods. "Low" (38000.0001 to

150000.0000) indicates moderate usage for regular data exchanges. "Very Low"

(150000.0001 to 900000.0000) suggests increased activity, possibly due to extensive

data processing. "High" (900000.0001 to 1000000.0000) represents intensified data

transfer or operational demands. "Very High" (above 1000000.0000) indicates

extensive network activity or intensive data processing.

Similarly, in CLOUD SYSTEM, "No Change" signifies 0 usage, "High"

(38000.0001 to 150000.0000) denotes typical activity levels, "Very High"

(150000.0001 to 900000.0000) indicates significant traffic, "Low" (900000.0001 to

1000000.0000) suggests reduced activity, and "Very Low" (above 1000000.0000)

signifies minimal network use or efficient management.

147

Table 4.26: Classification of Fog and Cloud for Total Network Usage

Obs
Fog

System

Total

Network

Usage

Rank
Cloud

System

Total

Network

Usage

Rank

1 Fog-1:1 2309.90 Low Cloud-1:1 40452.60 High

2 Fog-1:2 5537.80 Low Cloud-1:2 80808.40 High

3 Fog-1:3 8357.70 Low Cloud-1:3 121164.20 High

4 Fog-1:4 11383.60 Very Low Cloud-1:4 161520.00 Very High

5 Fog-1:5 13887.40 Very Low Cloud-1:5 201875.80 Very High

6 Fog-2:2 10055.60 Very Low Cloud-2:2 161521.80 Very High

7 Fog-2:3 16103.40 Very Low Cloud-2:3 242233.40 Very High

8 Fog-2:4 22457.20 Very Low Cloud-2:4 322945.00 Very High

9 Fog-2:5 27266.80 Very Low Cloud-2:5 403656.60 Very High

10 Fog-2:6 484368.20 No Change Cloud-2:6 484368.20 No Change

11 Fog-2:7 464879.80 Low Cloud-2:7 564879.80 High

12 Fog-2:8 545391.40 Very Low Cloud-2:8 745391.40 Very High

13 Fog-2:9 725903.00 No Change Cloud-2:9 725903.00 No Change

14 Fog-2:10 806414.60 No Change Cloud-2:10 806414.60 No Change

15 Fog-3:5 44826.20 Very Low Cloud-3:5 605137.40 Very High

16 Fog-3:6 725904.80 No Change Cloud-3:6 725904.80 No Change

17 Fog-3:10 1015474.40 Low Cloud-3:10 1115474.40 High

18 Fog-4:4 44812.40 Very Low Cloud-4:4 645395.00 Very High

19 Fog-4:5 88728.20 Very Low Cloud-4:5 806418.20 Very High

20 Fog-4:10 1031034.20 Low Cloud-4:10 1131034.20 High

21 Fog-5:5 118114.00 Very Low Cloud-5:5 1007699.00 Very High

22 Fog-5:10 1046594.00 No Change Cloud-5:10 1046594.00 No Change

23 Fog-6:6 1024814.60 No Change Cloud-6:6 1024814.60 No Change

24 Fog-6:10 1062153.80 No Change Cloud-6:10 1062153.80 No Change

25 Fog-7:10 1077713.60 No Change Cloud-7:10 1077713.60 No Change

26 Fog-8:10 1093273.40 Low Cloud-8:10 1193273.40 High

27 Fog-9:9 994831.00 Low Cloud-9:9 1094831.00 High

28 Fog-10:5 233479.00 Very Low Cloud-10:5 1046603.00 Very High

Table 4.27 These classifications help ranges guide cost-effective strategies and

resource allocation cost of execution based on Total Network Usage. specific ranges

are chosen to provide a comprehensive understanding of each system's performance

across various Energy Consumption conditions. By distinguishing between Very

Low, Low, High, Very High values, it becomes easier to optimize the systems'

behaviors, ensuring they operate efficiently under different scenarios.

148

Table 4.27: Type of System (Fog or Cloud) and Total Network Usage

Crosstabulation: Type of System (Fog or Cloud) and Total Network Usage

Count

Type

Total Network Usage

Total Very

Low
Low

No

Change
High

Very

High

System (Fog or

Cloud)

Cloud 0 0 8 8 12 28

Fog 12 8 8 0 0 28

Total 12 8 16 8 12 56

Table 4.28 shows the approach for calculating the expected value from the row total

of total network usage and column total of type of system (Fog or Cloud) also the

total number of observations is 56.

 Table 4.28: Expected Frequency

Calculation of Expected Frequency

Total Network

Usage

Total Type

(Fog or Cloud)

Expected

Frequency

Expected

Frequency

12 28 (12 * 28) / 56 6

8 28 (8 *28) / 56 4

16 28 (16 * 28) / 56 8

8 28 (8 * 28) / 56 4

12 28 (12 * 28) / 56 6

12 28 (12 * 28) / 56 6

8 28 (8 * 28) / 56 4

16 28 (16 * 28) / 56 8

8 28 (8 * 28) / 56 4

12 28 (12 * 28) / 56 6

Table 4.29: 2 Calculation

Observed and Expected Frequency for the calculation of 2
Observed

Frequency (OF)
Expected

Frequency (EF)
(OF - EF)2

(OF - EF)2 /

EF

0 6 36 6.00

0 4 16 4.00

8 8 0 0.00

8 4 16 4.00

12 6 36 6.00

12 6 36 6.00

8 4 16 4.00

8 8 0 0.00

0 4 16 4.00

0 6 36 6.00

 Total () 30.00

149

Degree of Freedom = (r-1) * (c-1)

 = (2-1) * (5-1)

 = 4

Table value @ 5% level of significance = 9.49

Therefore,

The calculated value of Chi-Square is found to be 30.00.

The tabulated value of Chi-Square is found to be 9.49

Accordingly, table 4.29 represents the calculation of the Chi-Square test value using

the observed and expected frequencies. The results confirm that the calculated value

of Chi-Square 30 is much greater than the tabulated value of 9.49 at a 5% level of

significance. So, it is clear that the null hypothesis is rejected.

It concludes that there is a significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure of total

network usage. A notable contrast in performance, measured by total network usage,

emerged between the SMART FOG protocol-based and cloud-based systems. The

findings reveal that the SMART FOG system exhibited superior performance with

notably lower total network usage as compared to its cloud-based counterpart.

H06: There is a significant difference between SMART FOG protocol-based system

and cloud-based system based on the performance measure computational power

consumed.

An alternative hypothesis is as follows

Ha6: There is no significant difference between SMART FOG protocol-based

system and cloud-based system based on the performance measure computational

power consumed.

The comparative analysis between Fog based system and Cloud based system based

on a reduction in computational power consumed as shown below confirms that

there is large reduction in computational power consumed with use of Smart Fog

based system as compared to cloud-based systems.

150

Figure 4.7: Fog Vs Cloud System Based on Computational Power (W)

Figure 4.7, shows there is a large reduction in computational power consumed in all

cases for Fog system as compared to cloud-based system so based on the results it

can be concluded that there is a significant difference between SMART FOG

protocol-based system and cloud-based system based on the performance measure

computational power consumed by Fog devices in comparison to Cloud devices.

0

50000

100000

150000

200000

250000

300000

Computational Power Consumed (Cloud)

Computational Power Consumed (Fog)

151

Table 4.30: Computational Power Reduced due to Fog Computing Environment

Figure 4.30 shows that The Smart Fog system 10:5 which means 10 areas and 5

cameras reduces computational power of 198917.0991 as compared to the cloud

system 10:5 with a high computational power of 251982.8428. The experimental

outcomes are further represented or categorized into very high to very low as shown

below in the crosstabulation table.

System Devices

Computational Power

Consumed (Cloud)

Computational Power

Consumed (Fog)

Reduction in

Computational Power by

Fog

Fog/Cloud-1:1 214499.73 166866.599 47633.131

Fog/Cloud-1:2 216031.3185 170536.7029 45494.61562

Fog/Cloud-1:3 219790.5181 166867.599 52922.91914

Fog/Cloud-1:4 219259.6757 173085.1916 46174.48403

Fog/Cloud-1:5 221974.9967 166868.599 55106.39769

Fog/Cloud-2:2 219252.6504 173079.6459 46173.00457

Fog/Cloud-2:3 222656.5748 166869.599 55786.97577

Fog/Cloud-2:4 225935.6307 178355.2394 47580.39134

Fog/Cloud-2:5 228943.2009 166870.599 62072.60192

Fog/Cloud-2:6 232106.7187 183226.7413 48879.97732

Fog/Cloud-2:7 235418.1945 166871.599 68546.59552

Fog/Cloud-2:8 238526.6933 188294.7163 50231.97703

Fog/Cloud-2:9 241777.7372 166872.599 74905.13815

Fog/Cloud-2:10 244930.6263 193350.0278 51580.59848

Fog/Cloud-3:5 237408.0629 166873.599 70534.46388

Fog/Cloud-3:6 241759.4349 190846.6661 50912.76876

Fog/Cloud-3:10 251926.7064 166874.599 85052.10742

Fog/Cloud-4:4 238593.8823 188347.7557 50246.12653

Fog/Cloud-4:5 245033.1438 166875.599 78157.5448

Fog/Cloud-4:10 251950.3557 198891.4536 53058.90215

Fog/Cloud-5:5 251952.6603 166876.599 85076.06133

Fog/Cloud-5:10 251951.7206 198892.531 53059.18959

Fog/Cloud-6:6 251965.4359 166877.599 85087.83688

Fog/Cloud-6:10 251954.0923 198894.4033 53059.68905

Fog/Cloud-7:10 251976.3319 166878.599 85097.73295

Fog/Cloud-8:10 251941.272 198884.2828 53056.98919

Fog/Cloud-9:9 251945.4782 166879.599 85065.87919

Fog/Cloud-10:5 251982.8428 198917.0991 53065.74369

152

Table 4.31 shows that the computational power consumed ranges for both FOG

SYSTEM and CLOUD SYSTEM effectively categorize their operational intensity. In

FOG SYSTEM, "Low" (45000.0000 to 48000.0000) signifies modest computational

demands, likely involving basic processing tasks. "Very Low" (48000.0001 to

86000.0000) indicates slightly higher power consumption, potentially due to more

complex computations or increased workload. Moving to "High" (86000.0001 to

100000.0000), it denotes significant computational power usage, indicative of

intensive processing requirements or larger-scale operations. "Very High" (above

100000.0000) suggests extensive power consumption, possibly involving complex

simulations or heavy data analytics.

Similarly, in CLOUD SYSTEM, "High" (45000.0000 to 48000.0000) and "Very

High" (48000.0001 to 86000.0000) reflect varying degrees of computational intensity.

"Low" (86000.0001 to 100000.0000) suggests reduced demands, while "Very Low"

(above 100000.0000) indicates minimal power usage or highly efficient

computational management.

153

Table 4.31: Classification of Fog and Cloud for Computational Power

Obs.
Fog

System

Compu-

tational

Power

Rank
Cloud

System

Compu-

tational

Power

Rank

1 Fog-1:1 166866.60 Low Cloud-1:1 214499.73 High

2 Fog-1:2 170536.70 Low Cloud-1:2 216031.32 High

3 Fog-1:3 166867.60 Very Low Cloud-1:3 219790.52 Very High

4 Fog-1:4 173085.19 Low Cloud-1:4 219259.68 High

5 Fog-1:5 166868.60 Very Low Cloud-1:5 221975.00 Very High

6 Fog-2:2 173079.65 Low Cloud-2:2 219252.65 High

7 Fog-2:3 166869.60 Very Low Cloud-2:3 222656.57 Very High

8 Fog-2:4 178355.24 Low Cloud-2:4 225935.63 High

9 Fog-2:5 166870.60 Very Low Cloud-2:5 228943.20 Very High

10 Fog-2:6 183226.74 Very Low Cloud-2:6 232106.72 Very High

11 Fog-2:7 166871.60 Very Low Cloud-2:7 235418.19 Very High

12 Fog-2:8 188294.72 Very Low Cloud-2:8 238526.69 Very High

13 Fog-2:9 166872.60 Very Low Cloud-2:9 241777.74 Very High

14 Fog-2:10 193350.03 Very Low Cloud-2:10 244930.63 Very High

15 Fog-3:5 166873.60 Very Low Cloud-3:5 237408.06 Very High

16 Fog-3:6 190846.67 Very Low Cloud-3:6 241759.43 Very High

17 Fog-3:10 166874.60 Very Low Cloud-3:10 251926.71 Very High

18 Fog-4:4 188347.76 Very Low Cloud-4:4 238593.88 Very High

19 Fog-4:5 166875.60 Very Low Cloud-4:5 245033.14 Very High

20 Fog-4:10 198891.45 Very Low Cloud-4:10 251950.36 Very High

21 Fog-5:5 166876.60 Very Low Cloud-5:5 251952.66 Very High

22 Fog-5:10 198892.53 Very Low Cloud-5:10 251951.72 Very High

23 Fog-6:6 166877.60 Very Low Cloud-6:6 251965.44 Very High

24 Fog-6:10 198894.40 Very Low Cloud-6:10 251954.09 Very High

25 Fog-7:10 166878.60 Very Low Cloud-7:10 251976.33 Very High

26 Fog-8:10 198884.28 Very Low Cloud-8:10 251941.27 Very High

27 Fog-9:9 166879.60 Very Low Cloud-9:9 251945.48 Very High

28 Fog-10:5 198917.10 Very Low Cloud-10:5 251982.84 Very High

Table 4.32 These classifications help ranges guide cost-effective strategies and

resource allocation cost of execution based on Computational Power. specific ranges

are chosen to provide a comprehensive understanding of each system's performance

across various Energy Consumption conditions. By distinguishing between Very

Low, Low, High, Very High values, it becomes easier to optimize the systems'

behaviors, ensuring they operate efficiently under different scenarios.

154

Table 4.32: Type of System (Fog or Cloud) and Computational Power

Type of System (Fog or Cloud) and Computational Power

Crosstabulation

Count

Type

Computational Power

Total Very

Low
Low High

Very

High

System (Fog

or Cloud)

Cloud 0 0 5 23 28

Fog 23 5 0 0 28

Total 23 5 5 23 56

Table 4.33 shows the approach for calculating the expected value from the row total

of computational power and column total of type of system (Fog or Cloud) also the

total number of observations is 56.

 Table 4.33: Expected Frequency

Calculation of Expected Frequency

Total of Total

Computational

Power

Total Type

(Fog or

Cloud)

Expected

Frequency

Expected

Frequency

23 28 (23 * 28) / 56 11.50

5 28 (5 * 28) / 56 02.50

5 28 (5 * 28) / 56 02.50

23 28 (23 * 28) / 56 11.50

23 28 (23 * 28) / 56 11.50

5 28 (5 * 28) / 56 02.50

5 28 (5 * 28) / 56 02.50

23 28 (23 * 28) / 56 11.50

Table 4.34: 2 Calculation

Observed and Expected Frequency for the calculation of 2
Observed

Frequency (OF)
Expected

Frequency (EF)
(OF - EF)2

(OF - EF)2

/ EF

0 11.5 132.25 11.50

0 2.5 6.25 02.50

5 2.5 6.25 02.50

23 11.5 132.25 11.50

23 11.5 132.25 11.50

5 2.5 6.25 02.50

0 2.5 6.25 02.50

0 11.5 132.25 11.50

 Total () 56.00

155

Degree of Freedom =(r-1) * (c-1)

 = (2-1) * (4-1)

 = 3

Table value @ 5% level of significance = 7.81

Therefore,

The calculated value of Chi-Square is found to be 56.00

The tabulated value of Chi-Square is found to be 7.81

Accordingly, table 4.34 represents the calculation of Chi-Square test value using the

observed and expected frequencies. The results confirm that the calculated value of

Chi-Square 56 is greater than the tabulated value of 7.81 at a 5% level of significance.

So, it is clear that the null hypothesis is accepted.

This concludes that there is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure

computational power. A notable contrast in performance, measured by computational

power, emerged between the SMART FOG protocol-based and cloud-based systems.

The findings reveal that the SMART FOG system exhibited superior performance

with notably lower computational power as compared to its cloud-based counterpart.

4.5 Multiple Regression Model

To find the association between energy consumed and several devices, execution

time, average loop delay, CPU92 delay, latency, cost execution, and total network

usage multiple regression analysis is being conducted the results of the analysis are

shown below in the tables.

The descriptive analysis is shown below in the table

Table 4.35 shows that the dataset constructed from experimental values encompasses

comprehensive metrics across fog and cloud computing environments. It includes data

points for latency, execution time, energy consumption, power consumption, cost of

execution, and total network usage. Each metric is recorded under varying

experimental conditions, such as different numbers of tasks and nodes. The dataset is

92 Central Processing Unit

156

designed to facilitate thorough analysis and evaluation of system performance and

resource utilization in both fog and cloud computing scenarios. Utilizing 10-fold

cross-validation ensures rigorous testing and validation of models trained on this

dataset, enhancing reliability and robustness in assessing the effectiveness of

computational frameworks in real-world applications. Descriptive and multiple

regression analyses conducted using Excel provide valuable insights into relationships

between variables in the dataset.

Table 4.35: Descriptive Summary of Various Measures

Descriptive Statistics

 Mean Std. Deviation N

Energy Consumed 2906053.09 220658.21 28

No. of Areas 3.57 00002.54 28

Number of Cameras Per Area 6.21 00002.89 28

Execution Time 2686.17 5335.31 28

Average Loop Delay:

Motion Object Detector

197.06

0255.13

28

Average Loop Delay:

Object Tracker, PTZ93 Control

065.26

0050.46

28

CPU Delay: Motion Video Stream 001.61 0001.65 28

CPU Delay: Detected Object 000.15 0000.09 28

CPU Delay: Object Location 011.93 0059.39 28

CPU Delay: Camera 002.10 0 28

Latency 276.03 0283.45 28

Cost of execution 325306.73 315146.58 28

Total network usage 466288.21 455181.89 28

The mean value of energy consumed is found to be 2906053.0944 and the standard

deviation is found to be 220658.21578.

Table 4.36 shows the energy consumed is considered a dependent variable and No. of

Area, Number of Cameras Per Area, Execution Time, Average Loop Delay: Motion

Detector, Object Detector, Object Tracker, Average Loop Delay: Object Tracker, PTZ

Control, CPU Delay: Motion Video Stream, CPU Delay: Detected Object, CPU

Delay: Object Location, CPU Delay: Camera, Latency, Cost of execution and Total

network usage are the independent variables.

93Pan-Tilt-Zoom

157

Table 4.36: Variables Considered & Removed

Variables Entered/ Removed a

Model Variables Entered
Variables

Removed
Method

1 Total network usage, Execution Time,

CPU Delay: Detected Object, No. of

Areas, Average Loop Delay: Object

Tracker, PTZ Control, CPU Delay:

Motion Video Stream, Number of

Cameras Per Area, Latency, Cost of

execution, CPU Delay: Object Location b

.

Time

Enter

a. Dependent Variable: Energy Consumed

b. Tolerance = .00 limit reached.

Table 4.37, shows the developed model is shown below in the table which confirms

there is a strong correlation between the dependent and independent variables as the

calculated R-Square value is 0.99.

Table 4.37: Regression Model Summary

Model Summary b

M
o
d

el

R
R

Square

Adjusted

R

Square

Std. Error

of the

Estimate

Change Statistics

R

Square

Change

F Change df1 df2
Sig. F

Change

1 .99a .99 .99 9579.24 .99 1430.95 10 17 .00

a. Predictors: (Constant), Total network usage, Execution Time, CPU Delay: Detected

Object, No. of Areas, Average Loop Delay: Object Tracker, PTZ Control, CPU Delay:

Motion Video Stream, Number of Cameras Per Area, Latency, Cost of execution, CPU

Delay: Object Location

b. Dependent Variable: Energy Consumed

The statistical analysis of the model shows high goodness-of-fit measures, indicating

a strong relationship between the dependent variable and the independent variables.

The coefficient of determination R Square is 0.99, indicating that approximately

99.9% of the variability in the dependent variable can be explained by the

independent variables in the model. The adjusted R Square, which accounts for the

number of predictors in the model, is 0.99, suggesting that the model is a good fit and

not overfitting the data. The standard error of the estimate is 9579.24, indicating the

average difference between the observed values and the predicted values by the

model.

158

Table 4.38: ANOVA Statistics

ANOVAa

Model Sum of Squares df Mean Square F Sig.

1e Regression 1313071347215.98 10 131307134721.59 1430.95 .00b

Residual 0001559953982.11 17 000091761998.94 1430.91 .00b

Total 1314631301198.09 27 0131398896720.55 1430.95 .00b

a. Dependent Variable: Energy Consumed

b. Predictors: (Constant), Total network usage, Execution Time, CPU Delay:

Detected Object, No. of Areas, Average Loop Delay: Object Tracker, PTZ

Control, CPU Delay: Motion Video Stream, Number of Cameras Per Area,

Latency, Cost of execution, CPU Delay: Object Location

Table 4.38 shows the ANOVA Statistics table presents the results of the analysis of

variance for the model. The mean square for the model is 131,307,134,721.598, which

represents the variance explained by the independent variables in the model. The F-

statistic is 1430.953, indicating that the variance explained by the model is

significantly greater than what would be expected by chance alone. The p-value (Sig.

= .000) is less than the typical significance level of 0.05, indicating that the model's

overall effect is statistically significant.

Model 1

The model finds the association between energy consumed and number of areas,

number of cameras per area, execution time, average loop delay, CPU delay, latency,

cost of execution, and total network usage as shown below in the coefficient table and

model summary table.

Energy Consumed No. of Areas

Energy Consumed No. of Cameras per Area

Energy Consumed Execution Time

Energy Consumed Average Loop Delay

Energy Consumed CPU Delay

Energy Consumed Latency

Energy Consumed Cost of Execution

Energy Consumed Total Network Usage

159

Table 4.39 shows that the coefficient Values represent the impact of each independent

variable on the dependent variable (Energy Consumed). Among the predictors,

"Average Loop Delay: Object Tracker, PTZ Control" and "Total network usage"

exhibit the most substantial influence, with positive coefficients indicating a positive

relationship with energy consumption. Conversely, "Execution Time" and "Latency"

demonstrate significant but negative coefficients, suggesting that higher values of

these variables are associated with lower energy consumption. Other predictors show

relatively weaker associations with energy consumption.

Table 4.39: Coefficient Values

Coefficientsa

Model

Unstandardized

Coefficients

Standar

dized

Coefficie

nts

t Sig.

B
Std.

Error
Beta

1

(Constant) 2647256.69 9801.57 0.007 270.08 0.00

No. of Areas (X1) 1161.67 2503.32 0.013 .46 0.64

Number of Cameras

Per Area (X2)
-164.37 1693.19 -0.002 -.09 0.92

Execution Time (X3 4.02 1.58 0.09 2.53 0.02

Average Loop Delay

Object Tracker, PTZ

Control (X4)

731.35

86.66

0.16

8.43

0.00

CPU Delay: Motion

Video Stream (X5)
3779.44 2591.37 0.02 1.45 0.16

CPU Delay:

Detected Object (X6)
7324.10 26165.35 0.01 0.28 0.78

CPU Delay: Object

Location (X7)
-288.19 142.47 -0.07 -2.02 0.06

Latency (X8) -87.49 26.41 -0.11 -3.31 0.01

Cost of execution

(X9)
0.01 0.02 0.02 0.72 0.48

Total network usage

(X10)
0.45 0.02 0.94 18.54 0.00

a. Dependent Variable: Energy Consumed (Y)

The variables Execution Time, Average Loop Delay: Object Tracker, PTZ Control,

Latency, and total network usage are found to be significant as the calculated p-value

is greater than the standard alpha value of 0.05.

160

Table 4.40: Excluded Measures

Excluded Variables a

Model Beta In t Sig.
Partial

Correlation

Collinearity

Statistics

Tolerance

1 Average Loop Delay: Motion

Detector, Object Detector, Object

Tracker

b

-

-

-

.00

a. Dependent Variable: Energy Consumed

b. Predictors in the Model: (Constant), Total network usage, Execution Time, CPU Delay:

Detected Object, No. of Areas, Average Loop Delay: Object Tracker, PTZ Control, CPU

Delay: Motion Video Stream, Number of Cameras Per Area, Latency, Cost of execution,

CPU Delay: Object Location

Table 4.40 shows that collinearity statistics section shows a tolerance value of 0.00

for the "Average Loop Delay" variable. A tolerance value of 0 indicates that there is

perfect collinearity between this independent variable and other variables in the

model. This suggests a high degree of correlation between "Average Loop Delay" and

other predictors, which may lead to multicollinearity issues.

Table 4.41: Residual Statistics of Model

Residuals Statistics a

 Minimum Maximum Mean
Std.

Deviation
N

Predicted

Value
2659408.50 3199812.25 2906053.09 220527.25 28

Residual -22652.21 11547.76 .00 7601.05 28

Std. Predicted

Value
-1.11 1.33 .00 1.00 28

Std. Residual -2.36 1.21 .00 0.79 28

a. Dependent Variable: Energy Consumed

Table 4.41 shows that Overall residual statistics provide an understanding of the

accuracy and variability of the predictions for the "Energy Consumed" dependent

variable in the model. The model seems to have a reasonably accurate prediction with

minor variations between observed and predicted values.

161

The mathematical representation of the model:

Y (Energy Consumption) = 1161.675X1 (No. of Areas) -164.373 X2 (Number of

Cameras Per Area) + 4.023 X3 (Execution Time) + 731.359 X4 (Average Loop

Delay: Object Tracker, PTZ Control) + 3779.441 X4 (CPU Delay: Motion Video

Stream) +7324.104X5 (CPU Delay: Detected Object) - 288.190 X6 (CPU Delay:

Object Location)-87.494 X7 (Latency) + 0.015 X8 (Cost of execution) +0.456 X9

(Total network usage)

4.6 Use of Machine Learning Approaches in Task Scheduling

Machine learning approaches are playing an increasingly vital role in task scheduling,

revolutionizing the efficiency and performance of task allocation and resource

management in cloud computing, edge computing, and IoT environments. These

techniques offer the ability to predict and forecast task demands, enabling proactive

resource allocation and reducing bottlenecks. Dynamic task scheduling becomes

possible with real-time data analysis, ensuring agile adaptations to changing

conditions. Load balancing benefits from machine learning's insights to distribute

tasks optimally across resources. Task prioritization becomes smarter, and energy

efficiency is enhanced by choosing energy-conscious resources. Multi-objective

optimization enables simultaneous consideration of conflicting objectives, and

learning from user behaviour facilitates personalized task scheduling. In essence, the

integration of machine learning in task scheduling empowers intelligent, adaptive, and

efficient resource allocation, leading to superior system performance, minimized

response times, and optimal resource utilization across diverse computing

environments. Mainly in supervised learning classification-based algorithms were

being used for task scheduling. The algorithms being considered for task scheduling

were Logistic Regression, IBK, K-Star, and AdaBoostM1.

Experiment 1: Number of Tasks: 40 and Nodes: 4

In Experiment 1, the number of tasks was set to 40, and the number of nodes was set

to 4. The evaluation of the model was performed using 10-fold cross-validation, a

common technique to assess the performance of machine learning algorithms. In this

approach, the dataset is divided into 10 subsets, and the model is trained and tested 10

times, each time using a different subset as the test set and the remaining subsets as

the training set.

162

4.6.1 Logistic Regression

Table 4.42, shows that the evaluation of logistic regression through 10-fold cross-

validation, performance measures provide valuable insights into the model's

classification accuracy and predictive capabilities. Accuracy, precision, recall

(sensitivity), and F1 score offer comprehensive assessments of the model's correctness

in classifying instances and its ability to avoid false positives and negatives.

Table 4.42: Performance Measures for Logistic Regression (LR94) at 10-fold

Cross-Validation

Measures Values

Correctly Classified Instances 176 (88%)

Incorrectly Classified Instances 24 (12%)

Kappa statistic 0.83

Mean absolute error 0.0599

Root mean squared error 0.2353

Relative absolute error 16.64%

Root relative squared error 55.47%

Total Number of Instances 200

Time taken to build a model: 0.01 seconds

Table 4.43 Detailed Accuracy by Class: Accuracy class-wise for the LR classifier

refers to the accuracy of the model in classifying instances within each individual

class. It provides insights into how well the model performs for each specific class in

the classification task.

Table 4.43: Accuracy Class Wise (LR Classifier)

Sr.

No.

TP

Rate

FP

Rate
Precision Recall

F-

Measure
MCC95

ROC96

Area

PRC97

Area
Class

1 0.95 0.04 0.93 0.95 0.94 0.91 0.99 0.99 Node1

2 0.50 0.02 0.83 0.50 0.63 0.59 0.96 0.78 Node2

3 1 0.09 0.72 1 0.84 0.81 0.99 0.99 Node3

4 1 0 1 1 1 1 1 1 Node4

Wt.

Avg.
0.88 0.04 0.89 0.88 0.88 0.84 0.98 0.95

Table 4.44 shows Confusion Matrix: The confusion matrix provides a detailed and

clear evaluation of the model's accuracy and misclassification patterns for each class,

offering valuable insights into the model's classification capabilities for the given

dataset.

94Logistic Regression
95Matthews Correlation Coefficient
96Receiver Operating Characteristic
97Precision-Recall Curve

163

Table 4.44: Confusion Matrix (LR)

 a b c d  classified as

 76 4 0 0 | a = Node1

5 20 15 0 | b = Node2

 0 0 40 0 | c = Node3

 0 0 0 40 | d = Node4

It was found that in case of logistic regression, the correctly classified instances were

about 88% which was quite higher than the considered classification techniques such

as IBK and AdaBoostM1. Similarly, the precision, recall, and F-measure values of

0.89, 0.88, and 0.88 respectively and the FP rate value 0.04.

4.6.2 IBK (Stratified Cross-Validation: 10-fold)

The performance of IBK classification algorithm at configuration setting: stratified

10-fold cross-validation. Accordingly, the performance measures included are

correctly classified instances, incorrectly classified instances, kappa statistic, mean

absolute error, root mean squared error, relative absolute error, root relative squared

error, total number of instances, and time taken to build a model.

 Table 4.45: Performance Measures for IBK at 10-fold Cross-Validation

Measures Values

Correctly Classified Instances 117 (58.5%)

Incorrectly Classified Instances 83 (41.5%)

Kappa statistic 0.39

Mean absolute error 0.21

Root mean squared error 0.45

Relative absolute error 58.65%

Root relative squared error 106.44%

Total Number of Instances 200

Time taken to build model: 0.001 seconds

Table 4.45 IBK model was built using 10-fold cross-validation on a dataset containing

a total of 200 instances. The time taken to build the model was 0.001 seconds,

indicating the model's efficiency in training.

164

Detailed Accuracy by Class

Based on table 4.46 which shows accuracy class-wise shown below it can be

concluded that Node 3 and Node 4 have shown higher precision as compared to other

two nodes. Similarly, the recall value is found to be higher in case of Node 4 and

Node 1 with values 1, and 0.95 respectively.

Table 4.46: Accuracy Class Wise (IBK)

Sr. No.
TP

Rate

FP

Rate
Precision Recall

F-

Measure
MCC

ROC

Area

PRC

Area
Class

1 0.95 0.35 0.64 0.95 0.77 0.59 0.66 0.63 Node1

2 0 0.26 0 0 0 -0.25 0.09 0.16 Node2

3 0.03 0 1 0.02 0.05 0.14 0.58 0.24 Node3

4 1 0 1 1 1 1 1 1 Node4

Wt.Avg. 0.59 0.19 0.65 0.59 0.52 0.41 0.60 0.53

Table 4.47 shows Confusion Matrix: The confusion matrix for the IBK (Instance-

Based k-nearest Neighbor) model shows its performance in classifying instances into

different classes (Node1, Node2, Node3, and Node4). It reveals that Node1 has 76

true positives and 4 false positives, while Node2 has all 40 instances misclassified as

Node1 (false negatives). Node3 has 1 true positive, 2 false positives, and 37 false

negatives, and Node4 has all 40 instances correctly classified as true positives. The

matrix provides a comprehensive evaluation of the model's accuracy and

misclassification patterns for each class, offering valuable insights into its

classification capabilities using the IBK algorithm.

 Table 4.47: Confusion Matrix (IBK)

 a b c d  classified as

 76 4 0 0 | a = Node1

40 0 0 0 | b = Node2

 2 37 1 0 | c = Node3

 0 0 0 40 | d = Node4

Accordingly, it was found that in case of IBK, the correctly classified instances were

about 58.5% which is quite less showing low level of accuracy as compared with

other classification techniques such as Logistic Regression, K-Star, and AdaBoostM1.

Similarly, the precision, recall, and F-measure values of 0.65, 0.58, and 0.51

165

respectively were lower in comparison to other classifiers being considered also the

mean absolute error value was found to be 0.21, and FP rate value 0.19.

4.6.3 K-Star (Stratified Cross-Validation: 10-fold)

The performance measures for the K-Star model at 10-fold cross-validation provide

valuable insights into its classification accuracy and predictive capabilities. Common

metrics such as accuracy, precision, recall (sensitivity), and F1 score offer a

comprehensive assessment of the model's correctness in predicting class labels and its

ability to avoid false positives and negatives.

Table 4.48: Performance Measures for K-Star at 10-fold Cross-Validation

Measures Values

Correctly Classified Instances 182(91%)

Incorrectly Classified Instances 18 (9%)

Overall Accuracy 91%

Kappa statistic 0.87

Mean absolute error 0.04

Root mean squared error 0.19

Relative absolute error 13.54%

Root relative squared error 44.24%

Total Number of Instances 200

Time taken to build model: 0.001 seconds

Table 4.48 shows K-Star model was built using 10-fold cross-validation on a dataset

containing a total of 200 instances. The time taken to build the model was 0.001

seconds, indicating the model's efficiency in training.

Detailed Accuracy by Class

Based on the table 4.49 accuracy class-wise shown below it can be concluded that

Node 2, Node 3, and Node 4 have shown higher precision as compared to Node 1.

Similarly, the recall value is found to be higher in case of Node 1 and Node 2 with

values 1 and, 1 respectively.

166

Table 4.49: Accuracy Class Wise (K-Star)

S.

No.

TP

Rate

FP

Rate
Precision Recall

F-

Measure
MCC

ROC

Area

PRC

Area
Class

1 1 0.15 0.81 1 0.90 0.83 1 1 Node1

2 0.575 0 1 0.57 0.73 0.72 1 1 Node2

3 0.975 0 1 0.97 0.98 0.98 1 1 Node3

4 1 0 1 1 1 1 1 1 Node4

Wt.

Avg.

0.91 0.06 0.92 0.91 0.90 0.87 1 1

Table 4.50 shows Confusion Matrix: The K-Star model's confusion matrix shows

excellent performance in correctly classifying instances into their respective classes,

particularly for Node4, with all 40 instances correctly classified. It has minimal

misclassifications for Node1 and Node3. However, there are 17 misclassifications for

Node2, where 17 instances were classified as Node1 instead.

Table 4.50: Confusion Matrix (K-Star)

a b c d  classified as

80 0 0 0 | a = Node1

17 23 0 0 | b = Node2

1 0 39 0 | c = Node3

0 0 0 40 | d = Node4

It was found that in case of K-Star classifier being used for task scheduling correctly

classified instances were about 91% which was quite higher than the considered

classification techniques such as IBK, Logistic Regression, and AdaBoostM1.

Similarly, the precision, recall, and F-measure values of 0.927, 0.91, and 0.903

respectively were higher in comparison to IBK, Logistic Regression, and

AdaBoostM1 also the mean absolute error value was found to be 0.05 and FP rate

value 0.04.

4.6.4 AdaBoostM1 (Stratified Cross-Validation: 10-fold)

AdaBoostM1 is an ensemble learning method based on table 4.51, AdaBoost

algorithm, and stratified 10-fold cross-validation is a popular technique used to

evaluate its performance. In this evaluation, the dataset is divided into ten subsets,

ensuring that each subset has a similar distribution of classes as the original dataset.

The AdaBoostM1 model is trained and tested ten times, each time using a different

subset as the test set and the remaining nine subsets as the training set.

167

Table 4.51: Performance Measures forAdaBoostM1 at 10-fold Cross-Validation

Measures Values

Correctly Classified Instances 120(60%)

Incorrectly Classified Instances 80 (40%)

Kappa statistic 0.41

Mean absolute error 0.32

Root mean squared error 0.38

Relative absolute error 88.46%

Root relative squared error 88.54%

Total Number of Instances 200

Time taken to build a model: 0.03 seconds

The AdaBoostM1 model was built using 10-fold cross-validation on a dataset

containing a total of 200 instances. The time taken to build the model was 0.03

seconds which is higher than IBK and K-Star.

Detailed Accuracy by Class

Based on table 4.52 shows accuracy class-wise below it can be concluded that Node

1, Node 2, Node 3, and Node 4 have shown higher precision with value 1. Similarly,

the recall value is found to be higher in case of Node 1 and Node 2 with values 1 and,

1 respectively.

Table 4.52: Accuracy Class Wise (AdaBoostM1)

S. No.
TP

Rate

FP

Rate
Precision Recall

F-

Measure
MCC

ROC

Area

PRC

Area
Class

1 1 0.33 0.66 1 0.8 0.66 1 1 Node1

2 1 0.25 0.5 1 0.66 0.61 1 1 Node2

3 0 0 - 0 - - 1 1 Node3

4 0 0 - 0 - - 1 1 Node4

Weighted

Avg.
0.60 0.18 - 0.6 - - 1 1

Table 4.53 shows Confusion Matrix: The confusion matrix for the AdaBoostM1

model shows perfect performance in correctly classifying instances into their

respective classes, with 80 instances correctly classified as Node1, 40 instances as

Node2, 40 instances as Node3, and 40 instances as Node4. There are no

misclassifications observed in the model's predictions for any of the classes.

168

Table 4.53: Confusion Matrix (AdaBoostM1)

 ab c d  classified as

80 0 0 0 | a = Node1

0 40 0 0 | b = Node2

 40 0 0 0 | c = Node3

 0 40 0 0 | d = Node4

Accordingly, it was found that in case of AdaBoostM1 the correctly classified

instances were about 60% which is quite less showing low level of accuracy as

compared with other classification techniques such as Logistic Regression and K-Star.

Similarly, the precision, recall, and F-measure were lower in comparison to other

classifiers such as Logistic Regression and K-Star and FP rate value 0.18.

4.6.5 Comparative Analysis of Classification Algorithms

In the performance-wise analysis of classification algorithms using 10-fold cross-

validation with 40 tasks and 4 nodes, various performance metrics were evaluated to

assess the effectiveness of the algorithms in classifying instances.

Experiment 1: Number of Tasks: 40 and Nodes: 4:

In Experiment 1, the number of tasks was set to 40, and the number of nodes was set

to 4. The evaluation of the model was performed using 10-fold cross-validation, a

common technique to assess the performance of machine learning algorithms. In this

approach, the dataset is divided into 10 subsets, and the model is trained and tested 10

times, each time using a different subset as the test set and the remaining subsets as

the training set.

169

Table 4.54: Performance-Wise Analysis of Classification Algorithms

(10 folds, Number of Tasks: 40 and Nodes: 4)

Performance

Measure

Logistic

Regression

K-

Star
IBK AdaBoostM1

Accuracy 0.88 0.91 0.58 0.60

Precision 0.88 0.92 0.65 -

Recall 0.88 0.91 0.58 0.60

F-Measure 0.87 0.90 0.51 -

ROC Area 0.98 1.00 0.60 1.00

Mean

absolute error
0.05 0.04 0.21 0.32

Execution

Time Model
15ms 10ms 10ms 30ms

Based on table 4.54, which provided performance measures, K-Star appears to be the

best-performing algorithm, achieving the highest accuracy and precision among the

four. Logistic Regression also shows respectable performance with high accuracy and

precision. On the other hand, IBK and AdaBoostM1 have lower accuracy scores,

making them less suitable choices for the given classification tasks.

170

Figure 4.8: Evaluation of Classifier at 10-fold Cross-Validation based on

Various Performance Measures

From the above Figure 4.8, it is clear that Logistic Regression and K-star are the most

appropriate algorithms for task scheduling while considering the configuration

setting; cross-validation 10 folds.

0.88

0.887

0.88

0.871

0.988

0.0599

0.91

0.927

0.91

0.903

1

0.0488

0.58

0.658

0.585

0.517

0.602

0.2114

0.6

0.5

0.6

0.667

1

0.3188

0 0.2 0.4 0.6 0.8 1 1.2

Accuracy

Precision

Recall

F-Measure

ROC Area

Mean absolute error

AdaBoostM1 IBK K-Star Logistic Regression

171

Cross-validation – 25-fold: In the performance-wise analysis of classification

algorithms for task allocation and resource management in an IoT environment with

40 tasks and 4 nodes, using 25-fold cross-validation, the evaluation provides a

comprehensive understanding of the effectiveness of different algorithms in this

specific scenario.

Table 4.55: Performance-Wise Analysis of Classification Algorithms (25 folds,

Number of Tasks: 40 and Nodes: 4)

Performance

Measure

Logistic

Regression
K-Star IBK AdaBoostM1

Accuracy 0.89 0.92 0.64 0.52

Precision 0.91 0.94 0.68 0.46

Recall 0.89 0.93 0.64 0.53

F-Measure 0.89 0.92 0.56 0.46

ROC Area 0.99 1.00 0.48 0.95

Mean

absolute error
0.05 0.04 0.18 0.32

Execution

Time Model

Building

15ms 10ms 10ms 35ms

Table 4.55 shows the 25-fold cross-validation involves dividing the dataset of 40

tasks into 25 equal subsets (folds). Each classification algorithm is trained on 24 folds

and then tested on the remaining fold. This process is repeated 25 times, with each

fold serving as the testing set once.

172

Figure 4.9: Evaluation of Classifier at 25-fold Cross-Validation based on various

Performance Measures

From the above Figure 4.9, it is clear that Logistic Regression and K-star are the most

appropriate algorithms for task scheduling with a mean absolute error of 0.044 while

considering the configuration setting; cross-validation 25 folds.

0.89

0.911

0.895

0.888

0.99

0.0526

0.92

0.937

0.925

0.92

1

0.044

0.64

0.68

0.64

0.56

0.488

0.1844

0.52

0.459

0.525

0.46

0.955

0.3186

0 0.2 0.4 0.6 0.8 1 1.2

Accuracy

Precision

Recall

F-Measure

ROC Area

Mean absolute error

AdaBoostM1 IBK K-Star Logistic Regression

173

Figure 4.10: Average Execution Time (ms): 25 folds

From Figure 4.10, the average execution time of the most appropriate algorithms is

found to be IBK, K-Star, and Logistic Regression while considering 40 tasks and 4

nodes and cross-validation 25 folds. These three algorithms as the most appropriate

ones are based on their ability to achieve satisfactory classification performance while

offering faster average execution times. The 25-fold cross-validation ensures a robust

evaluation of the algorithms' performance, considering different subsets of the data for

training and testing.

By considering execution time as an important criterion, the analysis aims to select

algorithms that can handle task allocation and resource management efficiently in

real-time IoT environments with 40 tasks and 4 nodes.

0 5 10 15 20 25 30 35

Logistic Regression

K-Star

IBK

AdaBoostM1

15

10

10

35

174

Experiment 2: Number of Tasks: 160 and Nodes: 4

Cross-validation – 10 folds: The performance-wise analysis of classification

algorithms for task allocation and resource management in an IoT environment with

10-fold cross-validation, 160 tasks, and 4 nodes provides valuable insights into the

effectiveness of different algorithms in this specific scenario. Using the 10-fold cross-

validation, the dataset of 160 tasks is divided into ten equal subsets (folds).

Table 4.56: Performance-Wise Analysis of Classification Algorithms

(10 folds,160number of tasks and Nodes: 4)

Performance

Measure

Logistic

Regression
K-Star IBK AdaBoostM1

Accuracy 0.81 0.90 0.25 0.50

Precision 0.83 0.91 0.26 -

Recall 0.81 0.90 0.26 0.50

F-Measure 0.82 0.90 0.26 -

ROC Area 0.95 0.96 0.50 0.83

Mean absolute error 0.09 0.07 0.37 0.25

Execution Time

Model Building
1660ms 20ms 20ms 25ms

Each algorithm is trained on 10 folds and tested on the remaining fold. This process is

repeated ten times, with each fold serving as the testing set once and the results are

shown above in table 4.56.

175

Figure 4.11: Evaluation of Classifier at 10-fold Cross-Validation Based on

Various Performance Measures (Number of Tasks: 160 and Nodes: 4)

Figure 4.11, it is clear that Logistic Regression and K-star are the most appropriate

algorithms for task scheduling while considering the configuration setting; cross-

validation 10 folds and 160 tasks and 4 nodes.

0.81

0.833

0.814

0.816

0.953

0.0931

0.9

0.906

0.903

0.904

0.963

0.0691

0.25

0.257

0.255

0.255

0.503

0.3727

AdaBoostM1

0

0.5

0

0.833

0.25

0 0.2 0.4 0.6 0.8 1 1.2

Accuracy

Precision

Recall

F-Measure

ROC Area

Mean absolute error

AdaBoostM1 IBK K-Star Logistic Regression

176

Figure 4.12: Average Execution Time (ms): 10 folds

(Number of Tasks: 160 and Nodes: 4)

From the Figure 4.12, for average execution time, the most appropriate algorithms are

found to be IBK and K-Star while considering 160 number of tasks and 4 nodes and

cross validation 10 folds. In a Fog Computing environment with 160 tasks across 4

nodes and using 10-fold cross-validation, IBK, and K-Star algorithms are identified as

optimal based on average execution time known for efficiency in classification tasks,

both algorithms demonstrate effective task processing and classification with

relatively low execution times, making them suitable choices for distributed Fog

Computing scenarios.

0 500 1000 1500 2000

Logistic Regression

K-Star

IBK

AdaBoostM1

1660

20

20

25

177

Cross-validation - 25 folds: In Table 4.34, the performance-wise analysis of

classification algorithms is presented using 25-fold cross-validation with 160 tasks

and 4 nodes.

Table 4.57: Performance-Wise Analysis of Classification Algorithms

(25 folds, 160 number of tasks and Nodes: 4)

Performance

Measure

Logistic

Regression
K-Star IBK AdaBoostM1

Accuracy 0.89 0.90 0.25 0.47

Precision 0.90 0.91 0.25 0.47

Recall 0.89 0.91 0.25 0.47

F-Measure 0.89 0.91 0.25 0.45

ROC Area 0.98 0.96 0.50 0.80

Mean absolute

error
0.05 0.07 0.38 0.29

Execution

Time Model

Building

1860ms 20ms 20ms 25ms

Table 4.57 shows updated performance measures, K-Star remains the best-performing

algorithm, achieving the highest accuracy and precision among the four. Logistic

Regression also shows respectable performance with high accuracy and precision

scores. However, both IBK and AdaBoostM1 have significantly lower accuracy and

precision values, making them less suitable choices for the given classification tasks.

178

Figure 4.13: Evaluation of classifier at 25-fold Cross-Validation based on

Various Performance Measures (Number of Tasks: 160 and Nodes: 4)

Figure 4.13, it is clear that Logistic Regression and K-star are the most appropriate

algorithms for task scheduling while considering the configuration setting; cross-

validation 25 folds and 160 tasks and 4 nodes.

0.89

0.899

0.892

0.893

0.976

0.0541

0.9

0.907

0.905

0.906

0.961

0.0706

0.25

0.25

0.25

0.25

0.498

0.375

0.47

0.472

0.477

0.449

0.801

0.2988

0 0.2 0.4 0.6 0.8 1 1.2

Accuracy

Precision

Recall

F-Measure

ROC Area

Mean absolute error

AdaBoostM1 IBK K-Star Logistic Regression

179

Figure 4.14: Average Execution Time (ms): 25 folds

(Number of Tasks: 160 and Nodes: 4)

Based on the above Figure 4.14, average execution time the most appropriate

algorithms are found to be K-Star and IBK while considering 160 number of tasks and

4 nodes and cross-validation 25 folds. The consistent performance in minimizing

average execution time underscores their suitability for real-time task execution and

classification in resource-constrained environments. This reinforces their selection as

optimal choices for achieving efficient task processing in Fog Computing systems.

0 500 1000 1500 2000

Logistic Regression

K-Star

IBK

AdaBoostM1

1860

20

20

25

180

4.7 Clustering Algorithms Used for Task Scheduling

Cloud computing offers several benefits, including immense processing power, ample

storage, a massive network connecting processing nodes and data sources, and a pay-

per-use approach. Cloud computing is a strong technology that provides these

paradigms as well as many other benefits such as flexibility, cheaper costs, scalability,

and ease of software installation. However, despite these benefits, Cloud computing

has certain disadvantages. Some of the disadvantages include: the client and Cloud

layer may be geographically separated, which can cause transmission delays; there

may be a scarcity of resources for task execution; many resources may be idle even if

tasks must be performed instantly and so on.

Virtualized Fog computing technology is used to solve these issues. Fog is a layer that

sits between end users and cloud data centers. Fog computing can be useful for

executing applications that require low latency and real-time responses, depending on

the location of the data producer. This layer can include a large number of virtual

servers to handle incoming requests. "Resource allocation is the systematic approach

of allocating available resources to the needed Cloud clients over the Internet,"

according to Agarwal, Yadav, and Yadav. The timing and order in which resources

are allotted are critical for maximizing the benefits of employing a virtual server,

since the system's throughput may be increased while customers are not overcharged.

The availability of resources should ensure that high-priority jobs do not wind up at

the bottom of the task queue. This might result in inefficient utilization of virtual

servers and possibly company loss. As a result, allocating resources in a prioritized

manner to maximize profit is a critical and promising study topic. Furthermore, ML,

an important field, has made significant advances in a variety of academic areas,

including robotics, neuromorphic computing, computer graphics, NLP98, decision-

making, and speech recognition. Several researches have been presented to look at

ways to use machine learning to solve fog computing issues. In recent years, there has

been an increase in the use of ML to improve fog computing applications and deliver

fog services, such as efficient resource management, security, latency and energy

reduction, and traffic modeling.

98 Natural Language Processing

181

There are many different types of fog computing devices, sensors, and objects, and

each one generates a large amount of data that must be processed. Real-time

processing has the potential to improve efficiency. In some cases, it may be necessary.

Sensors, devices, and by sending requests, objects will completely utilize resources.

As a result, fog computing requires resource management and should be implemented

with caution. In this section, we looked at studies that used ml algorithms to manage

fog computing resources. This paper proposes a Scheduling Algorithm which is used

to schedule tasks at fog level. A task is scheduled to the VM that plays a role in the

execution of request / response model in fog computing. We use a K-means clustering

algorithm for scheduling fog devices. The default resource scheduler in the simulator

equally divides fog device’s resources among all active application modules.

Clustering makes it easy to find a set of tasks for VM with minimum cost. Therefore,

the integration of ML method i.e. Clustering in scheduling tasks in fog computing will

give a better quality of services (QoS) with low execution cost and low network

usage. The study includes:

1. Presentation of Clustering Scheduling in Fog Computing.

2. Implementation of proposed algorithm in iFogsim.

3. Reduction of Execution Cost.

Clustering algorithms group data points based on their similarity or proximity.

Common types include K-means, which partitions data into K clusters; DBSCAN,

which identifies clusters based on density; and Hierarchical clustering, which builds a

tree-like structure of nested clusters.

4.7.1 Canopy Clustering

Table 4.58 shows that Canopy Clustering is a pre-processing technique used in data

clustering to reduce the computational complexity of subsequent clustering

algorithms. It acts as a data summarization step by creating overlapping regions

(canopies) that cover subsets of data points based on a similarity threshold. Data

points falling within each canopy are then passed to another clustering algorithm for

further refinement.

182

Table 4.58: Accuracy Canopy Clustering

Measures Values

Correctly Classified Instances 149 (74.5%)

Incorrectly Classified Instances 51 (25.5%)

Overall Accuracy 74.5%

Total Number of Instances 200

Time taken to build a model 0.001 seconds

Figure 4.15, shows that the accuracy results for Canopy Clustering show that the

model correctly classified 149 instances, representing 74.5% of the total instances in

the dataset. There were 51 instances misclassified, amounting to 25.5% error. The

overall accuracy of 74.5% indicates its effectiveness in classifying data points, and the

model was built efficiently in just 0.001 seconds for a total of 200 instances.

Figure 4.15: Overall Accuracy Canopy Clustering

Accordingly, Figure 4.15, it was found that in case of Canopy Clustering the correctly

classified instances were about 74.5% which is quite high and showing high level of

149

51

74.5

0 50 100 150 200

Correctly Classified Instances

Incorrectly Classified Instances

Overall Accuracy

Percentage (%)

P
er

fo
rm

a
n

ce
 M

ea
su

re
s

183

accuracy as compared with other clustering techniques such as Hierarchical

Clustering and Density-Based Clustering. Similarly, the precision, recall, and F-

measure values of 0.75, 0.70, and 0.70 respectively were higher in comparison to

other clustering techniques such as Hierarchical Clustering and Make Density Based

Clustering.

Table 4.59: Performance Measure Class Wise (Canopy Clustering)

S.

No.

n

(truth)

n

(classified)
Accuracy Precision Recall

F1

Score
Class

1 86 80 0.77 0.75 0.70 0.72 Node1

2 30 40 0.76 0.28 0.37 0.31 Node2

3 44 40 0.96 0.95 0.86 0.90 Node3

4 40 40 1.00 1.00 1.00 1.00 Node4

Based on the above table 4.59, it can be concluded that Node 4 has shown higher

precision with value 1. Similarly, the recall value is found to be higher in case of

Node 1.

Figure 4.16: Class-wise performance measures

0.77 0.75
0.7 0.72

0.76

0.28

0.37

0.31

0.96 0.95

0.86
0.9

1 1 1 1

0

0.2

0.4

0.6

0.8

1

1.2

Accuracy Precision Recall F1 Score

Node1 Node2 Node3 Node4

184

As shown in Figure 4.16, Class-wise performance measures the accuracy of the Node

4 is found to be highest with the value of 1 whereas the accuracy of Node 2 is found

to be lowest with the value of 0.28.

 Table 4.60: Confusion Matrix (Canopy Clustering)

0 1 2 3 assigned to cluster

 60 18 2 0 | Cluster 0: Node1

 25 11 4 0 | Cluster 1: Node2

 1 1 38 0 | Cluster 2: Node3

0 0 0 40 | Cluster 3: Node4

From Table 4.60 the confusion matrix for Canopy Clustering shows the distribution of

data points across clusters. It reveals correct and incorrect cluster assignments,

helping assess the algorithm's performance. Cluster 0 (Node1) has 60 correct, 18, and

2 incorrect assignments; Cluster 1 (Node2) has 25 correct, 11 and 4 incorrect; Cluster

2 (Node3) has 1 correct, 1 and 38 incorrect; and Cluster 3 (Node4) has 40 correct

assignments.

4.7.2 Hierarchical Clustering

Table 4.61: Overall Accuracy Hierarchical Clustering

Measures Values

Correctly Classified Instances 118 (59%)

Incorrectly Classified Instances 82 (41%)

Overall Accuracy 38.14%

Total Number of Instances 200

Time taken to build a model 0.03 seconds

Table 4.61 the overall accuracy of Hierarchical Clustering is 38.14%, indicating that

only 38.14% of the instances were correctly classified, while the remaining instances

were misclassified. This relatively low accuracy suggests that the clustering algorithm

may not be performing well on the given dataset.

Table 4.62: Class or Node-wiseHierarchical Clustering Performance Measures

S.

No.

n

(truth)

n

(classified)
Accuracy Precision Recall

F1

Score
Class

1 150 74 58 0.97 0.48 0.64 Node1

2 4 40 78 0.03 0.25 0.05 Node2

3 39 40 59 0.00 0.00 0.00 Node3

4 1 40 79 0.03 1.00 0.05 Node4

185

Table 4.62 shows performance metrics for different classes in a classification task.

Node1 achieved high accuracy 58% and precision 0.97 but lower recall 0.48 and F1

Score 0.64. Node2 had good accuracy 78% but low precision of 0.03 and recall 0.25.

Figure 4.17: Class or Node-wiseHierarchical Clustering Performance Measures

As shown in Figure 4.17, Node3 showed moderate accuracy 59% but had no

precision, recall, or F1 Score due to zero true positives. Node4 had high accuracy

79% and recall 1 but low precision 0.03 and F1 Score 0.05. The evaluation highlights

the varying strengths and weaknesses of each class's classification performance.

Confusion Matrix: It was found that in case of Hierarchical Clustering the correctly

classified instances were about 59% which is quite less and shows a low level of

accuracy as compared with other clustering techniques such as Canopy Clustering.

0.58

0.97

0.48

0.64

0.78

0.025

0.25

0.045

0.59

0 0 0

0.79

0.025

1

0.049

0

0.2

0.4

0.6

0.8

1

1.2

Accuracy Precision Recall F1 Score

Node1 Node2 Node3 Node4

186

 Table 4.63: Confusion Matrix (Hierarchical Clustering)

0 1 2 3 assigned to cluster

 7220 0 | Cluster 0: Node1

39 1 0 0 | Cluster 1: Node2

39 1 0 0 | Cluster 2: Node3

0 0 391| Cluster 3: Node4

Similarly, From Table 4.63 the precision and F-measure values of 0.02 and 0.04

respectively were lower in comparison to other clustering techniques.

4.8.3 Make Density-Based Clustering

The overall accuracy of Density-Based Clustering is 19.5%, indicating that only

19.5% of the instances were correctly classified.

Table 4.64: Overall Accuracy Make Density-Based Clustering

Measures Values

Correctly Classified Instances 97 (48.5%)

Incorrectly Classified Instances 103 (51.5%)

Overall Accuracy 19.5%

Total Number of Instances 200

Time taken to build model 0.01 seconds

From Table 4.64 the classification model achieved an accuracy of 19.5%, with 97

instances correctly classified and 103 instances incorrectly classified out of a total of

200 instances. This indicates that the model's performance is relatively poor, as it

correctly classified less than half of the instances. This low accuracy suggests that the

clustering algorithm may not be performing well on the given dataset.

187

Figure 4.18: Overall Accuracy Make Density-Based Clustering

As shown in Figure 4.18, The Density-Based Clustering model has a relatively high

error rate, with 103 instances and 51.5% being incorrectly classified. However, it is

important to note that the model was built quickly, taking only 0.01 seconds to

complete.

Table 4.65: Class or Node wise Make Density-Based Clustering Performance

Measures

S.

No.

n

(truth)

n

(classified)
Accuracy Precision Recall

F1

Score
Class

1 50 80 61 0.33 0.52 0.40 Node1

2 40 40 60 0.00 0.00 0.00 Node2

3 55 40 65 0.33 0.24 0.27 Node3

4 55 40 52 0.00 0 0.00 Node4

Table 4.65 Node1 achieved moderate accuracy 61% with relatively low precision 0.33

and recall 0.52, resulting in an F1 Score of 0.40. Node2 had a similar accuracy 60%,

but it had no precision, recall, or F1 Score due to zero true positives.

48.5

51.5

19.5

0 10 20 30 40 50 60

Correctly Classified Instances

Incorrectly Classified Instances

Overall Accuracy

Percentage (%)

P
er

fo
rm

a
n

ce
 M

ea
su

re
s

188

Figure 4.19: Class or Node wise Make Density-Based Clustering Performance

Measures

As shown in Figure 4.19, it observes that Node3 performed slightly better with higher

accuracy 65% and precision 0.33, but its recall 0.24, and F1 Score 0.27 remained

relatively low. Node4 had the lowest accuracy 52%, and its precision, recall, and F1

Score were all zero.

Confusion Matrix

The confusion matrix for the Density-Based Clustering shows the distribution of data

points across clusters. Cluster 0 (Node1) contains 2,602,628 data points correctly

assigned to it. Cluster 1 (Node2) contains 1, 101, and 613 data points correctly

assigned to it. Cluster 2 (Node3) has 130 data points correctly assigned, but 1, 314

data points were mistakenly placed in other clusters. Cluster 3 (Node4) contains 40

data points correctly assigned to it. The matrix provides valuable insights into the

clustering performance, with most data points correctly clustered in Cluster 0 and

Cluster 1, but some misclassifications in Cluster 2.

0.61

0.33

0.52

0.4

0.6

0 0 0

0.65

0.33

0.24
0.27

0.52

0 0 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Accuracy Precision Recall F1 Score

Node1 Node2 Node3 Node4

189

 Table 4.66: Confusion Matrix (Make Density-Based Clustering)

0 1 2 3 assigned to cluster

2602628 | Cluster 0: Node1

1101613 | Cluster 1: Node2

130 1314| Cluster 2: Node3

0 40 0 0| Cluster 3: Node4

Accordingly, Table 4.66 found that in case of Make Density Clustering the correctly

classified instances were about 48.5% which is quite low and shows a low level of

accuracy as compared with other clustering techniques such as Hierarchical

Clustering and Canopy Clustering. Similarly, the precision, recall, and F-measure

values were lower in comparison to other clustering techniques such as Hierarchical

Clustering and Canopy Clustering.

190

Chapter-5
Allocation and Scheduling of Computational Power

INTROD UCT ION

5.1 Task Offloading

5.2 Task Offloading and Resource Management System

5.3 Comparative Analysis Based on Cross-Validation 10 Folds

5.4 Comparative Analysis Based on Cross-Validation 20 Folds

5.5 Comparative Analysis Based on Split 33%

5.6 Overall Performance of Classification Algorithms

191

The task offloading & allocation and scheduling of computational power is going to

go through the process of allocating and scheduling the computing resources that are

shared among IoT devices. The many different categorization algorithms that are

based on machine learning are now being investigated, and the most effective

methods that are most suitable for fog computing are being identified. During testing,

the impact that the proposed work would have on the latency issue that the existing

system is experiencing will be evaluated. The implementation of a SMART FOG

protocol-based approach to the creation of a fog environment that enables the sharing

of computing resources with IoT devices is the major emphasis of this research work.

5.1 Task Offloading

Intelligent systems and smart applications that are self-sufficient, adaptable, and

knowledge-based are currently being created. Among them are aerospace, healthcare,

IoT, emergency and disaster management, and mobile apps, which are revolutionizing

the computer industry. Applications with a high number of expanding devices have

made the centralized cloud existing design unworkable. Despite the usage of 5G

technology, delay-sensitive apps and the cloud cannot operate simultaneously owing

to certain characteristics, such as latency, bandwidth, reaction time, etc., surpassing

threshold levels. The use of middleware demonstrates that it is a more effective way

to address these problems and yet adhere to the strict rules for job offloading.

Middleware that uses fog computing is advised in this due to the services being

offered at the network's edge, delay-sensitive applications can be efficiently used with

this study article. Contrarily, fog nodes have a finite number of resources, which

means they might not be able to handle all jobs, particularly those from computation-

intensive applications. Moreover, fog is not a replacement for the cloud but rather an

addition to it. Both technologies function similarly and provide services by job

requirements, although fog computing is closer to the devices than the cloud is. The

issue occurs when a decision must be made on what should be offloaded: data,

particularly where to offload the computer or application in the cloud or the fog as

well as how much to offload. When it comes to task-related characteristics like task

size, duration, arrival rate, and needed resources, fog-cloud collaboration is stochastic.

192

Figure 5.1: Proposed Task Offloading Management System (Li, 2019)

To better utilize the resources at the fog and cloud to improve QoS, dynamic task

offloading becomes essential. Due to the complexity of this job-offloading policy

creation, the research work addresses this issue and suggests an intelligent task-

offloading model.

5.2 Task Offloading and Resource Management System

The Task Offloading & Resource Management System is a sophisticated framework

designed to optimize task allocation and resource distribution within an IoT and fog

computing environment. By leveraging real-time monitoring, machine learning-based

analysis, and a policy repository for offloading criteria, the system intelligently

determines when and where to offload computational tasks from IoT devices to fog

nodes. Efficient resource management ensures that tasks are allocated to the most

suitable nodes based on factors such as task urgency and available resources, leading

to reduced latency and improved overall system performance. Through rigorous

performance evaluation, the system ensures the reliability and effectiveness of the

classification algorithms used for task allocation, contributing to seamless task

distribution and optimal resource utilization throughout the network. The system

consists of the following five main characteristics

TOMS

Cloud Layer

FOG Layer

IoT Layer Machine

Learning

Based

Classification

Models

193

The system consists of the following five main characteristics:

1. Task offloading criteria details: policy repository

2. Status of Fog layer: devices

3. Analysing the offloading and resource allocation using ML – approaches like

various classification algorithms.

4. Using various performance measures to evaluate classification algorithms.

5. Suggest the best predictive construct.

The system comprises five main characteristics: a policy repository for task

offloading criteria details, real-time monitoring of the fog layer status through

devices, machine learning-based analysis using various classification algorithms to

determine task offloading and resource allocation decisions, evaluation of

classification algorithms using multiple performance measures, and the suggestion of

the best predictive construct. These features together enable efficient task allocation,

resource utilization, and decision-making in IoT and fog computing environments,

optimizing system performance and improving overall efficiency.

Experimental Setup

The iFogSim simulator is being used for developing the Smart Fog environment. The

dataset is being constructed recording the various values of attributes like No. of Fog

system, Areas, Number of Cameras Per Area, Execution Time, ALD:

motion_detector, object_detector, object_tracker, ALD: object_tracker,

PTZ_CONTRO, CPU Delay: MOTION_VIDEO_STREAM, CPU Delay:

DETECTED_OBJECT, CPU Delay: OBJECT_LOCATION, CPU Delay: CAMERA,

Latency, Energy Consumed, Cost of execution, Total network usage, MIPS Million

instructions per second, Number of processing elements, RAM, Priority, Previous

Time etc.

Algorithm Executed

1) Load D

2) Pre-processing D

3) Train D, test D, split D

4) Classification modeling (IBK, K-Star, MLP, Logistic Regression, Bagging…)

i) Task offloading prediction

for i =0 to EOF ()

194

for j = 0 to (X. length-1)

calculate Z

return Z

p = f (z)

if (p == 1)

{

offloads to Fog

}

Else

{

offloads to Cloud

}

}

ii) Evaluation of predictive model using:

Accuracy ()

 Confusion matrix ()

Average Execution Time ()

 iii) Comparative Analysis:

 Comparative Eval (IBK, K-Star, MLP, Logistic Regression,

Bagging…)

 iv) Identify the most appropriate classifier or predictive model.

5) Implement the Constructed Predictive Model.

The suggested fog-cloud intelligent task offloading paradigm is evaluated and

assessed using a simulated environment for machine learning Weka 3.8.4, a data

science platform for data scientists, IT specialists, and business executives, has been

used to carry out the simulation. A variety of machine learning techniques are used to

train the model, with the recommended approach being LR, along with K-Nearest

Neighbor, Nave Bayes, Decision Tree, Support Vector Machine, and MLP99.

99Multiple Layer Perceptron

195

5.3 Comparative Analysis Based on Cross-Validation 10-Folds

Cross-validation – 10-fold: The 10-fold cross-validation provides a robust estimation

of each classifier's generalization ability, as it tests the algorithms on different subsets

of data, ensuring that the results are less sensitive to the specific data partitioning. For

each fold, the classifiers are trained on nine folds and then tested on the remaining

fold. This process is repeated ten times, with each fold serving as the testing set

exactly once.

Table 5.1: Comparative Analysis of Classifiers Used for Task Offloading and

Resource Allocation: 10-fold Cross Validation

Performance

Measure

Logistic

Regression

K-

Star
IBK J48 Bagging MLP

Accuracy 0.82 0.53 0.55 0.75 0.69 0.91

Kappa Statistic 0.64 0.07 0.10 0.50 0.39 0.82

TP Rate 0.82 0.54 0.55 0.75 0.35 0.91

FP Rate 0.18 0.46 0.45 0.25 0.69 0.09

Precision 0.83 0.54 0.76 0.79 0.30 0.91

Recall 0.82 0.54 0.55 0.75 0.71 0.91

F-Measure 0.82 0.53 0.44 0.74 0.69 0.91

ROC Area 0.81 0.60 0.57 0.79 0.69 0.98

Mean Absolute

Error
0.22 0.44 0.44 0.28 0.85 0.11

Execution Time

Model Building
60ms 20ms 20ms 30ms 30ms 80ms

The performance metrics, such as accuracy, precision, recall, F1 score, and area under

the receiver operating characteristic ROC curve, are calculated for each fold as shown

in table 5.1.

Comparing the performance of the classifier based on Accuracy, Kappa statistics, TP

rate, FP Rate, Precision, Recall, F-Measure, ROC Area, Mean Absolute Error, and

Execution Time Model Building used for task offloading and resource allocation

confirms that at configuration setting of cross-validation 10 folds in case of SMART

FOG environment.

196

Figure 5.2: Accuracy Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Cross Validation-10 folds)

Figure 5.2, confirms that at configuration setting of cross-validation 10 folds the

accuracy of MLP classifier with value 0.91 is found to be highest followed by

Logistic Regression with value 0.82. The other classification algorithms had an

accuracy of about 0.75 in case of J48 classifier, 0.69, 0.55, and 0.53 in case of

Bagging, IBK, and K-Star. The most appropriate classifiers based on performance

measure accuracy were found to be MLP and LR.

0.82

0.53
0.55

0.75

0.69

0.91

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logistic

Regression

K-Star IBK J48 Bagging MLP

Accuracy

197

Figure 5.3: Kappa Statistic Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Cross Validation-10 folds)

Figure 5.3, shows the Comparison the performance of the classifier based on Kappa

statistics used for task offloading and resource allocation in case of SMART FOG

environment it can be interpreted that a higher Kappa statistics value of 0.82 in case

of MLP and 0.64 in case of Logistic Regression suggests that they are the better

classifiers as compared to other classification techniques.

0.6429

0.0714

0.1071

0.5

0.3929

0.8214

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Logistic

Regression

K-Star IBK J48 Bagging MLP

Kappa statistic

198

Figure 5.4: TP Rate Value for Classifiers Used in Task Offloading and Resource

Management (Configuration Setting: Cross Validation-10 folds)

According to figure 5.4, it can be concluded that at the configuration setting of cross-

validation, 10-fold the TP Rate of MLP classifier with value 0.91 is found to be

highest followed by Logistic Regression with a value of 0.82. The other classification

algorithms had to have TP Rate of about 0.75 in case of J48 classifier, 0.35, 0.55, and

0.54 in case of Bagging, IBK, and K-Star. The most appropriate classifiers based on

performance measure TP rate were found to be MLP and LR.

0.821

0.536
0.554

0.75

0.3546

0.911

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logistic

Regression

K-Star IBK J48 Bagging MLP

TP Rate

199

Figure 5.5: FP Rate Value for Classifiers Used in Task Offloading and Resource

Management (Configuration Setting: Cross Validation-10 folds)

Figure 5.5, it can be concluded that at the configuration setting of cross-validation 10

folds the FP Rate of MLP classifier with value 0.09 is found to be lowest followed by

Logistic Regression with value 0.18. The other classification algorithms had to have

an FP Rate of about 0.25 in case of J48 classifier, 0.69, 0.45, and 0.46 in case of

Bagging, IBK, and K-Star which were found to be quite higher. The most appropriate

classifiers based on performance measure FP rate were found to be MLP and Logistic

Regression having lesser FP rate values as compared to others.

0.179

0.464
0.446

0.25

0.696

0.089

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Logistic

Regression

K-Star IBK J48 Bagging MLP

FP Rate

200

Figure 5.6: Precision Value for Classifiers Used in Task Offloading and Resource

Management (Configuration Setting: Cross Validation-10 folds)

Figure 5.6, it can be concluded that at the configuration setting of cross-validation 10

folds the Precision of MLP classifier with value 0.91 is found to be highest followed

by Logistic Regression with value 0.83. The other classification algorithms had to

have a Precision of about 0.79 in case of J48 classifier, 0.30, 0.76, and 0.53 in case of

Bagging, IBK, and K-Star. The most appropriate classifiers based on performance

measure Precision were found to be MLP and LR.

0.828

0.537

0.764
0.787

0.304

0.911

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logistic

Regression

K-Star IBK J48 Bagging MLP

Precision

201

Figure 5.7: Recall Value for Classifiers Used in Task Offloading and Resource

Management (Configuration Setting: Cross Validation-10 folds)

Results as shown in figure 5.7, confirm that at configuration setting of cross-

validation 10 folds the Recall of MLP classifier with value 0.91 is found to be highest

followed by Logistic Regression with value 0.82. The other classification algorithms

had to have a Recall of about 0.75 in case of J48 classifier, 0.71, 0.55, and 0.53 in

case of Bagging, IBK, and K-Star. The most appropriate classifiers based on

performance measure Recall were found to be MLP and LR.

0.821

0.536
0.554

0.75

0.71

0.911

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logistic

Regression

K-Star IBK J48 Bagging MLP

Recall

202

Figure 5.8: F-Measure Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Cross Validation-10 folds)

According the figure 5.8, it can be concluded that at the configuration setting of cross-

validation, 10 folds the F-Measure of MLP classifier with value 0.91 is found to be

highest followed by Logistic Regression with value 0.82. The other classification

algorithms had to have an F-Measure of about 0.74 in case of J48 classifier, 0.69,

0.44, and 0.53 in case of Bagging, IBK, and K-Star. The most appropriate classifiers

based on performance measure F-Measure were found to be MLP and LR.

0.821

0.53

0.442

0.742

0.696

0.911

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logistic

Regression

K-Star IBK J48 Bagging MLP

F-Measure

203

Figure 5.9: ROC Area Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Cross Validation-10 folds)

Figure 5.9, it can be concluded that at configuration setting of cross-validation 10

folds, the ROC Area of MLP classifier with value 0.97 is found to be highest followed

by Logistic Regression with value 0.80. The other classification algorithms had to

have a ROC Area of about 0.78 in case of J48 classifier, 0.69, 0.57, and 0.60 in case

of Bagging, IBK, and K-Star. The most appropriate classifiers based on performance

measure ROC Area were found to be MLP and LR.

0.809

0.603
0.57

0.785

0.692

0.976

0

0.2

0.4

0.6

0.8

1

1.2

Logistic

Regression

K-Star IBK J48 Bagging MLP

ROC Area

204

Figure 5.10: MAE Value for Classifiers Used in Task Offloading and Resource

Management (Configuration Setting: Cross Validation-10 folds)

Figure 5.10, it can be concluded that at the configuration setting of cross-validation,

10 folds the mean absolute error value of MLP classifier with 0.10 is found to be

lowest followed by Logistic Regression with value 0.21. The other classification

algorithms had mean absolute error values of about 0.28 in case of J48 classifier, 0.85,

0.45, and 0.43 in case of Bagging, IBK, and K-Star were found to be quite high. The

most appropriate classifiers based on performance measure mean absolute error value

were found to be MLP and LR having lesser mean absolute error values as compared

to others.

0.2159

0.4372 0.4485

0.2762

0.852

0.1063

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Logistic

Regression

K-Star IBK J48 Bagging MLP

Mean Absolute Error

205

Figure 5.11: Average Execution Time for Classifiers Used in Task Offloading

and Resource Management (Configuration Setting: Cross Validation-10 folds)

Figure 5.11, it can be concluded that at the configuration setting of cross-validation 10

folds the average execution time of model building of K-Star and IBK classifier is

found to be 20 milliseconds which is quite less as compared with other classifiers.

The other classification algorithms had to have an average execution time of model

building of about 30ms in case of J48 classifier, 30, 60, and 80ms in case of Bagging,

LR, and MLP. The most appropriate classifiers based on performance measure

average execution time of model building were found to be K-Star and IBK.

60

20 20

30 30

80

0

10

20

30

40

50

60

70

80

90

Logistic

Regression

K-Star IBK J48 Bagging MLP

Execution Time Model Building (Average)

206

5.4 Comparative Analysis Based on Cross-Validation 20 Folds

In the performance analysis of classification algorithms used for task offloading based

on 20-fold cross-validation, the evaluation provides a comprehensive understanding

of each algorithm's effectiveness in handling the task offloading problem. Cross-

validation is a re-sampling technique that partitions the dataset into 20 subsets (folds),

where each fold serves as both a training set and a testing set.

Table 5.2: Performance Analysis of Classification Algorithms Used for Task

Offloading: 20fold Cross-validation

Performance

Measure

Logistic

Regression

K-

Star
IBK J48 Bagging MLP

Accuracy 0.82 0.48 0.55 0.76 0.64 0.91

Kappa Statistic 0.64 -0.03 0.10 0.53 0.28 0.82

TP Rate 0.82 0.48 0.55 0.76 0.64 0.91

FP Rate 0.17 0.51 0.44 0.23 0.35 0.08

Precision 0.82 0.48 0.76 0.78 0.65 0.91

Recall 0.82 0.48 0.55 0.76 0.64 0.91

F-Measure 0.82 0.47 0.44 0.76 0.63 0.91

ROC Area 0.79 0.56 0.56 0.80 0.73 0.97

Mean Absolute

Error
0.24 0.47 0.44 0.25 0.36 0.09

Execution Time

Model Building
70ms 20ms 25ms 35ms 40ms 90ms

Table 5.2, shows that evaluation metrics, such as accuracy, precision, recall, F1 score,

and area under the receiver operating characteristic ROC curve, are computed for each

fold to assess the algorithm's performance consistently across different subsets of the

data. The average performance metrics across all 20 folds provide a robust estimate of

how well each algorithm generalizes to unseen data as shown in the figure below.

207

Figure 5.12: Accuracy Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Cross Validation-20 folds)

Figure 5.12, confirms that at the configuration setting of cross-validation, 20 folds the

accuracy of MLP classifier with value 0.91 is found to be highest followed by

Logistic Regression with value 0.82. The other classification algorithms had to have

an accuracy of about 0.76 in case of J48 classifier, 0.64, 0.55, and 0.48 in case of

Bagging, IBK, and K-Star. The most appropriate classifiers based on performance

measure accuracy were found to be MLP and LR.

0.82

0.48

0.55

0.76

0.64

0.91

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logistic

Regression

K-Star IBK J48 Bagging MLP

Accuracy

208

Figure 5.13: Kappa Statistics Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Cross Validation-20 folds)

Figure 5.13, it shows comparing the performance of classifiers based on Kappa

statistics used for task offloading and resource allocation in case of SMART FOG

environment it can be interpreted that a higher Kappa statistics value of 0.82 in case

of MLP and 0.64 in case of Logistic Regression suggests that they are the better

classifiers as compared to other classification techniques.

0.6429

-0.0357

0.1071

0.5357

0.2857

0.8214

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Logistic

Regression

K-Star IBK J48 Bagging MLP

Kappa statistic

209

Figure 5.14: TP Rate Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Cross Validation-20 folds)

According to figure 5.14, it can be concluded that at configuration setting of cross-

validation 20 folds the TP Rate of MLP classifier with value 0.91 is found to be

highest followed by Logistic Regression with value 0.82. The other classification

algorithms had to have a TP Rate of about 0.76 in the J48 classifier, 0.64, 0.55, and

0.48 in Bagging, IBK, and K-Star. The most appropriate classifiers based on

performance measure TP rate were found to be MLP and LR.

0.821

0.482

0.554

0.768

0.643

0.911

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logistic

Regression

K-Star IBK J48 Bagging MLP

TP Rate

210

Figure 5.15: TP Rate Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Cross Validation-20 folds)

Figure 5.15, it can be concluded that at the configuration setting of cross-validation,

20 folds the FP Rate of MLP classifier with value 0.08 is found to be lowest followed

by Logistic Regression with value 0.17. The other classification algorithms had to

have an FP Rate of about 0.23 in case of J48 classifier, 0.35, 0.44, and 0.51 in case of

Bagging, IBK, and K-Star which were found to be quite higher. The most appropriate

classifiers based on performance measure FP rate were found to be MLP and LR

having lesser FP rate values as compared to others.

0.179

0.518

0.446

0.232

0.357

0.089

0

0.1

0.2

0.3

0.4

0.5

0.6

Logistic

Regression

K-Star IBK J48 Bagging MLP

FP Rate

211

Figure 5.16: Precision Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Cross Validation-20 folds)

Figure 5.16, it can be concluded that at the configuration setting of cross-validation 20

folds the Precision of MLP classifier with value 0.91 is found to be the highest

followed by Logistic Regression with value 0.82. The other classification algorithms

had to have a Precision of about 0.78 in case of J48 classifier, 0.65, 0.76, and 0.48 in

case of Bagging, IBK, and K-Star. The most appropriate classifiers based on

performance measure Precision were found to be MLP and LR.

0.828

0.481

0.764
0.786

0.65

0.911

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logistic

Regression

K-Star IBK J48 Bagging MLP

Precision

212

Figure 5.17: Recall Value for Classifiers Used in Task Offloading and Resource

Management (Configuration Setting: Cross Validation-20 folds)

Results as shown in figure 5.17 confirm that at configuration setting of cross-

validation 20 folds the Recall of MLP classifier with value 0.91 is found to be highest

followed by Logistic Regression with value 0.821. The other classification algorithms

had to have a Recall of about 0.76 in case of J48 classifier, 0.64, 0.55, and 0.48 in

case of Bagging, IBK, and K-Star. The most appropriate classifiers based on

performance measure Recall were found to be MLP and LR.

0.821

0.482

0.554

0.768

0.643

0.911

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logistic

Regression

K-Star IBK J48 Bagging MLP

Recall

213

Figure 5.18: F-Measure Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Cross Validation-20 folds)

According to figure 5.18, it can be concluded that at the configuration setting of cross-

validation 20 folds the F-Measure of MLP classifier with value 0.91 is found to be

highest followed by Logistic Regression with value 0.82. The other classification

algorithms had to have an F-Measure of about 0.76 in case of J48 classifier, 0.63,

0.44, and 0.47 in case of Bagging, IBK, and K-Star. The most appropriate classifiers

based on performance measure F-Measure were found to be MLP and LR.

0.821

0.474
0.442

0.764

0.639

0.911

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logistic

Regression

K-Star IBK J48 Bagging MLP

F-Measure

214

Figure 5.19: ROC Area Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Cross Validation-20 folds)

Figure 5.19, it can be concluded that at the configuration setting of cross-validation 20

folds, the ROC Area of MLP classifier with value 0.97 is found to be highest followed

by Logistic Regression with value 0.79. The other classification algorithms have ROC

Area of about 0.8 in case of J48 classifier, 0.73, 0.56, and 0.56 in case of Bagging,

IBK, and K-Star. The most appropriate classifiers based on performance measure

ROC Area were found to be MLP and LR.

0.79

0.564 0.564

0.8

0.73

0.977

0

0.2

0.4

0.6

0.8

1

1.2

Logistic

Regression

K-Star IBK J48 Bagging MLP

ROC Area

215

Figure 5.20: MAE Value for Classifiers Used in Task Offloading and Resource

Management (Configuration Setting: Cross Validation-20 folds)

Figure 5.20, it can be concluded that at the configuration setting of cross-validation,

20 folds the mean absolute error value of MLP classifier with 0.09 is found to be the

lowest followed by Logistic Regression with value 0.24. The other classification

algorithms were having mean absolute error value of about 0.25 in case of J48

classifier, 0.36, 0.44, and 0.47 in case of Bagging, IBK, and K-Star were found to be

quite high. The most appropriate classifiers based on performance measure mean

absolute error value were found to be MLP and LR having lesser mean absolute error

values as compared to others.

0.246

0.478

0.4484

0.2576

0.3647

0.0984

0

0.1

0.2

0.3

0.4

0.5

0.6

Logistic

Regression

K-Star IBK J48 Bagging MLP

Mean absolute error

216

Figure 5.21: Average Execution Time for Classifiers Used in Task Offloading

and Resource Management (Configuration Setting: Cross Validation-20 folds)

Figure 5.21, it can be concluded that at the configuration setting of cross-validation 20

folds, the average execution time of model building of K-Star and IBK classifier is

found to be 20 and 25 milliseconds respectively which is quite less as compared with

other classifiers. The other classification algorithms had to have an average execution

time of model building of about 35ms in case of J48 classifier, 40, 70, and 90 ms in

case of Bagging, Logistic Regression, and MLP. The most appropriate classifiers

based on performance measure average execution time of model building were found

to be K-Star and IBK.

70

20

25

35

40

90

0

10

20

30

40

50

60

70

80

90

100

Logistic

Regression

K-Star IBK J48 Bagging MLP

Execution Time Model Building (Average : ms)

217

5.5 Comparative Analysis Based on Split 33%

Classifier mode – Percentage Split Method – 33%: In the performance analysis of

classification algorithms used for task offloading with the Percentage Split Method

(also known as the Holdout Method) using a split ratio of 33%, the dataset is divided

into a training set comprising 67% of the data and a testing set comprising 33% of the

data. The training set is used to train the classification algorithm, and the testing set is

used to evaluate its performance.

Table 5.3: Performance Analysis of Classification Algorithms Used for Task

Offloading: Percentage Split Method – 33%

Performance

Measure

Logistic

Regression

K-

Star
IBK J48 Bagging MLP

Accuracy 0.76 0.44 0.73 0.73 0.47 0.68

Kappa Statistic 0.52 -0.10 0.47 0.47 -0.05 0.36

TP Rate 0.76 0.44 0.73 0.73 0.47 0.68

FP Rate 0.23 0.55 0.26 0.26 0.52 0.31

Precision 0.83 0.44 0.74 0.78 0.47 0.72

Recall 0.76 0.44 0.73 0.73 0.47 0.68

F-Measure 0.74 0.43 0.73 0.72 0.47 0.67

ROC Area 0.86 0.57 0.73 0.73 0.45 0.77

Mean absolute

error
0.23 0.44 0.28 0.26 0.51 0.30

Execution Time

Model Building
30ms 35ms 30ms 35ms 30ms 60ms

Table 5.3, shows that by using a 33% split, a larger portion of the data is allocated to

training, which allows the algorithm to learn patterns and relationships within the

data. However, the testing set is still substantial enough to provide a good assessment

of the algorithm's generalization and performance on unseen data. The results of the

evaluation are shown below in the figure.

218

Figure 5.22: Accuracy Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Split-33%)

Figure 5.22, confirms that at the configuration setting of split 33% the accuracy of the

Logistic Regression classifier with value 0.76 is found to be highest followed by IBK

and J48 with values 0.73 respectively. The other classification algorithms had to have

an accuracy of about 0.47 in case of Bagging classifier, 0.44 in case of K-Star. The

most appropriate classifier based on performance measure accuracy was found to be

Logistic Regression is 0.76 as compared with others.

0.76

0.44

0.73 0.73

0.47

0.68

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Logistic

Regression

K-Star IBK J48 Bagging MLP

Accuracy

219

Figure 5.23: Kappa Statistics Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Split-33%)

Figure 5.23, shows that comparing the performance of classifiers used for task

offloading and resource allocation in SMART FOG environment based on Kappa

statistics it was found that Logistic Regression with value 0.52 was better as

compared to other classifiers with Kappa statistics values 0.47, 0.47, 0.36, -0.05, and -

0.10 for IBK, J48, MLP, Bagging, and K-Star respectively.

Logistic

Regress

ion

K-Star IBK J48 Bagging MLP

Kappa statistic 0.5263 -0.1053 0.4737 0.4737 -0.0526 0.3684

0.5263

-0.1053

0.4737 0.4737

-0.0526

0.3684

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Kappa statistic

220

Figure 5.24: TP Rate Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Split-33%)

According to figure 5.24, it can be concluded that at configuration setting spilt 33%,

the TP Rate of Logistic Regression classifier with value 0.76 is found to be highest

followed by IBK and J48 with value 0.73. The other classification algorithms had to

have a TP Rate of about 0.68 in case of MLP classifier, 0.47 and 0.44 for Bagging,

and K-Star respectively. The most appropriate classifier based on performance

measure TP rate was found to be Logistic Regression is 0.76.

0.763

0.447

0.737 0.737

0.474

0.684

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Logistic

Regression

K-Star IBK J48 Bagging MLP

TP Rate

221

Figure 5.25: FP Rate Value for Classifiers Used in Task Offloading and Resource

Management (Configuration Setting: Split-33%)

Figure 5.25, it can be concluded that at a configuration setting split 33%, the FP Rate

of the Logistic Regression classifier with a value 0.23 is found to be the lowest

followed by IBK and J48 with a value 0.26. The other classification algorithms had to

have an FP Rate of about 0.31 in case of MLP classifier, 0.52, and 0.55 in case of

Bagging and K-Star had to be quite high. The most appropriate classifiers based on

performance measure FP rate were found to be Logistic Regression, IBK and J48

having lesser FP rate is 0.55 values as compared to others.

0.237

0.553

0.263 0.263

0.526

0.316

0

0.1

0.2

0.3

0.4

0.5

0.6

Logistic

Regression

K-Star IBK J48 Bagging MLP

FP Rate

222

Figure 5.26: Precision Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Split-33%)

According to figure 5.26, it can be concluded that at the configuration setting spilt

33%, the Precision score of the Logistic Regression classifier with value 0.83 is found

to be highest followed by IBK and J48 with value 0.74 and 0.78 respectively. The

other classification algorithms had to have a Precision of about 0.72 in case of MLP

classifier, 0.47 and 0.44 for Bagging, and K-Star respectively. The most appropriate

classifier based on performance measure Precision was found to be Logistic

Regression is 0.83.

0.839

0.443

0.748

0.788

0.474

0.724

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Logistic

Regression

K-Star IBK J48 Bagging MLP

Precision

223

Figure 5.27: Recall Value for Classifiers Used in Task Offloading and Resource

Management (Configuration Setting: Split-33%)

Figure 5.27, it can be concluded that at configuration setting spilt 33%, the Recall

score of the Logistic Regression classifier with value 0.76 is found to be highest

followed by IBK and J48 with value 0.73. The other classification algorithms had to

have a Recall of about 0.68 in case of MLP classifier, 0.47 and 0.44 for Bagging, and

K-Star respectively. The most appropriate classifier based on performance measure

Recall was found to be LR is 0.76.

0.763

0.447

0.737 0.737

0.474

0.684

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Logistic

Regression

K-Star IBK J48 Bagging MLP

Recall

224

Figure 5.28: F-Measure Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Split-33%)

According to figure 5.28, it can be concluded that at configuration setting spilt 33%,

the F-Measure score of the Logistic Regression classifier with value 0.74 is found to

be highest followed by IBK and J48 with value 0.73 and 0.72 respectively. The other

classification algorithms had to have an F-Measure of about 0.67 in case of MLP

classifier, 0.47 and 0.43 for Bagging, and K-Star respectively. The most appropriate

classifier based on performance measure F-Measure was found to be LR is 0.74.

0.749

0.438

0.734 0.725

0.474

0.67

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Logistic

Regression

K-Star IBK J48 Bagging MLP

F-Measure

225

Figure 5.29: ROC Area Value for Classifiers Used in Task Offloading and

Resource Management (Configuration Setting: Split-33%)

Figure 5.29, it can be concluded that at configuration setting spilt 33%, the ROC Area

score of the Logistic Regression classifier with value 0.86 is found to be highest

followed by MLP, IBK and J48 with value 0.77, 0.73 and 0.73 respectively. The other

classification algorithms had ROC Area scores of about 0.57, 0.45 for K-Star and

Bagging respectively. The most appropriate classifier based on performance measure

ROC Area score was found to be LR is 0.86.

0.866

0.57

0.737 0.737

0.454

0.773

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logistic

Regression

K-Star IBK J48 Bagging MLP

ROC Area

226

Figure 5.30: MAE Value for Classifiers Used in Task Offloading and Resource

Management (Configuration Setting: Split-33%)

Figure 5.30, it can be concluded that at the configuration setting split 33%, the Mean

Absolute Error of the Logistic Regression classifier with value 0.23 is found to be the

lowest followed by IBK and J48 with value 0.28 and 0.26 respectively. The other

classification algorithms had MAE value of about 0.30 in case of MLP classifier, 0.44

and 0.51 in case of Bagging and K-Star had to be quite high. The most appropriate

classifiers based on performance measure MAE value were found to be LR, IBK and

J48 having lesser MAE values as compared to others.

0.2354

0.4474

0.2868

0.2632

0.5111

0.3026

0

0.1

0.2

0.3

0.4

0.5

0.6

Logistic

Regression

K-Star IBK J48 Bagging MLP

Mean Absolute Error

227

Figure 5.31: Average Execution Time for Classifiers Used in Task Offloading

and Resource Management (Configuration Setting: Split-33%)

Figure 5.31, it can be concluded that at configuration setting spilt 33% the average

execution time of model building of Logistic Regression, IBK and Bagging classifier

were found to be 30 milliseconds for each which is quite less as compared with other

classifiers. The other classification algorithms had to have an average execution time

of model building of about 35ms in case of J48 and K-Star classifier, and 60ms in

case of MLP. The most appropriate classifiers based on performance measure average

execution time of model building were found to be Logistic Regression, IBK and

Bagging.

30

35

30

35

30

60

0

10

20

30

40

50

60

70

Logistic

Regression

K-Star IBK J48 Bagging MLP

Execution Time Model Building (Average : ms)

228

5.6 Overall Performance of Classification Algorithms

The overall performance of classification algorithms in task offloading and resource

allocation for IoT and fog computing is an active area of research and development.

Various algorithms, including decision trees, random forest, support vector machines,

K-nearest neighbors, neural networks, naive Bayes, and logistic regression, have been

explored for these tasks, each with its strengths and weaknesses.

Table 5.4: Overall Performance of Classification Algorithms Used for

Task Offloading

Type of

Performance

Measure

Logistic

Regression
K-Star IBK J48 Bagging MLP

Accuracy 0.80 0.48 0.61 0.75 0.60 0.83

Kappa Statistic 0.60 -0.02 0.23 0.50 0.21 0.67

TP Rate 0.80 0.49 0.62 0.75 0.49 0.84

FP Rate 0.20 0.51 0.39 0.25 0.53 0.16

Precision 0.83 0.49 0.76 0.79 0.48 0.85

Recall 0.80 0.49 0.62 0.75 0.61 0.84

F-Measure 0.80 0.48 0.54 0.74 0.60 0.83

ROC Area 0.82 0.58 0.62 0.77 0.63 0.91

Mean Absolute

Error
0.23 0.45 0.39 0.27 0.58 0.17

Execution Time

Model Building
53.33 25.00 25.00 33.33 33.33 76.67

Table 5.4, shows that in terms of the Kappa statistic, MLP had the highest value of

0.67, indicating good agreement between predicted and actual classes. J48 and

Logistic Regression also showed substantial agreement with Kappa values of 0.50 and

0.60, respectively. However, IBK 0.23 and Bagging 0.21 had a moderate agreement,

and K-Star had a negative Kappa statistic -0.02, suggesting lower agreement and

potential issues with its performance. The evaluation demonstrates the varying

success and limitations of each algorithm, with Logistic Regression and MLP

performing relatively well in both accuracy and agreement metrics.

229

Figure 5.32: Overall Accuracy for Classifiers Used in Task Offloading and

Resource Management

Figure 5.32, confirms that the overall accuracy of MLP classifier with value 0.83 is

found to be the highest followed by Logistic Regression with value 0.80. The other

classification algorithms had to have an overall accuracy of about 0.75 in case of J48

classifier, 0.60, 0.61, and 0.48 in case of Bagging, IBK, and K-Star. The most

appropriate classifiers based on performance measure overall accuracy were found to

be MLP and LR.

0.8

0.48

0.61

0.75

0.6

0.83

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Logistic

Regression

K-Star IBK J48 Bagging MLP

Overall Accuracy

230

Figure 5.33: Overall, Kappa Statistics for Classifiers Used in Task Offloading

and Resource Management

Figure 5.33, shows a comparison of the performance of classifiers based on overall

Kappa statistics used for task offloading and resource allocation in case of SMART

FOG environment it can be interpreted that higher overall Kappa statistics value of

0.67 in case of MLP and 0.6 in case of MLP and LR suggests that they are the better

classifiers as compared to other techniques.

0.6

-0.02

0.23

0.5

0.21

0.67

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Logistic

Regression

K-Star IBK J48 Bagging MLP

Overall Kappa Statistic

231

Figure 5.34: Overall TP Rate for Classifiers Used in Task Offloading and

Resource Management

According to figure 5.34, it can be concluded that the overall TP Rate of MLP

classifier with value 0.84 is found to be the highest followed by Logistic Regression

with value 0.80. The other classification algorithms had to have an overall TP Rate of

about 0.75 in case of J48 classifier, 0.49, 0.62, and 0.49 in case of Bagging, IBK, and

K-Star. The most appropriate classifiers based on performance measure overall TP

rate were found to be MLP and LR.

0.8

0.49

0.62

0.75

0.49

0.84

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Logistic

Regression

K-Star IBK J48 Bagging MLP

TP Rate

232

Figure 5.35: Overall FP Rate for Classifiers Used in Task Offloading and

Resource Management

Figure 5.35, it can be concluded that the overall FP Rate of MLP classifier with value

0.16 is found to be lowest followed by Logistic Regression with value 0.2. The other

classification algorithms had to have an overall FP Rate of about 0.25 in case of J48

classifier, 0,53, 0.39, and 0.51 in case of Bagging, IBK, and K-Star which were found

to be quite higher. The most appropriate classifiers based on performance measure FP

rate were found to be MLP and LR having lesser overall FP rate values as compared

to others.

0.2

0.51

0.39

0.25

0.53

0.16

0

0.1

0.2

0.3

0.4

0.5

0.6

Logistic

Regression

K-Star IBK J48 Bagging MLP

FP Rate

233

Figure 5.36: Overall Precision for Classifiers Used in Task Offloading and

Resource Management

Figure 5.36, it can be concluded that the overall Precision of MLP classifier with

value 0.85 is found to be highest followed by Logistic Regression with value 0.83.

The other classification algorithms had to have an overall Precision of about 0.79 in

case of J48 classifier, 0.48, 0.76, and 0.49 in case of Bagging, IBK, and K-Star. The

most appropriate classifiers based on performance measure overall Precision were

found to be MLP and LR.

0.83

0.49

0.76
0.79

0.48

0.85

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Logistic

Regression

K-Star IBK J48 Bagging MLP

Precision

234

Figure 5.37: Overall Recall for Classifiers Used in Task Offloading and Resource

Management

Results as shown in figure 5.37 confirm that the overall Recall of MLP classifier with

value 0.84 is found to be the highest followed by Logistic Regression with value 0.80.

The other classification algorithms had to have an overall Recall of about 0.75 in case

of J48 classifier, 0.61, 0.62, and 0.49 in case of Bagging, IBK, and K-Star. The most

appropriate classifiers based on performance measure overall Recall were found to be

MLP and LR.

0.8

0.49

0.62

0.75

0.61

0.84

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Logistic

Regression

K-Star IBK J48 Bagging MLP

Recall

235

Figure 5.38: Overall F-Measure for Classifiers Used in Task Offloading and

Resource Management

According to figure 5.38, it can be concluded that the overall F-Measure score of

MLP classifier with value 0.83 is found to be the highest followed by Logistic

Regression with value 0.8. The other classification algorithms had to have an overall

F-Measure score of about 0.74 in case of J48 classifier, 0.6, 0.54, and 0.48 in case of

Bagging, IBK, and K-Star. The most appropriate classifiers based on performance

measure overall F-Measure score were found to be MLP and LR.

0.8

0.48

0.54

0.74

0.6

0.83

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Logistic

Regression

K-Star IBK J48 Bagging MLP

F-Measure

236

Figure 5.39: Overall, ROC Area for Classifiers Used in Task Offloading and

Resource Management

Figure 5.39, It can be concluded that the overall ROC Area of MLP classifier with

value 0.91 is found to be the highest followed by Logistic Regression with value of

0.82. The other classification algorithms had to have an overall ROC Area of about

0.77 in the J48 classifier, 0.63, 0.62, and 0.58 in Bagging, IBK, and K-Star. The most

appropriate classifiers based on performance measure overall ROC Area were found

to be MLP and LR.

0.82

0.58

0.62

0.77

0.63

0.91

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logistic

Regression

K-Star IBK J48 Bagging MLP

ROC Area

237

Figure 5.40: Overall, MAE for Classifiers Used in Task Offloading and Resource

Management

Figure 5.40, It can be concluded that overall, the mean absolute error value of MLP

classifier with 0.17 is found to be the lowest followed by Logistic Regression with

value 0.23. The other classification algorithms had to have mean absolute error values

of about 0.27 in case of J48 classifier, 0.58, 0.39, and 0.45 in case of Bagging, IBK,

and K-Star were found to be quite high. The most appropriate classifiers based on

performance measure mean absolute error value were found to be MLP and LR

having lesser mean absolute error values as compared to others.

0.23

0.45

0.39

0.27

0.58

0.17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Logistic

Regression

K-Star IBK J48 Bagging MLP

Mean Absolute Error

238

Figure 5.41: Overall Average Execution Time for Classifiers Used in Task

Offloading and Resource Management

Figure 5.41, it can be concluded that at configuration setting split 33% the average

execution time of model building of K-Star and IBK classifier is found to be 25

milliseconds which is quite less as compared with other classifiers. The other

classification algorithms had to have an average execution time of model building of

about 33.33 ms in case of J48 classifier, 33.33, 53.33, and 76.67 ms in case of

Bagging, LR, and MLP. The most appropriate classifiers based on performance

measure average execution time of model building were found to be K-Star and IBK.

53.33

25 25

33.33 33.33

76.67

0

10

20

30

40

50

60

70

80

90

Logistic

Regression

K-Star IBK J48 Bagging MLP

Execution Time Model Building (Average)

239

In this study, a classification-based intelligent job offloading model is developed in

the fog-cloud collaboration network. Initially, an optimization issue involving

offloading is solved by considering the threshold values of the relevant cloud data

center-related factors. Several application kinds, such as delay-sensitive and

computation-intensive ones, must precisely complete their intended duties by the

computing resources they demand, which must be provided accordingly. Second, the

suggested model uses an intelligent task offloading management system that

anticipates the incoming tasks produced by various IoT and mobile devices that are

scattered over several remote sites. Simulation findings show that the suggested

model can correctly forecast the task delegated to either a fog network or a cloud

network with the greatest overall accuracy of 83% and 80% in case of MLP and LR

construct. Finally, comparing all the classification algorithms based on various

accuracy parameters it can be concluded that MLP and LR are the most appropriate

classification algorithms for resource allocation and task offloading although the

execution time is higher in both the cases.

240

Chapter - 6
Conclusion and Future Work

INTROD UCT ION

6.1 Findings and Conclusions

6.2 Summarization of Hypotheses Testing Results

6.3 Use of Machine Learning Techniques for Task Scheduling

6.4 Classification Algorithms in Task Offloading and Resource Allocation

6.5 Future Scope

6.6 Limitations

241

This chapter describes the research activity and its outcomes versus the predicted

results as thought throughout the design phase. A complete analysis is being carried

out to estimate future possibilities and enhancement to the system gained as a

consequence of the suggested study. The study also discusses the important

challenges/issues that could be investigated further to move it ahead.

6.1 Findings and Conclusions

By comparing the results of using the FCFS task scheduling algorithm in a Fog and

cloud context, it appears that FCFS in the Fog environment better optimizes latency,

total network utilization, and energy consumption. In contrast to cloud environments,

latency, quality of service, and cost are all improved by using the fuzzy series parallel

preprocessing resource scheduling algorithm in a Fog setting.

Latency and power consumption can be minimized by using the Shortest Job First

Heuristic approach to schedule work. Much like the preemptive task priority network,

the resource allocation technique greatly improves both QoS and efficiency.

Rule-based fuzzy network often known as fuzzy logic, is a resource scheduling

technique that optimizes both latency and energy usage. In a similar vein, the QoS

may be significantly optimized with the Fault, Configuration, Accounting,

Performance, and Security methods.

6.2 Summarization of Hypotheses Testing Results

The comparison between fog-based and cloud-based systems based on execution time

(H01) demonstrates that using smart fog-based systems results in a significant

decrease in execution time when compared to cloud-based systems. With values of

9872, 3008, 7866, 5417, 4533, 4024, and 8703, respectively, there is a significant

reduction in execution time in the Fog systems 8:10, 9:9, 7:10, 6:10, 6:6, 4:10, and

2:6. It is therefore abundantly evident that the Fog layer is crucial to cutting down on

execution time.

The comparison of Fog-based and Cloud-based systems based on latency (H02)

reveals that there is a significant reduction in latency with the usage of Smart Fog-

based systems as opposed to Cloud-based systems. There is a significant reduction in

latency value in the Fog system 10:5, 4:4, 2:5, 2:4, 2:3, 2:2, 1:5, 1:4, 1:3, 1:2, and 1:1,

242

such as 453.52, 198.92, 190.69, 198.13, 199.71, 201.36, 191.91, 197.73, 199.41,

201.16, and 194.08. As a result, the fog layer plays a crucial role in latency reduction.

The evaluation between Fog-based and Cloud-based systems based on energy

consumption reveals a significant reduction in energy consumption when using Smart

Fog-based systems against Cloud-based systems (H03). There is a significant

reduction in energy consumption in the fog systems 10:5, 5:5, 4:5, 4:4, 3:5, 2:5, 2:4,

2:3, 2:2, 1:5, 1:4,1:3, 1:2 and 1:1. Hence, based on the performance measure energy

used, it is apparent that there is a considerable difference between the SMART FOG

protocol-based system and the cloud-based system.

The analysis of Fog fog-based systems and Cloud cloud-based systems based on cost

of execution reveals that there is a significant cost of execution decrease with the

usage of Smart Fog-based systems as compared to Cloud-based systems (H04). There

is a significant cost reduction in the Fog system 10:5, 6:10, 5:5, 4:5, 4:4, 3:10, 3:5,

2:9, 2:8, 2:6, 2:5, 2:4, 2:3, 2:2, 1:5, 1:4, 1:3, 1:2, and 1:1. Hence, based on the

performance measure cost of execution, it is evident that there is a considerable

difference between the SMART FOG protocol-based system and the cloud-based

system.

The comparison between Fog-based system and Cloud cloud-based system based

on total network usage reveals that there is a significant decrease in total network

usage when using a Smart Fog-based system against Cloud-based systems (H05).In

the fog system, there is a significant reduction in overall network utilization such as

813124, 100000, 100000, 889585, 100000, 717690, 600582.6, 100000, 560311.2,

200000, 100000, 376389.8, 300487.8, 226130, 151466.2, 187988.4, 150136.4,

112806.6, 75270.6, and 38142.7. Hence, based on the performance measure of total

network use, it is apparent that there is a considerable difference between the SMART

FOG protocol-based system and the cloud-based system.

The analysis of Fog-based and Cloud-based systems based on computational power

consumed reveals a significant reduction in computational power consumed when

using Smart Fog-based systems against Cloud-based systems (H06). There is a

significant reduction in computational power consumed by Fog systems in all cases

when compared to cloud-based systems, implying that there is a significant difference

between SMART FOG protocol-based systems and cloud-based systems based on the

243

performance measure computational power consumed by Fog devices in comparison

to Cloud devices. For statistical validation of our findings, various null hypotheses

were tested and the outcomes of these tests are as follows:

Table 6.1: Chi-Square (2) Test for Awareness Level

Sr.

No.
Hypothesis

Result @

5 % Level

H01

There is no significant difference between SMART FOG

protocol-based system and cloud-based system based on

the performance measure execution time.

Rejected

Ha2

There is a significant difference between SMART FOG

protocol-based System and cloud-based systems based

on the performance measure latency.

Accepted

H03

There is no significant difference between SMART FOG

protocol-based system and cloud-based system based on

the performance measure energy consumed.

Rejected

Ha4

There is significant difference between SMART FOG

protocol-based system and cloud-based system based on

the performance measure cost of execution.

Accepted

H05

There is no significant difference between SMART FOG

protocol-based system and cloud-based system based on

the performance measure of total network usage.

Rejected

Ha6

There is a significant difference between SMART FOG

protocol-based system and cloud-based system based on

the performance measure computational power

consumed.

Accepted

Table 6.1, can be concluded that the hypothesis “SMART FOG protocol-based

technique to create Fog Computing environment will share computational power to

IoT devices with low computational power and other aspects” is being accepted which

suggests that SMART FOG protocol-based technique reduces computational power

consumption for the Fog devices and share computational power with IoT devices by

lower the total consumption.

Finally, the hypothesis "Ha1: SMART FOG protocol-based technique to create Fog

Computing environment will share computational power to IoT devices with low

computational power and other aspects" is accepted, implying that the SMART FOG

protocol-based technique reduces computational power consumption for Fog devices

and shares computational power with IoT devices by lowering total consumption.

244

6.3 Use of Machine Learning Techniques for Task Scheduling

It was discovered that when the K-Star classifier was employed for task scheduling, it

properly identified around 91% of the cases, which was much higher than the other

classification approaches tested, such as IBK, Logistic Regression, and AdaBoostM1.

Similarly, the accuracy, recall, and F-measure values of 0.92, 0.91, and 0.90 were

greater in comparison to IBK, Logistic Regression, and AdaBoostM1; also, the mean

absolute error value was 0.05, and the FP rate value was 0.04.

In logistic regression, the correctly categorized examples were about 88%, which was

much higher than the other classification approaches investigated, such as IBK and

AdaBoostM1. Similarly, the accuracy, recall, and F-measure values of 0.88, 0.88, and

0.87 were greater in comparison to IBK and AdaBoostM1, as was the mean absolute

error value of 0.05 and the FP rate value of 0.04.

Overall K-star is the best classification algorithm that can be used for task scheduling

followed by Logistic Regression as in the majority of observations at different

configuration settings the Accuracy, Precision, Recall, F-Measure, etc. are higher in

case of algorithms mentioned above.

6.4 Classification Algorithms in Task Offloading and Resource

 Allocation

The results confirm that the MLP classifier has the best overall accuracy value 0.83,

followed by the Logistic Regression value 0.80. The other classification methods had

an overall accuracy of roughly 0.75 in the case of the J48 classifier, 0.60, 0.61, and

0.48 in the case of Bagging, IBK, and K-Star, respectively. MLP and Logistic

Regression were discovered to be the best acceptable classifiers based on performance

measure total accuracy. Comparing classifiers based on overall Kappa statistics used

for task offloading and resource allocation in SMART FOG environment, MLP and

Logistic Regression have higher overall Kappa statistics values of 0.67 and 0.6,

respectively, indicating that they are superior classifiers.

MLP classifier has the best precision at 0.85, followed by Logistic Regression at 0.83.

J48 had 0.79 Precision, Bagging 0.48, IBK 0.76, and K-Star 0.49. MLP and Logistic

Regression were the most precise classifiers.

245

MLP classifier has the greatest recall overall with 0.84, followed by Logistic

Regression with 0.80. Bagging, IBK, and K-Star had Recalls of 0.61, 0.62, and 0.49,

respectively, while J48 had 0.75. MLP and Logistic Regression were the best

classifiers for total Recall.

MLP classifier has the lowest mean absolute error value of 0.17, followed by Logistic

Regression with 0.23. J48, Bagging, IBK, and K-Star had mean absolute error values

of 0.27, 0.58, 0.39, and 0.45, respectively. MLP and Logistic Regression were the best

classifiers based on performance metric mean absolute error value.

In conclusion, after examining each classification algorithm based on a variety of

accuracy parameters, one can conclude that MLP and Logistic Regression are the

classification algorithms that are best suited for resource allocation and task

offloading.

6.5 Future Scope

In this section, the key issues, future difficulties, and future research prospects for task

scheduling in fog computing are discussed.

Resource Utilization of Fog Node

The fog devices have limited storage, processing, and energy capabilities due to their

lack of resources. They receive dynamic workloads from applications that are

sensitive to latency as well as apps that are tolerant of delay. As a result, the difficult

aspect is to schedule the unpredictability of the arrival of activities on these fog nodes

to make the best possible use of the available resources.

Optimal Resource Allocation

IoT devices produce a large number of tasks, which have to be appropriately

distributed between fog nodes to achieve a quicker reaction time. This is especially

important for applications that are sensitive to latency. Since fog computing makes it

possible for fog nodes and Internet of Things devices to move about freely, the

resources that are reachable at any given time may be inaccessible at other times.

Because of this, the process of allocating resources is a difficult endeavor. The

problems that need to be addressed are long latency for real-time applications, a lack

of generalization, and rapid adaptation of the algorithms that are currently available.

246

Parallel Scheduling

In the method known as parallel processing, one operation is broken down into

several smaller tasks, all of which are then carried out at the same time. Another

unresolved problem that requires attention is the division of activities into subtasks

that can decrease delays through the use of distributed computing.

Privacy

Several different fog applications, such as smart healthcare, send a significant amount

of personally identifiable information to fog nodes. As a result, protecting the

confidentiality of such data is of the utmost importance to users. Even while some

researchers use methods that protect users' privacy on fog nodes, there is yet no

authentication solution that can be considered satisfactory. Because the fog nodes are

more susceptible to possible dangers, authenticating users can be a difficult and time-

consuming process.

Security

Fog nodes are vulnerable to attacks. As a result, developing a safety algorithm that is

not only lightweight but also has a fast speed and is trustworthy is still a tough issue.

At the moment, only a small number of academics are focusing their attention on the

security concerns associated with fog computing; nonetheless, there are still several

outstanding challenges, such as dynamic authentication, access controls, external

threats, and intrusion detection.

Context-aware Service Provisioning

The context is made up of the many runtime elements that have the potential to

influence the applications. The currently available approaches to context-aware

service provisioning are less flexible and scalable, and they are unable to manage a

significant number of Internet of Things applications. Because of this, more

approaches to context-aware service delivery should be researched so that the

aforementioned restrictions may be solved.

Energy Consumption

Energy-aware computing in fog is still an open question that has to be answered since

fog devices are limited in their ability to use energy due to their usage of low-power

batteries. Several academics are concentrating their efforts on energy optimization,

247

but several problems still need to be addressed, including improper utilization of

bandwidth during data transfer, energy waste, and battery-draining concerns.

6.6 Limitations

Fog computing faces several limitations, including high latency compared to edge

computing, increased complexity in network management, potential security

vulnerabilities, and limited scalability. It can also suffer from resource constraints due

to dependency on intermediate devices and challenges in data processing efficiency.

Additionally, ensuring consistent connectivity and handling diverse data types can

pose significant difficulties in fog computing environments.

1. Scope and Generalizability: The study may have focused on specific IoT

architectures, protocols, and technologies, which might limit its

generalizability to other IoT scenarios or environments.

2. Real-world Implementation Challenges: The study might not have addressed

the practical challenges associated with implementing the SMART FOG

protocol-based technique, such as hardware compatibility, software

integration, security considerations, and deployment complexities.

3. Benchmarking and Comparison: The study might lack comprehensive

benchmarking or comparison with existing IoT architectures, protocols, or

alternative solutions. Comparative analysis would provide a better

understanding of the advantages and limitations of the proposed SMART FOG

approach.

4. Limited Testing Scenarios: The evaluation of the SMART FOG technique

might have been conducted under specific testing scenarios or simulated

environments, which may not fully capture the complexities and dynamics of

real-world IoT deployments.

5. Time Constraints: The study might have faced time limitations, which could

impact the depth of analysis, experimentation, and validation of the proposed

techniques.

6. Lack of Real-world Deployment Validation: The proposed SMART FOG

technique might not have been validated in real-world IoT deployments or

scenarios, which may limit the assessment of its practical applicability and

performance.

In conclusion, fog computing's limitations include potential latency issues, increased

network complexity, and security vulnerabilities. It also faces scalability challenges,

resource constraints from intermediary devices, and inefficiencies in data processing.

248

REFERENCES

A. Journal and Books

Aalsadie D. (2022), “Task Scheduling in Fog Computing – Classification,

Review, Challenges and Future Directions” IJCSNS International Journal of

Computer Science and Network Security, VOL.22 No.4, pp. 89-96.

Aazam M., & Huh E.N. (2015), “Dynamic resource provisioning through Fog

micro datacenter. Pervasive Computing and Communication Workshops (PerCom

Workshops)”, IEEE, 2015, pp. 105-110.

Aazam M., & Huh E.N. (2015), “Fog computing micro datacentre based dynamic

resource estimation and pricing model for IoT. In Advanced Information

Networking and Applications (AINA)”, IEEE 29th International Conference,

2015, pp. 687-694.

Abdul-Qawy A., Magesh E., &Tadisetty S. (2015), “The IoT: An Overview”, A S

Abdul-Qawy et al. Int. Journal of Engineering Research and Applications ISSN:

2248-9622, Vol. 5, Issue 12, (Part - 2) December 2015, pp.71-82.

Abohamama A.S., El-Ghamry A., & Hamouda E. (2016), “Real-Time Task

Scheduling Algorithm for IoT-Based Applications in the Cloud–Fog

Environment”, J NetwSyst Manage, pp. 30-54.

Abomhara M., Koien G.M. (2014), “Security and privacy in the IoT: Current

status and open issues. In Privacy and Security in Mobile Systems (PRISMS)”,

International Conference on. IEEE, pp. 1–8.

Adel A. (2020), “Utilizing technologies of fog computing in educational IoT

systems: privacy, security, and agility perspective”, J Big Data, 7, 99.

doi:10.1186/s40537-020-00372., 2020, pp. 37-72.

Ahmed, A., Arkian, H., Battulga, D., Fahs, A., Farhadi, M., Giouroukis, D., &

Wu, L. (2019), “Fog Computing Applications: Taxonomy and Requirements”,

pp.1-4.

Aimal Khan, Assad Abbas, Hasan Ali Khattak, Faisal Rehman, Ikram Ud Din,

Sikandar Ali. (2022), "Effective Task Scheduling in Critical Fog

Applications", Scientific Programming, vol. 2022, Article ID 9208066, pp. 1-15.

Alavi, A., Jiao, P., Buttlar, W., & Lajnef, N. (2018), “IoT-enabled smart cities:

State-of-the-art and future trends”. Measurement, pp.129.

Alizadeh M., Khajehvand V., Rahmani A., & Akbari E. (2020), “Task scheduling

approaches in fog computing: A systematic review”, International Journal of

Communication Systems 33, pp. 45-83.

249

Aljumah, A., &Ahanger, T. A. (2018), “Fog computing and security issues: A

review. In Proceedings of the 2018 7th International Conference on Computers

Communications and Control (ICCCC)”, Oradea, Romania, 8–12 May 2018, pp.

237–239.

Alrawais, A., Alhothaily, A., Hu, C., & Cheng, X. (2017), “Fog computing for the

IoT: Security and privacy issues”. IEEE Internet Comput., 21(6), pp. 34–42.

Alsmadi A.M., Aloglah R.M.A., Abu-darwish N.J.S., Al Smadi A., Alshabanah

M., Alkhaldi H., Alsmadi M.K. (2021), “International Journal of Electrical and

Computer Engineering (IJECE)”, Vol. 11, No. 3, June 2021, pp. 2219~2228.

ISSN: 2088-8708, DOI: 10.11591/ijece.v11i3, pp. 2219-2228.

Alturki, B., Reif-Marganiec, S., Perera, C., & De, S. (2019), “Exploring the

Effectiveness of Service Decomposition in Fog Computing Architecture for the

IoT”.1904.00381, pp.10-12.

Ansari D.B. (2018), Atteeq-Ur-Rehman, and R. A. Mughal, “Internet of Things (IoT)

protocols: A brief exploration of MQTT and CoAP”, International Journal of

Computer Applications, vol. 179, no. 27, pp. 9–14.

Atlam, H., Walters, R., & Wills, G. (2018), “Fog Computing and the IoT: A

Review”. Big Data and Cognitive Computing, 2(2), pp.1-10.

Attar, A. H., & Sutagundar, A. (2018), “A survey on resource management for

fog-enhanced services and applications”. Int. J. Sci. Res., 17(2), p.138.

Badidi, E., &Ragmani, A. (2020), “An Architecture for QoS-Aware Fog Service

Provisioning”. Procedia Comput. Sci., 170, pp.411–418.

Bandyopadhyay, D., & Sen, J. (2011), “IoT: Applications and challenges in

technology and standardization”. Wireless Personal Communications, 58, pp.49–

69.

Baniata, H., & Kertesz, A. (2020), “A survey on blockchain-fog integration

approaches”. IEEE Access, 8, 102657–102668, pp.25-27.

Baouya, A., Chehida, S., Bensalem, S., &Bozga, M. (2020), “Fog Computing and

Blockchain for Massive IoT Deployment”. In 2020 9th Mediterranean Conf. on

Embedded Computing (MECO), pp.1-2.

Bellavista, P., Berrocal, J., Corradi, A., Das, S., Foschini, L., & Zanni, A. (2019),

“A survey on fog computing for the IoT”. Pervasive Mob. Comput., 52, pp. 71–

99.

Berlin, (2018), “A Research Perspective on Fog Computing”, Springer

International Publishing AG, part of Springer Nature 2018L. Braubach et al.

(Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 198–210.

Berman, F., Cabrera, E., Jebari, A., & Marrakchi, W. (2022), “The impact

universe – a framework for prioritizing the public interest in the IoT”. Patterns,

3(1), 100398. pp. 1–8.

250

Bitam S., Zeadally S., Mellouk A. (2018), “Fog computing job scheduling

optimization based on bees swarm”, Enterpr. Inform. Syst.,
https://www.tandfonline.com/doi/full/10.1080/17517575.2017.1304579, Vol. 12,

pp. 373-397.

Bonomi, F., Milito, R., Zhu, J., Addepalli, S. “Fog computing and its role in the

internet of things”, In Proceedings of the first edition of the MCC workshop on

Mobile cloud computing, ACM (2012), pp. 13–16.

Borodin, V. A. (2014), “IoT– the next stage of the digital revolution”. Educational

Resources and Technologies, 2(5), pp.4-5.

Bosman, R., Lukkien, J., & Verhoeven, R. (2011), “Gateway architectures for

service-oriented application-level gateways”. IEEE Trans. on Consumer

Electronics, 57(2), pp. 453–461.

Bourque, P., & Fairley, R. (Eds.). (2014), SWEBOK: “Guide to the Software

Engineering Body of Knowledge (3.0 ed.)”. IEEE Computer Society, Los

Alamitos, pp. 1-2.

Bubnova, M. Yu., & Kryukova, A. A. (2014), “Social client-oriented technologies

in the activities of modern companies”. Economics and Society, 3(4), pp. 65–67.

Butun, I., Sari, A., & ÃŰsterberg, P. (2019), “Security Implications of Fog

Computing on the IoT”. In 2019 IEEE International Conference on Consumer

Electronics (ICCE), pp. 1-10.

Chen S., Xu H., Liu D., Hu B., Wang H. (2014), “A vision of IOT: Applications,

challenges, and opportunities with China perspective”. IEEE IoTjournal, vol. 1,

no. 4, pp. 349–359.

Chiang, M., & Zhang, T. (2016), “Fog and IoT: An overview of research

opportunities”. IEEE Internet Things J., 3, pp. 854–864.

CIW Team. (2023), “China’s IoT spending to reach US$298 billion by 2026”.

Retrieved from https://www.chinainternetwatch.com/31628/iot-market-trends, pp.

2–8.

DeMedeiros, K., Hendawi, A., & Alvarez, M. (2023), “A survey of AI-based

anomaly detection in IoT and sensor networks. Sensors”, 23, pp. 1352.

Din, I. U., Guizani, M., Kim, B. S., Hassan, S., & Khan, M. K. (2018), “Trust

management techniques for the IoT: A survey”. IEEE Access, 7, pp. 29763–

29787.

Dubravac, S., & Ratti, C. (2015), IoT: Evolution or revolution? Part 1 of the IoT

report series. pp. 8–9.

Edemacu, K., &Bulega, T. (2014), “Resource sharing between M2M and H2H

traffic under time-controlled scheduling scheme in LTE networks”. In: 2014 8th

International Conference on Telecommunication Systems Services and

Applications (TSSA), pp. 1–6.

https://www.tandfonline.com/doi/full/10.1080/17517575.2017.1304579

251

El Alami, Hassan & Sidna, Jeddou & Baina, Amine & Najid, Abdellah. (2020),

“Analysis and evaluation of communication Protocols for IoT Applications”.

IEEE Transactions on Industrial Informatics, 7(4), pp. 630–640.

Ema, R. R., Islam, T., & Ahmed, M. H. (2019), “Suitability of Using Fog

Computing Alongside Cloud Computing”. In Proceedings of the 2019 10th

International Conference on Computing, Communication and Networking

Technologies (ICCCNT), Kanpur, India, 6–8 July 2019, pp. 1–4.

Gandotra, P., & Lall, B. (2020), “Evolving Air Pollution Monitoring Systems for

Green 5G: From Cloud to Edge. In Proceedings of the 2020 8th International

Conference on Reliability, Infocom Technologies and Optimization (Trends and

Future Directions) (ICRITO), Noida, India, 4–5 June 2020, pp. 1231–1235.

Ghobaei‐Arani M., Souri A., Safara F., Norouzi M. (2020), “An efficient task

scheduling approach using moth‐flame optimization algorithm for cyber‐physical

system applications in fog computing”, Trans. Emerg. Telecommunication.

Technol., Vol. 31, pp. 37-70.

Giordano, A., Spezzano, G., Vinci, A. (2016), “Smart Agents and Fog Computing

for Smart City Applications.” In: Alba, E., Chicano, F., Luque, G. (eds) Smart

Cities. Smart-CT 2016. Lecture Notes in Computer Science (), vol 9704. Springer,

Cham, pp. 1-14.

González-Martínez, J. A., Bote-Lorenzo, M. L., Gómez-Sánchez, E., & Cano-

Parra, R. (2015), “Cloud computing and education: A state-of-the-art survey”.

Comput. Educ., 80, pp. 132–151.

Gu, Lin, Z. Deze, G. Song, B. Ahmed, and X. Yong. (2015), “Cost-efficient

resource management in fog computing supported medical cps”, IEEE

Transactions on Emerging Topics in Computing, 2015, pp. 1-12.

Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., & Savio, D. (2010),

“Interacting with the SOA-based IoT: Discovery, query, selection, and on-demand

provisioning of web services”. IEEE Transactions on Services Computing, 3(3),

pp. 223–235.

Gupta H., Dastjerdi A. V., Ghosh S. K., & Buyya R. (2016), “Ifogsim: A toolkit

for modeling and simulation of resource management techniques in the internet of

things, edge, and fog computing environments”, CoRR, abs/1606.02007, pp.23-

45.

Guzuyeva, E. R. (2018), “Application of information technology in large and

small businesses. In Proceedings of the IV International Correspondence

Scientific and Practical Conference.” AIP Publishing, pp. 226–230.

Hakan (2023), “Bibliometric analysis and scientific mapping of IoT”,

https://www.researchgate.net/publication/367286890_Bibliometric_Analysis_and

_Scientific_Mapping_of_IoT,Journal of Computer Information Systems, pp. 1–8.

252

Hamdoun, S., Rachedi, A., & Ghamri-Doudane, Y. (2015), “Radio resource

sharing for MTC in LTE-A: An interference-aware bipartite graph approach”, In:

2015 IEEE Global Communications Conference (GLOBECOM) IEEE., pp. 1–7.

Hassan Z., Ali H., Badawy M. (2015), “IoT: Definitions, Challenges, and Recent

Research Directions”, International Journal of Computer Applications, Vol. 128,

pp. 975-987.

Heck, M., Edinger, J., Schaefer, D., & Becker, C. (2018), “IoT Applications in

Fog and Edge Computing: Where Are We and Where Are We Going?”. In

Proceedings of the 2018 27th International Conference on Computer

Communication and Networks (ICCCN), Hangzhou, China, 30 July–2 August

2018, pp. 1–6.

Heer T., Garcia-Morchon O., Hummen R., Keoh SL., Kumar S.S., Wehrle K.

(2011), “Security challenges in the IP based IoT”, Wirel Pers Commun, 61(3), pp.

527–542.

Henze, M., Matzutt, R., Hiller, J., Erik, M., Ziegeldorf, J. H., van der Giet, J., &

Wehrle, K. (2020), “Complying with Data Handling Requirements in Cloud

Storage Systems”, IEEE Trans. Cloud Computing., pp. 1-10.

Hoang, D., & Dang, T. D. (2017), “FBRC: Optimization of task scheduling in fog-

based region and cloud”. In: 2017 IEEE Trustcom/ BigDataSE /ICESS, pp. 1109–

1114. IEEE.

Huang, Q., Yang, Y., & Wang, L. (2017), “Secure data access control with

ciphertext update and computation outsourcing in fog computing for the IoT”.

IEEE Access, 5, pp. 12941–12950.

Huttunen, J., Jauhiainen, J., Lehti, L., Nylund, A., Martikainen, M., & Lehner, O.

(2019), “Big data, cloud computing and data science applications in finance and

accounting”. ACRN Oxf. J. Financ. Risk Perspect., 8, pp. 16–30.

Jamil B., Ijaz H., Shojafar M., Munir K., &Buyya R. (2022), “Resource

Allocation and Task Scheduling in Fog Computing and Internet of Everything

Environments: A Taxonomy, Review, and Future Directions. ACM Computing

Surveys”, pp. 1-35.

Jia, B., Hu, H., Zeng, Y., Xu, T., & Yang, Y. (2018), “Double-matching resource

allocation strategy in fog computing networks based on cost efficiency”. J.

Commun. Netw., 20(3), pp. 237–246.

Katal A, Sethi V, Lamba S, and Choudhury T (2016), “Fog computing: Issues,

challenges, and tools Advances in Intelligent Systems and Computing”, pp. 971–

982.

Kaur, J., Agrawal, A., & Khan, R. A. (2020), “Security Issues in Fog

Environment: A Systematic Literature Review”. Int. J. Wirel. Inf. Netw., 27, pp.

467–483.

253

Khan, S., Parkinson, S., & Qin, Y. (2017), “Fog computing security: A review of

current applications and security solutions”. J. Cloud Computing., 6, pp. 1–22.

Kimovski, D., Ijaz, H., Saurabh, N., & Prodan, R. (2018), “Adaptive nature-

inspired fog architecture”. In: 2018 IEEE 2nd International Conference on Fog

and Edge Computing (ICFEC), pp. 1–8. IEEE.

Kopras, B., Idzikowski, F., Bossy, B., Kryszkiewicz, P., & Bogucka, H. (2023).

“Communication and Computing Task Allocation for Energy-Efficient”. Fog

Networks. Sensors, 23, pp. 997.

Kumari A. Dr., Tanwar S., Tyagi S., Kumar N., Rodrigues J. (2019), “Fog

Computing for Smart Grid Systems in 5G Environment: Challenges and

Solutions. IEEE Wireless Communications”, pp. 1–8.

Lai K.L., Chen J. (2021), “Development of Smart Cities with Fog Computing and

IoT”, Journal of Ubiquitous Computing and Communication Technologies, 3, pp.

52-60.

Lata M., Kumar V. (2022), “Fog Computing Infrastructure for Smart City

Applications”, Recent Advancements in ICT Infrastructure and

Applications, pp.119–133.

Li, H., Shou, G., Hu, Y., & Guo, Z. (2016), “Mobile edge computing: Progress

and challenges”. In Proceedings of the 2016 4th IEEE International Conference on

Mobile Cloud Computing, Services, and Engineering (Mobile Cloud), Oxford,

UK, 29 March–1 April 2016, pp. 83–84.

Li, Q., Zhao, J., Gong, Y., & Zhang, Q. (2019), “Energy-efficient computation

offloading and resource allocation in fog computing for the internet of

everything”. China Common., 16(3), pp. 32–41.

Liu, L., Qi, D., Zhou, N., & Wu, Y. (2018), “A task scheduling algorithm based

on classification mining in fog computing environment”. Wirel. Commun. Mobile

Compute., 2018, pp. 1-100.

Liu, Z., Yang, X., Yang, Y., Wang, K., & Mao, G. (2018), DATS: “Dispersive

stable task scheduling in heterogeneous fog networks”. IEEE Internet Things J.,

6(2), pp. 3423–3436.

Macarulla, Marcel & Albano, Michele & Ferreira, Luis & Teixeira, César (2016),

“Lessons Learned in Building a Middleware for Smart Grids. Journal of Green

Engineering”. 6. 1-26. 10.13052/jge1904-4720.611. IEEE Access, 6, 23626–

23638, pp. 4-19.

Mao, Y., You, C., Zhang, J., Huang, K., &Letaief, K. B. (2017), “A survey on

mobile edge computing: The communication perspective”. IEEE Common. Surv.

Tutor., 19, pp. 2322–2358.

254

Marbukh, V. (2019), “Towards Fog Network Utility Maximization (FoNUM) for

Managing Fog Computing Resources”. In Proceedings of the 2019 IEEE

International Conference on Fog Computing (ICFC), Prague, Czech Republic, 24–

26 June 2019, pp. 195–200.

Matrouk K., Alatoun K. (2021), “Scheduling Algorithms in Fog Computing: A

Survey”. International Journal of Networked and Distributed Computing”,

Volume 9, Issue 1, January 2021, pp. 59 – 74.

Mebrek, A., Merghem-Boulahia, L., &Esseghir, M. (2017), “Efficient green

solution for a balanced energy consumption and delay in the IoT-Fog-Cloud

computing”. In Proceedings of the 2017 IEEE 16th International Symposium on

Network Computing and Applications (NCA), Cambridge, MA, USA, 30

October–1 November 2017, pp. 1–4.

Mohan, P., & Thangavel, R. (2013), “Resource selection in grid environment

based on trust evaluation using feedback and performance”. Am. J. Appl. Sci.,

10(8), pp. 924.

Naha, R. K., Garg, S., Georgakopoulos, D., Jayaraman, P. P., Gao, L., Xiang, Y.,

& Ranjan, R. (2018), “Fog computing: Survey of trends, architectures,

requirements, and research directions”. IEEE Access, 6, pp. 47980–48009.

Ni, L., Zhang, J., Jiang, C., Yan, C., & Yu, K. (2017), “Resource allocation

strategy in fog computing based on priced timed petri nets”. IEEE Internet Things

J., 4(5), pp. 1216–1228.

Parikh, S., Dave, D., Patel, R., & Doshi, N. (2019), “Security and privacy issues in

cloud, fog and edge computing”. Procedia Comput. Sci., 160, pp.734–739.

Pham, X. Q., Man, N. D., Tri, N. D. T., Thai, N. Q., & Huh, E. N. (2017), “A

cost-and performance-effective approach for task scheduling based on

collaboration between cloud and fog computing”. Int. J. Distrib. Sens. Netw.,

13(11), 1550147717742073, pp. 10-18.

Prakash P., Darshaun K. G., Yaazhlene P., Medidhi V. G., & Vasudha B. (2017),

“Fog Computing: Issues, Challenges, and Future Directions”, International Journal

of Electrical and Computer Engineering (IJECE), 7(6), pp.3669-3673.

Prakash, M., & Ravichandran, T. (2012), “An efficient resource selection and

binding model for job scheduling in grid”. Eur. J. Sci. Res., 81(4), pp. 450–458.

Priyadarshinee P. (2021), “Impact of Fog Computing on Indian Smart-Cities: An

Empirical Study”, 10.21203, pp-12-33.

Qasem M., Abu srhan A., Natouryeh H., Alzaghoul E. (2020), “Fog Computing

Framework for Smart City Design”, International Journal of Interactive Mobile

Technologies (iJIM), 14, pp.109.

255

Rahmani A.M., Thanigaivelan N.K., Gia T.N., Granados J., Negash B., Liljeberg

P., & Tenhunen H. (2020), “Smart e-health gateway: bringing intelligence to

internet-of-things based ubiquitous healthcare systems”, In 12th Annual IEEE

Consumer Communications and Networking Conference (CCNC), Jan 2015, pp.

826–834.

Ravi L. et al. (2016), “A Collaborative Location Based Travel Recommendation

System through Enhanced Rating Prediction for the Group of Users”, Hindawi

Publishing Corporation Computational Intelligence and Neuroscience, Vol 2016,

pp. 1-11.

Ren, Y., Zhu, F., Qi, J., Wang, J., & Sangaiah, A. K. (2019), “Identity

management and access control based on blockchain under edge computing for

the industrial IoT”. Appl. Sci., 9, pp. 2058.

Sabireen H., Neelanarayanan V. (2021), “A Review on Fog Computing:

Architecture, Fog with IoT, Algorithms and Research Challenges” ICT Express,

Volume 7, Issue 2, pp. 162-176.

Saini M.K., Saini R.K. (2019), “IoT Applications and Security Challenges: A

Review”, International Journal of Engineering Research & Technology (IJERT),

Volume 7, Issue 12, pp. 1-5.

Sarkar, S., Chatterjee, S. (2015), “Assessment of the suitability of fog computing

in the context of internet of things”, IEEE Transactions on Cloud Computing pp.

99.

Satyakam R., Rajni A. (2021), “Fog Computing Architecture, Application and

Resource Allocation: A Review”, WCNC-2021: Workshop on Computer

Networks & Communications, May 01, 2021, Chennai, India, pp. 31-36.

Savya S. (2021), “Scheduling in Fog Computing: A Survey. International Journal

of Advanced Research in Science”, Communication and Technology (IJARSCT),

Volume 1, Issue 2, pp. 154-157.

Sha, K., Yang, T. A., Wei, W., & Davari, S. (2020), “A survey of edge

computing-based designs for IoT security”. Digit. Commun. Netw., 6, pp.195–

202.

Shalini C., Mohana Y., and Devi S. (2019), “Fog Computing for Smart Cities”,

Proceedings of the 2019 14th International Conference on Computer Engineering

and Systems (ICCES), pp. 912-916.

Sheikh, M. S., Noor Enam, R., & Qureshi, R. I. (2023), “Machine learning-driven

task scheduling with dynamic K-means based clustering algorithm using fuzzy

logic in FOG environment”, Frontiers in Computer Science, 5, 1293209, pp. 1-15.

Skarlat O., Schulte S., Borkowski M., Leitner P. (2016), “Resource Provisioning

for IoT Services in the Fog. In Service-Oriented Computing and Applications

(SOCA)”, IEEE 9th International Conference, pp. 32-39.

256

Songhorabadi M., Rahimi M., Farid A. M., and Kashani M. H. (2020), “Fog

Computing Approaches in Smart Cities: A State-of-the-Art Review” Computer

Science Networking and Internet Architecture (cs.NI), Volume 2, pp. 1-19.

Stojmenovic, I., & Wen, S. (2014), “The fog computing paradigm: Scenarios and

security issues”. In Proceedings of the 2014 Federated Conference on Computer

Science and Information Systems, Warsaw, Poland, 7–10 Sept. 2014, pp. 1–8.

Sun, Y., & Zhang, N. (2017), “A resource-sharing model based on a repeated

game in fog computing”. Saudi J. Biol. Sci., 24(3), pp. 687–694.

Syed, M. H., Fernandez, E. B., & Ilyas, M. (2016), “A pattern for fog computing”.

In Proceedings of the 10th Travelling Conference on Pattern Languages of

Programs, Leerdam, The Netherlands, 7–10 April 2016, pp. 1–10.

Tao, Z., Xia, Q., Hao, Z., Li, C., Ma, L., Yi, S., & Li, Q. (2019), “A survey of

virtual machine management in edge computing”. Proc. IEEE, 107, pp.1482–

1499.

Tzavaras, A., Mainas, N., & Petrakis, E. G. M. (2023), “OpenAPI framework for

the Web of Things”. IoT, 21, 100675, pp. 1–2.

Uckelmann, D., Harrison, M., &Michahelles, F. (2011), “An architectural

approach towards the future IoT”. In Architecting the IoT. pp. 10–12.

Wadhwa, H., & Aron, R. (2018), “Fog computing with the integration of IoT:

Architecture, applications and future directions. Big Data & Cloud Computing,

Social Computing & Networking, Sustainable Computing & Communications

(ISPA/IUCC/BDCloud/SocialCom/SustainCom)”, Melbourne, VIC, Australia,

11–13 December 2018, pp. 987–994.

Wagan, S. A., Koo, J., Siddiqui, I. F., Attique, M., Shin, D. R., & Qureshi, N. M.

F. (2022), “Internet of medical things and trending converged technologies: A

comprehensive review on real-time applications”. Journal of King Saud

University – Computer and Information Sciences, pp.1-100.

Wang J., Li D. (2019), “Task scheduling based on a hybrid heuristic algorithm for

smart production line with fog computing”, Sensors (Basel), Vol. 19, pp. 1023.

Wang, F., Ge, B., Zhang, L., Chen, Y., Xin, Y., & Li, X. (2013), “A system

framework of security management in enterprise systems”. Systems and

Behavioral Research Science, 30(3), pp.287–299.

Wu, Y., Sheng, Q. Z., & Zeadally, S. (2013), “RFID: Opportunities and

challenges. In Next-generation wireless technologies”, Springer, pp. 105–129.

Xing, Y., Li, L., Bi, Z., Wilamowska-Korsak, M., & Zhang, L. (2013),

“Operations research (OR) in service industries: A comprehensive review”.

Systems and Behavioral Research Science, 30(3), pp. 300–353.

Xu, L. (2011), “Enterprise systems: State-of-the-art and future trends”. IEEE

Transactions on Industrial Informatics, 7(4), pp. 630–640.

257

Yang, Y., Wang, K., Zhang, G., Chen, X., Luo, X., & Zhou, M. T. (2018),

“MEETS: Maximal energy efficient task scheduling in homogeneous fog

networks”. IEEE Internet Things J., 5(5), pp. 4076–4087.

Yang, Y., Zhao, S., Zhang, W., Chen, Y., Luo, X., & Wang, J. (2018), “DEBTS:

Delay energy balanced task scheduling in homogeneous fog networks”. IEEE

Internet Things J., 5(3), pp. 2094 –2106.

Yi, S., Qin, Z., & Li, Q. (2015), “Security and privacy issues of fog computing: A

survey”. In International Conference on Wireless Algorithms, Systems, and

Applications, Springer, pp. 685–695.

Yin, L., Luo, J., & Luo, H. (2018), “Tasks scheduling and resource allocation in

fog computing based on containers for smart manufacturing”. IEEE Trans.

Industr. Inf., 14(10), pp. 4712–4721.

Ystgaard, K. F., Atzori, L., Palma, D. Heegaard, P. E., Bertheussen, L. E., Jensen,

M. R., & De Moor, K. (2023), “Review of the theory, principles, and design

requirements of human-centric IoT”. Journal of Ambient Intelligence and

Humanized Computing. pp. 1-10.

Yuan, J., & Li, X. (2018), “A reliable and lightweight trust computing mechanism

for IoT edge devices based on multi-source feedback information fusion”. IEEE

Access, 6, 23626–23638, pp. 4-19.

Yudidharma, A., Nathaniel, N., Gimli, T. N., Achmad, S., & Kurniawan, A.

(2023), “A systematic literature review: Messaging protocols and electronic

platforms used in the IoT for the purpose of building smart homes”. Procedia

Computer Science, 216, pp. 194–203.

Zhang C. (2020), “Design and application of fog computing and IoT service

platform for smart city”. Future Generation Computer Systems, 112,

10.1016/j.future.2020.06.016, pp.2-10.

Zhang, P., Zhou, M., & Fortino, G. (2018), “Security and trust issues in Fog

computing: A survey”. Future Gener. Compute. Syst., 88, pp. 18–28.

Zhang, Y., Zhou, B., Jiao, L., & Chen, J. (2015), “An innovative low-cost

detection system for IoT privacy leaks”. Computer Networks, 90, pp. 80–82.

Zhenqi, S., Haifeng, Y., Xuefen, C., &Hongxia, L. (2013), “Research on uplink

scheduling algorithm of massive M2M and H2H services in LTE”, pp. 1-10.

258

sB. Websites

[1] https://link.springer.com/chapter/10.1007/978-3-319-57639-8_1 accessed on

18th May 2019.

[2] https://link.springer.com/chapter/10.1007/978-3-319-91764-_16#citeas

accessed on 18th October 2019.

[3] https://www.comsoc.org/publications/magazines/ieee-communications-

magazine accessed on 27th January 2020.

[4] https://www.researchgate.net/publication/360903277 acscessed on 7th March

2020.

[5] https://doi.org/10.1007/978-3-319-39595-1_14 pdf accessed on 15th August

2020.

[6] https://vitalflux.com/cohen-kappa-score-python-example-machine-learning/

accessed on 26th December 2020.

[7] https://www.sciencedirect.com/science/article/abs/pii/S0167739X17311962?D

ihub accessed on 19th January 2021.

[8] https://www.geeksforgeeks.org/architecture-of-internet-of-things-iot/ accessed

on 30th March 2020.

[9] https://www.google.com/search?q=IoT+protocol+architecture%3A&rlz=1C1R

XQR_enIN1102IN1102&oq=IoT+protocol+architecture%3A&gs_lcrp=EgZja

HJvbWUyBggAEEUYOTIHCAEQABiABDIICAIQABgWGB4yCAgDEAA

YFhgeMggIBBAAGBYYHjIICAUQABgWGB4yCAgGEAAYFhgeMggIBx

AAGBYYHjIICAgQABgWGB4yDQgJEAAYhgMYgAQYigXSAQkxNDM

wajBqMTWoAgiwAgE&sourceid=chrome&ie=UTF-8 accessed on 15th April

2020. accessed on 1st May 2020.

[10] https://link.springer.com/chapter/10.1007/978-981-19-2374-6_5 pdf accessed

on 31th May 2022.

[11] https://www.scirp.org/journal/paperinformation.aspx?paperid=108574

accessed on 15th October 2022.

[12] http://www.wattics.com. Smart metering, accessed on 19th October 2022.

[13] https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/ #

google_vignette, accessed on 29th November 2022.

[14] https://www.geeksforgeeks.org/fuzzy-logic-introduction/, accessed on 1st

December 2022.

[15] https://www.hindawi.com accessed on 1st January 2023.

https://link.springer.com/chapter/10.1007/978-3-319-57639-8_1%20accessed%20on%2018th%20May%202019.
https://link.springer.com/chapter/10.1007/978-3-319-57639-8_1%20accessed%20on%2018th%20May%202019.
https://link.springer.com/chapter/10.1007/978-3-319-91764-_16#citeas
https://www.comsoc.org/publications/magazines/ieee-communications-%20%20%20%20%20%20%20%20%20%20%20%20%20magazine
https://www.comsoc.org/publications/magazines/ieee-communications-%20%20%20%20%20%20%20%20%20%20%20%20%20magazine
https://www.researchgate.net/publication/360903277
https://doi.org/10.1007/978-3-319-39595-1_14
https://vitalflux.com/cohen-kappa-score-python-example-machine-learning/
https://www.geeksforgeeks.org/architecture-of-internet-of-things-iot/
https://www.google.com/search?q=IoT+protocol+architecture%3A&rlz=1C1RXQR_enIN1102IN1102&oq=IoT+protocol+architecture%3A&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIHCAEQABiABDIICAIQABgWGB4yCAgDEAAYFhgeMggIBBAAGBYYHjIICAUQABgWGB4yCAgGEAAYFhgeMggIBxAAGBYYHjIICAgQABgWGB4yDQgJEAAYhgMYgAQYigXSAQkxNDMwajBqMTWoAgiwAgE&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=IoT+protocol+architecture%3A&rlz=1C1RXQR_enIN1102IN1102&oq=IoT+protocol+architecture%3A&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIHCAEQABiABDIICAIQABgWGB4yCAgDEAAYFhgeMggIBBAAGBYYHjIICAUQABgWGB4yCAgGEAAYFhgeMggIBxAAGBYYHjIICAgQABgWGB4yDQgJEAAYhgMYgAQYigXSAQkxNDMwajBqMTWoAgiwAgE&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=IoT+protocol+architecture%3A&rlz=1C1RXQR_enIN1102IN1102&oq=IoT+protocol+architecture%3A&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIHCAEQABiABDIICAIQABgWGB4yCAgDEAAYFhgeMggIBBAAGBYYHjIICAUQABgWGB4yCAgGEAAYFhgeMggIBxAAGBYYHjIICAgQABgWGB4yDQgJEAAYhgMYgAQYigXSAQkxNDMwajBqMTWoAgiwAgE&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=IoT+protocol+architecture%3A&rlz=1C1RXQR_enIN1102IN1102&oq=IoT+protocol+architecture%3A&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIHCAEQABiABDIICAIQABgWGB4yCAgDEAAYFhgeMggIBBAAGBYYHjIICAUQABgWGB4yCAgGEAAYFhgeMggIBxAAGBYYHjIICAgQABgWGB4yDQgJEAAYhgMYgAQYigXSAQkxNDMwajBqMTWoAgiwAgE&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=IoT+protocol+architecture%3A&rlz=1C1RXQR_enIN1102IN1102&oq=IoT+protocol+architecture%3A&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIHCAEQABiABDIICAIQABgWGB4yCAgDEAAYFhgeMggIBBAAGBYYHjIICAUQABgWGB4yCAgGEAAYFhgeMggIBxAAGBYYHjIICAgQABgWGB4yDQgJEAAYhgMYgAQYigXSAQkxNDMwajBqMTWoAgiwAgE&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=IoT+protocol+architecture%3A&rlz=1C1RXQR_enIN1102IN1102&oq=IoT+protocol+architecture%3A&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIHCAEQABiABDIICAIQABgWGB4yCAgDEAAYFhgeMggIBBAAGBYYHjIICAUQABgWGB4yCAgGEAAYFhgeMggIBxAAGBYYHjIICAgQABgWGB4yDQgJEAAYhgMYgAQYigXSAQkxNDMwajBqMTWoAgiwAgE&sourceid=chrome&ie=UTF-8
https://link.springer.com/chapter/10.1007/978-981-19-2374-6_5
https://www.scirp.org/journal/paperinformation.aspx?paperid=108574
http://www.wattics.com/
https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/# google_vignette
https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/# google_vignette
http://www.hindawi.com/

259

[16] https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/gtd2.12291

accessed on 4th January 2023.

[17] https://www.mqtt.org accessed on 1st February 2023.

[18] https://www.techtarget.com/iotagenda/definition/fog-computing-fogging

accessed on 21st February 2023.

[19] https://www.dzone.com accessed on 25th March 2023.

[20] https://www.javatpoint.com/precision-and-recall-in-machine-learning

accessed on 30th March 2023.

[21] https://www.paloaltonetworks.com/cyberpedia/what-is-quality-of-service-

qos#:~:text=Quality%20of%20service%20(QoS)%20is,specific%20flows%20i

n%20network%20traffic. accessed on 11th April 2023.

[22] https://http://www.openfogconsortium.org/ra pdf accessed on 23rd May 2023.

[23] https://arxiv.org/abs/2011.14732 accessed on 28th May 2023.

[24] https://www.simplilearn.com/tutorials/machine-learning-tutorial/machine-

learning-steps accessed on 1st June 2023.

[25] https://www.mdpi.com/2079-9292/12/7/1511/ accessed on 7th June 2023.

[26] https://pac.pogil.org/index.php/pac/article/view/304 accessed on 9th June 2023.

[27] https://www.researchgate.net/publication/377025158_An_Analysis_of_Metho

ds_and_Metrics_for_Task_Scheduling_in_Fog_Computing accessed on 17th

June 2023.

[28] https://www.sam-solutions.com accessed on 29th June 2023.

[29] https://appquipo.com/blog/develop-ai-based-oms-software/ accessed on 30th

June 2023.

[30] https://www.academia.edu/119104943/Resource_Allocation_and_Task_Sched

uling_in_Fog_Computing_and_Internet_of_Everything_Environments_A_Tax

onomy_Review_and_Future_Directions accessed on 7th July 2023.

[31] https://www.ibm.com/topics/machine-learning-algorithms accessed on 14th

July 2023.

[32] https://www.simplilearn.com/tutorials/machine-learning-tutorial/confusion-

matrix-machine-learning accessed on 27th July 2023.

https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/gtd2.12291
http://www.mqtt.org/
https://www.techtarget.com/iotagenda/definition/fog-computing-fogging
http://www.dzone.com/
https://www.javatpoint.com/precision-and-recall-in-machine-learning
http://www.openfogconsortium.org/ra
https://arxiv.org/abs/2011.14732
https://www.simplilearn.com/tutorials/machine-learning-tutorial/machine-learning-steps
https://www.simplilearn.com/tutorials/machine-learning-tutorial/machine-learning-steps
https://www.mdpi.com/2079-9292/12/7/1511/
https://pac.pogil.org/index.php/pac/article/view/304
https://www.researchgate.net/publication/377025158_An_Analysis_of_Methods_and_Metrics_for_Task_Scheduling_in_Fog_Computing
https://www.researchgate.net/publication/377025158_An_Analysis_of_Methods_and_Metrics_for_Task_Scheduling_in_Fog_Computing
http://www.sam-solutions.com/
https://appquipo.com/blog/develop-ai-based-oms-software/
https://www.academia.edu/119104943/Resource_Allocation_and_Task_Scheduling_in_Fog_Computing_and_Internet_of_Everything_Environments_A_Taxonomy_Review_and_Future_Directions
https://www.academia.edu/119104943/Resource_Allocation_and_Task_Scheduling_in_Fog_Computing_and_Internet_of_Everything_Environments_A_Taxonomy_Review_and_Future_Directions
https://www.academia.edu/119104943/Resource_Allocation_and_Task_Scheduling_in_Fog_Computing_and_Internet_of_Everything_Environments_A_Taxonomy_Review_and_Future_Directions
https://www.ibm.com/topics/machine-learning-algorithms
https://www.simplilearn.com/tutorials/machine-learning-tutorial/confusion-matrix-machine-learning
https://www.simplilearn.com/tutorials/machine-learning-tutorial/confusion-matrix-machine-learning

260

[33] https://www.researchgate.net/publication/377457479_Machine_Learning_App

roaches_To_Predict_The_Stability_of_Smart_Grid accessed on 29th July 2023.

[34] https://www.devopedia.org accessed on 7th August 2023.

[35] https://www.geeksforgeeks.org/fuzzy-logic-introduction/ accessed on 3rd

ssSeptember 2023.

[36] https://dl.acm.org/doi/10.1145/3513002 accessed on 25th September 2023.

[37] https://www.geeksforgeeks.org/3-layer-iot-architecture/?ref=ml_lbp accessed

on 22nd October 2023.

[38] https://www.analyticsvidhya.com/blog/2021/08/conceptual-understanding-of-

logistic-regression-for-data-science-beginners/ accessed on 5th November 2023.

[39] https://www.google.com/search?q=round+robin+scheduling+algorithm+in+m

achine+learning&rlz=1C1RXQR_enIN1102IN1102&oq=round+robin+schedul

ing+algorithm+in+ma&gs_lcrp=EgZjaHJvbWUqBwgBECEYoAEyBggAEEU

YOTIHCAEQIRigATIHCAIQIRigATIHCAMQIRigATIHCAQQIRifBdIBCj

E3NzkwajBqMTWoAgiwAgE&sourceid=chrome&ie=UTF-8 accessed on 18th

November 2023.

[40] https://www.sas.com/en_gb/insights/articles/analytics/machine-learning-

algorithms.html accessed on 24th November 2023.

[41] https://www.geeksforgeeks.org/5-layer-architecture-of-internet-of-

things/?ref=ml_lbp accessed on 28th November 2023.

[42] https://www.geeksforgeeks.org/confusion-matrix-machine-learning/ accessed

on 1st December 2023.

[43] https://www.javatpoint.com/confusion-matrix-in-machine-learning accessed

on 6th December 2023.

[44] https://www.javatpoint.com/how-to-check-the-accuracy-of-your-machine-

learning-model accessed on 26th December 2023.

[45] Sensors | Free Full-Text | Simulation Tools for Fog Computing: A

Comparative Analysis (mdpi.com) accessed on 1st January 2024.

[46] https://www.geeksforgeeks.org/difference-between-sdn-and-nfv/ accessed on

11th January 2024.

https://www.researchgate.net/publication/377457479_Machine_Learning_Approaches_To_Predict_The_Stability_of_Smart_Grid
https://www.researchgate.net/publication/377457479_Machine_Learning_Approaches_To_Predict_The_Stability_of_Smart_Grid
https://www.geeksforgeeks.org/fuzzy-logic-introduction/
https://dl.acm.org/doi/10.1145/3513002
https://www.geeksforgeeks.org/3-layer-iot-architecture/?ref=ml_lbp
https://www.analyticsvidhya.com/blog/2021/08/conceptual-understanding-of-logistic-regression-for-data-science-beginners/
https://www.analyticsvidhya.com/blog/2021/08/conceptual-understanding-of-logistic-regression-for-data-science-beginners/
https://www.sas.com/en_gb/insights/articles/analytics/machine-learning-algorithms.html
https://www.sas.com/en_gb/insights/articles/analytics/machine-learning-algorithms.html
https://www.geeksforgeeks.org/5-layer-architecture-of-internet-of-things/?ref=ml_lbp
https://www.geeksforgeeks.org/5-layer-architecture-of-internet-of-things/?ref=ml_lbp
https://www.geeksforgeeks.org/confusion-matrix-machine-learning/
https://www.javatpoint.com/confusion-matrix-in-machine-learning
https://www.javatpoint.com/how-to-check-the-accuracy-of-your-machine-learning-model
https://www.javatpoint.com/how-to-check-the-accuracy-of-your-machine-learning-model
https://www.mdpi.com/1424-8220/23/7/3492
https://www.mdpi.com/1424-8220/23/7/3492
https://www.geeksforgeeks.org/difference-between-sdn-and-nfv/

261

[47] https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-

of-software-defined-networking-sdn/why-sdn-software-defined-networking-or-

nfv-network-functions-virtualization-now/ accessed on 17th January 2024.

[48] https://www.analyticsvidhya.com/blog/2015/12/improve-machine-learning-

results/ accessed on 1st February 2024.

[49] https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/heuristic-

function-in-ai accessed on 14sth February 2024.

[50] https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-

heuristics/ accessed on 7th March 2024.

[51] https://www.comsoc.org/publications/magazines/ieee-communications-

magazine/cfp/future-trends-fogedge-computing accessed on 15th April 2024.

[52] https://www.researchgate.net/publication/320855949_Fog_Computing_Issues

_Challenges_and_Future_Directions accessed on 1st June 2024.

[53] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099336/ accessed on 1st

June 2024.

[54] https://www.researchgate.net/figure/iFogSim-Architecture-Adapted-from-

29_fig1_369571348 accessed on 5th June 2024.

[55] https://www.researchgate.net/publication/349710974_LEAF_Simulating_Larg

e_Energy-Aware_Fog_Computing_Environments accessed on 7th June 2024.

[56] https://www.geeksforgeeks.org/what-is-mipsmillion-of-instructions-per-

second/ accessed on 7th June 2024

https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/why-sdn-software-defined-networking-or-nfv-network-functions-virtualization-now/
https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/why-sdn-software-defined-networking-or-nfv-network-functions-virtualization-now/
https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/why-sdn-software-defined-networking-or-nfv-network-functions-virtualization-now/
https://www.analyticsvidhya.com/blog/2015/12/improve-machine-learning-results/
https://www.analyticsvidhya.com/blog/2015/12/improve-machine-learning-results/
https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/heuristic-function-in-ai
https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/heuristic-function-in-ai
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-heuristics/
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-heuristics/
https://www.comsoc.org/publications/magazines/ieee-communications-magazine/cfp/future-trends-fogedge-computing-and
https://www.comsoc.org/publications/magazines/ieee-communications-magazine/cfp/future-trends-fogedge-computing-and
https://www.researchgate.net/publication/320855949_Fog_Computing_Issues_Challenges_and_Future_Directions
https://www.researchgate.net/publication/320855949_Fog_Computing_Issues_Challenges_and_Future_Directions
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099336/
https://www.researchgate.net/figure/iFogSim-Architecture-Adapted-from-29_fig1_369571348
https://www.researchgate.net/figure/iFogSim-Architecture-Adapted-from-29_fig1_369571348
https://www.researchgate.net/publication/349710974_LEAF_Simulating_Large_Energy-Aware_Fog_Computing_Environments
https://www.researchgate.net/publication/349710974_LEAF_Simulating_Large_Energy-Aware_Fog_Computing_Environments

262

APPENDIX

263

Appendix: List of Publications and Conferences Attended

1) Suraj Rajaram Nalawade, Dr. Ashok Kumar Jetawat, “Use of Clustering

Machine Learning Algorithms in Fog Computing for Task Scheduling and

Resource Allocation” has been published in European Chemical Bulletin

(ISSN: 2063-5346), Volume 11, Issue 8, 2022 Date of Publication: -

August 2022.

2) Suraj Rajaram Nalawade, Dr. Ashok Kumar Jetawat, “A Comparative

Study of Various Classification Machine Learning Algorithms in Fog

Computing: Task Scheduling” has been published in Industrial

Engineering Journal (ISSN 0970-2555), Volume: 52, Issue 5, No. UGC

Care Approved, Group I, Peer Reviewed Journal 4, May: 2023.

3) “The Survey on Fog Computing and its Applications” International Virtual

Conference on “Emerging Era of Applications of Computer, 15th -16th of

January 2022 Organized by Pacific University Udaipur.

4) National Seminar on “Implementation of Academic Bank of Credit (ABC)

in Higher Education Institutes” on 21st March 2023 Organized by

Avinashilingam Institute for Home Science and Higher Education for

Women University Udaipur.

5) IP Awareness Training Program under “National Intellectual Property

Awareness Mission” Organized by Intellectual Property Office, India on

18, January 2023.

