
SMART FOG – A COLLABORATIVE APPROACH TO SHARE 

COMPUTATIONAL POWER OF FOG DEVICES FOR FOG COMPUTING 

IN SMART CITY IoT NETWORK 

स्मार्ट फ़ॉग - स्मार्ट सिर्ी आईओर्ी नेर्वर्ट  में फ़ॉग रं्प्यूसरं्ग रे् सिए फ़ॉग 

उपर्रणों र्ी र्म्पप्यूरे्शनि शसि िाझा र्रने रे् सिए एर् िहयोगात्मर् दृसिर्ोण 

 

A Thesis 

Submitted for the Award of Ph.D. degree 

by 

NALAWADE SURAJ RAJARAM  

नलवड ेसूरज राजाराम 
Under the Supervision of 

Dr. ASHOK KUMAR JETAWAT 

Professor 

Pacific Academy of Higher Education  

& Research University, Udaipur 
 

 

 

 

 

 

FACULTY OF COMPUTER ENGINEERING 

PACIFIC ACADEMY OF HIGHER EDUCATION 

AND RESEARCH UNIVERSITY UDAIPUR 
2024 

 

 



DECLARATION 

 

 

I, NALAWADE SURAJ RAJARAM S/o Mr. NALAWADE RAJARAM 

ANNA resident of 4624, Suryoday Niwas, Adarsh Colony, Near Modern High 

School, Rahimatpur Road, Koregaon. Satara Maharashtra, hereby declare that 

the work incorporated in the present thesis entitled “SMART FOG – A 

COLLABORATIVE APPROACH TO SHARE COMPUTATIONAL 

POWER OF FOG DEVICES FOR FOG COMPUTING IN SMART CITY 

IoT NETWORK” (“स्मार्ट फ़ॉग - स्मार्ट सिर्ी आईओर्ी नेर्वर्ट  में फ़ॉग रं्प्यसूरं्ग रे् सिए फ़ॉग 

उपर्रणों र्ी र्म्पप्यरेू्शनि शसि िाझा र्रने रे् सिए एर् िहयोगात्मर् दृसिर्ोण”) is my own 

work and is original. This work (in part or in full) has not been submitted to 

any University for the award of a Degree or a Diploma. I have properly 

acknowledged the material collected from secondary sources wherever 

required. I solely own the responsibility for the originality of the entire content. 

 

 

    Date:       (NALAWADE SURAJ RAJARAM) 

    Place: Udaipur  

  



FACULTY OF ENGINEERING 

PACIFIC ACADEMY OF HIGHER EDUCATION 

& RESEARCH UNIVERSITY, UDAIPUR 
 

Dr. ASHOK KUMAR JETAWAT  

Professor  

 
 

CERTIFICATE  

It gives me immense pleasure in certifying that the thesis entitled “SMART FOG – A 

COLLABORATIVE APPROACH TO SHARE COMPUTATIONAL POWER OF FOG DEVICES FOR 

FOG COMPUTING IN SMART CITY IoT NETWORK” (“स्मार्ट फ़ॉग - स्मार्ट सिर्ी आईओर्ी नेर्वर्ट  में 

फ़ॉग रं्प्यूसरं्ग रे् सिए फ़ॉग उपर्रणों र्ी र्म्पप्यरेू्शनि शसि िाझा र्रने रे् सिए एर् िहयोगात्मर् 

दृसिर्ोण”) submitted by NALAWADE SURAJ RAJARAM is based on the research work carried 

out under my guidance. he has completed the following requirements as per Ph.D. 

regulations of the University. 

i. Coursework as per University rules. 

ii. Residential requirements of the University. 

iii. Regularly presented Half Yearly Progress Report as prescribed by the University. 

iv. Published/ accepted a minimum of two research papers in a refereed research 
journal. 

I recommend the submission of the thesis as prescribed/ notified by the 

University. 
 

 

Date:       

Dr. ASHOK KUMAR JETAWAT 
Professor 

Pacific Academy of Higher 

Education & Research University. 

 

 



COPYRIGHT 

I, NALAWADE SURAJ RAJARAM, hereby declare that the Pacific Academy 

of Higher Education and Research University, Udaipur, Rajasthan shall have 

the rights to preserve, use and disseminate this dissertation/ thesis “SMART 

FOG – A COLLABORATIVE APPROACH TO SHARE COMPUTATIONAL 

POWER OF FOG DEVICES FOR FOG COMPUTING IN SMART CITY IoT 

NETWORK” (“स्मार्ट फ़ॉग - स्मार्ट सिर्ी आईओर्ी नेर्वर्ट  में फ़ॉग रं्प्यूसरं्ग रे् सिए फ़ॉग 

उपर्रणों र्ी र्म्पप्यरेू्शनि शसि िाझा र्रने रे् सिए एर् िहयोगात्मर् दृसिर्ोण”) in print or 

electronic format for academic/ research purpose.  

 

 

 

 

 

 

    Date:       (NALAWADE SURAJ RAJARAM) 

    Place: Udaipur Signature of the Candidate 

 

 

 

 

 

 



ACKNOWLEDGEMENT 

First and foremost, I would like to express my deepest regards and gratitude to my 

eminent and esteemed supervisor and guide Dr. Ashok Kumar Jetawat, 

Professor, Department of Computer Engineering, Pacific Academy of Higher 

Education and Research University, Udaipur, Rajasthan, for giving me inspiration, 

guidance, valuable suggestions, opinions and correction for the betterment of my 

research work. I will always be grateful to him. He was always available for help 

at any point in time. His guidance helped me in the time of research work and 

writing of my thesis. 

As I reflect on this milestone, I am reminded of the profound significance of the 

support network which surrounds us. To Dr. Jayshree Jain madam, I extend my 

deepest gratitude for her unwavering support and understanding throughout this 

journey. In this journey, I have witnessed the impact of her support, whether it was 

through guiding me at different stages of my research work or offering words of 

encouragement when the path seemed daunting. Her contribution, perhaps less 

visible, has been just as vital in shaping my academic growth. 

I am thankful to the University authorities, especially Dr. HEMANT KOTHARI, 

Dean, Pacific Academy of Higher Education and Research University, Udaipur, 

Rajasthan, and Shri Ramesh Agrawal who guided me at different stages of 

research work and others in PAHER for their support and encouragement. Without 

their precious support, it would not be possible to conduct this research, and Ms. 

Kusum Madam and Dr. Surya Pacific University Udaipur for helping me in 

creating the Plagiarism report. 

A special note of gratitude to my father, Shri Rajaram Anna Nalawade, My mother,   

Smt. Sangita Rajaram Nalawade, whose blessings, love, and support have always 

aided me in my research endeavors. My lovely wife, Smt. Ashwini Suraj Nalawade, 

my smart son, Mr. Advait Suraj Nalawade, and my brother, Mr. Uday Rajaram 

Nalawade, Dr. Manisha Songire (Nalawade) Mrs. Survena Yadav, Mr. Vinod Yadav, 



who has always stood by me, I express my gratitude for their love, support, and 

encouragement. 

I am thankful to my grandfather, Shri Namdev Shivram Deokar, whose blessings, 

love, and inspiration always added to my research work.  

I would like to thank Prof. Dasharath Sagare Sir - Founder President, YSPM’s 

Yashoda Technical Campus, Satara; Prof. Ajinkya D. Sagare Sir - Vice President,  

Mr. Ganesh K. Survase Sir - Registrar, Mr. R. D. Mohite - Associate Director, 

YSPM’s Yashoda Technical Campus, Satara, Dr. R. J. Dias working at Government 

College of Pharmacy, Karad, Late Dr. A. B. Mahatme, Ex Principal, YSPM’s 

Yashoda Technical Campus, Sataras. 

I pay all my heartfelt gratitude to my friend Mr. Navnath Pandurang Jadhav working 

at MAHLE Holding India Pvt Ltd, Pune, Dr. Madhuri Navanath Jadhav Professor at 

Pune, Mr. Amol Baburao Nalawade, Mphasis Limited, Pune, Mr. Abhijeet Avinash 

Salunkhe, Branch Manager at Janata Sahakari Bank, Satara, Mrs. Nikita Abhijeet 

Salunkhe, my colleague Prof. Hakke Dasganu G. Working at Yashoda Technical 

Campus, Satara, and Pacific University, Udaipur for helping me directly or indirectly 

making this research work a success. 

Thank you to everyone who has directly or indirectly helped me on this beautiful 

voyage. 

Last but not least, my distinctive thanks to M/s Shorya Thesis Printers & this 

document meticulously, neatly, and timely. 

 

NALAWADE SURAJ RAJARAM   



PREFACE 

Smart cities have emerged as a solution to enhance services and quality of life for 

residents and visitors. These cities have made significant progress in optimizing 

resource utilization, promoting environmental protection, improving infrastructure 

operations and maintenance, and strengthening safety and security measures. 

Achieving these improvements requires the implementation of new and existing 

technologies, as well as the application of optimization techniques. Among the 

technologies supporting smart city applications, the Internet of Things, FOG 

computing, and cloud computing play vital roles. Integrating these three technologies 

into a single system, known as the integrated IoT-Fog-Cloud system, offers a 

sophisticated platform for developing and managing various smart city applications. 

By leveraging the strengths of IoT gadgets, FOG nodes, and cloud services, this 

platform enables applications to deliver optimal functionality and performance. The 

integrated system opens up numerous opportunities for enhancing applications across 

sectors such as energy, transportation, healthcare, and more. This research work 

focuses on designing an improvised SMART FOG system, which the key emphasis of 

the study. 

Outline of the Thesis: 

The entire research work is divided into six chapters as discussed. The chapterization 

contains the overview of the proposed SMART FOG protocol-based technique, 

implementation challenges, task allocation, scheduling techniques, fault tolerance 

mechanisms, literature review of different authors, result analysis/testing, 

performance evaluation, and conclusion.  

• Chapter - 1 Introduction: Serves as a foundation for the research work by 

highlighting the need for the study. It accomplishes this by referencing various 

articles and analyzing surveys to establish a solid base for the proposed 

research. To clarify the background concepts of fog computing, different 

terminologies related to fog computing are defined and explained. This 

ensures that readers have a clear understanding of the key terms and concepts 

associated with the research topic. The chapter also provides an overview of 

the proposed SMART FOG protocol-based technique. It explains the core 



features and functionality of the technique, highlighting how it differs from 

existing approaches. Additionally, a comparative study is conducted to 

compare the proposed technique with other relevant methods in the field. This 

comparison helps to establish the unique benefits and advantages of the 

SMART FOG protocol-based technique. By encompassing these elements, the 

first chapter sets the stage for the research work, presenting the need for the 

study, providing a solid base through article references and survey analysis, 

clarifying fog computing concepts, and introducing the proposed SMART 

FOG protocol-based technique along with its comparative study. 

• Chapter -2 Literature Review: Focuses on reviewing past studies conducted 

in the research area. It involves examining a broad range of previously 

completed research projects and providing a comprehensive background of 

other relevant research works. These sources of literature include journals, 

articles, research papers, and reputable platforms such as the OpenFog 

Consortium, IEEE conferences and journals, Springer publications, and online 

fog computing articles and resources. By conducting this review, the chapter 

aims to gather existing knowledge, identify gaps in the research field, and 

build upon the work that has already been done. It provides a critical analysis 

and synthesis of the literature, highlighting key findings, methodologies, and 

advancements in fog computing and related domains. The review of the 

literature serves several purposes. Firstly, it helps to establish the current state 

of the research area, providing a context for the proposed study. Secondly, it 

helps the researcher identify research gaps or areas that require further 

exploration. By examining the existing literature, the chapter also highlights 

the strengths and weaknesses of previous approaches, leading to insights and 

inspiration for the proposed research. The sources of literature mentioned, 

such as the OpenFog Consortium, IEEE, Springer, and online fog computing 

articles and resources, represent reputable and authoritative platforms in the 

field. By consulting these sources, the chapter ensures a comprehensive and 

reliable review of the existing literature, contributing to the overall credibility 

and validity of the research project. 



• Chapter -3 Research Methodology: This is dedicated to describing the 

methodology used in the research project. It primarily focuses on the 

architecture of the proposed system, including the use of block diagrams to 

visualize the system's structure. The chapter provides a detailed explanation of 

the different layers within the architecture, highlighting their functions and 

interactions. In addition to the system architecture, the chapter also explores 

the various technologies employed in the implementation of the proposed 

system. It delves into the specifics of these technologies, discussing their 

relevance and suitability for the project. The methodology chapter also 

outlines the research methods employed in the study. It mentions the use of 

questionnaires or surveys to gather data and insights from relevant 

stakeholders or experts in the field. These methods help in understanding the 

requirements, challenges, and expectations associated with the proposed 

system. By gathering feedback through questionnaires, the research project 

can align its objectives with the needs of the intended users or beneficiaries. 

Furthermore, the chapter addresses any gaps or open challenges that were 

identified during the literature review. It highlights how these gaps are 

addressed or resolved through the proposed research. The focus is on 

designing and developing the proposed system to bridge these gaps and 

overcome challenges identified in previous studies.  

• Chapter - 4 SMART FOG-based Technique: Focuses on the 

implementation of the proposed system. The chapter discusses the total work 

done in the system and outlines the next steps and milestones to be achieved. It 

also addresses the challenges encountered during the selection of 

communication protocols and security measures for each layer of 

communication. The sharing of computational power between IoT devices and 

fog devices is identified as a challenging aspect, and an improvised method is 

proposed to enable this sharing. The proposed SMART FOG protocol-based 

technique aims to execute tasks in the fog environment to avoid latency issues 

associated with sending requests to cloud centers. 

 



• Chapter – 5 Allocation and Scheduling of Computational Power: The 

focus is on the allocation and scheduling of computational resources shared 

with IoT devices. The chapter explores different techniques of resource 

allocation and scheduling, identifying the most efficient ones suitable for fog 

computing. The current work is tested according to the proposed system, and 

the results are evaluated to meet the objectives of the research. The evaluation 

specifically assesses the impact of the proposed work on latency issues in the 

existing system. Testing and evaluation are crucial for validating the 

hypothesis, which centers around implementing the SMART FOG protocol-

based technique to create a fog environment that shares computational power 

with IoT devices. 

• Chapter – 6 Conclusion and Future Work: Provides a summary of the 

research work and its outcomes in comparison to the expected results defined 

during the design phase. A detailed analysis is conducted to project future 

possibilities and enhancements to the system resulting from the study. The 

chapter also highlights key challenges and issues that warrant further 

investigation for future development. This chapter serves as a conclusion to 

the research, summarizing its findings and suggesting avenues for future 

research and improvement. 

In conclusion, based on the evaluation of various accuracy parameters, it can be 

inferred that the MLP classifier and Logistic Regression are the most suitable 

classification algorithms for resource allocation and task offloading in a SMART 

FOG environment. These classifiers consistently outperform the others and 

demonstrate their effectiveness in achieving accurate and reliable results.  
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To improve services and quality of life for citizens and visitors, several cities have 

recently made progress toward becoming smart cities. These cities now have 

improved resource utilization, increased environmental protection, enhanced 

infrastructure operations and maintenance, and robust safety and security measures. 

To improve services and performance in their various sectors, smart cities rely on 

implementing new and existing technologies and various optimization techniques. 

The IoT1, FOG computing and cloud computing are a few of the technologies 

assisting smart city applications. These three can be combined into one system, an 

integrated IoT-Fog-Cloud system, to create a sophisticated platform for creating and 

managing various kinds of smart city applications. With the help of this platform, 

applications will be able to deliver the best functionality and performance possible by 

utilizing the best features of IoT gadgets, FOG nodes, and cloud services. Numerous 

opportunities for improving and optimizing applications in the fields of energy, 

transportation, healthcare, and other industries will be presented by the use of this 

strong platform. The improvised SMART FOG system design would be the main 

focus of this research project. 

1.1 Fog Computing 

Fog computing is referred to as a distributed computing paradigm that essentially 

extends the cloud's services to the network's edge. According to Cisco, Fog 

computing is a continuation of the cloud computing paradigm from the network's core 

to its edges. It makes networking, computing, and storage between end devices and 

conventional cloud servers easier. Fog computing uses both the cloud and the edge 

devices that are situated between end devices and cloud servers to run applications 

rather than only using the cloud for this purpose. Edge and cloud computing are both 

benefits of fog computing. While making use of edge devices' proximity to the 

endpoints, it also uses the cloud's on-demand scalability. 

By effectively exploiting the resources present at the edge nodes to do partial 

computing and by performing filtering operations in the nodes, it essentially lessens 

the strain on the cloud server. Fog computing is typically confused with two ideas in 

particular. Mobile Edge Computing and Mobile Cloud Computing are these ideas. 

 
1Internet of Things 
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MCC2 essentially contends that data processing and storage are carried out on a cloud, 

away from mobile devices. As a result, it transfers data and processing power from 

individual mobile devices to the cloud. MEC3 is a network architecture concept that 

extends cloud computing capabilities to the edge of the network. It brings 

computation, storage, and networking resources closer to the end-user or device, 

reducing latency and improving overall system performance. MEC enables the 

execution of applications and services at the edge of the network, closer to where the 

data is generated and consumed. A cloudlet, on the other hand, is a concept related to 

edge computing and MEC. It refers to a small-scale data center or server cluster 

deployed at the edge of the network, typically near mobile devices or end-users. 

Cloudlets provide computational resources and services to nearby devices, offering 

low-latency access to data and applications. 

In comparison, MEC is a broader term that encompasses the concept of cloudlets. 

MEC involves deploying computing capabilities at various points in the network, such 

as base stations, access points, or edge routers, whereas a cloudlet specifically refers 

to a small-scale server cluster. Cloudlets are one implementation of MEC, but MEC 

can also involve distributed edge computing without using dedicated cloudlet 

infrastructure. It may be viewed as a more focused version of the cloud computing 

concept. It resembles a cloud server that is situated at the edge of a mobile network. 

Fog computing combines these two ideas with some of its characteristics to increase 

its dependability and utility. 

1.2 Fog Computing Architecture 

The bandwidth, particularly on cellular networks, is a significant issue with cloud 

computing. As the IoT grows and more physical devices are wirelessly connected, the 

issue will only become worse. This issue is resolved by Fog computing, which stores 

data locally on computers and other gadgets known as fog nodes. Any device having 

computation, storage, and network connection, such as handheld devices, tablets, PCs, 

routers, etc., can be used as a fog node.  

 
2Mobile Cloud Computing 
3Mobile Edge Computing 
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Figure 1.1:  Fog Computing Architecture (Lai, 2021) 

Figure 1.1 shows Fog-based architecture, fog nodes, also known as edge devices or 

fog devices, are distributed throughout the network, closer to the data sources and 

end-users. These fog nodes can be various devices such as routers, switches, access 

points, edge servers, IoT devices, or other computing resources. The architecture 

extends the capabilities of cloud computing by providing localized data processing, 

storage, and analytics at the edge of the network. These fog nodes are controlled by 

the Fog Data Service, which performs a variety of functions like data reduction, data 

virtualization, data control and security, and edge analytics. Additionally, data might 

be uploaded to the cloud for long-term analyses. 

Kopras (2023) discussed that the widely adopted cloud computing paradigm is 

evolving with the integration of fog computing, placing computing nodes in closer 

proximity to end-users to meet stringent latency requirements. However, effective 

task offloading, considering transmission and computation energy consumption, poses 

challenges. Task allocation becomes intricate due to the multitude of arriving tasks 

with diverse computational, communication, and delay requirements, alongside a 

variety of computing nodes with differing capabilities. The research work introduces 

an optimal task allocation procedure aimed at minimizing energy consumption for 
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wirelessly connected users in a network comprising Fog Nodes located at Access 

Points and Cloud Nodes. The assignment of Access Points and computing nodes to 

offloaded tasks, along with Fog Node operating frequencies, is optimized using a 

Mixed-Integer Nonlinear Programming approach. Realistic energy consumption and 

delay models, along with their pertinent parameters reflecting device characteristics, 

are employed. Results indicate the profitability of distributing task processing among 

multiple Fog Nodes and the cloud, often selecting distinct nodes for transmission and 

computation. The proposed algorithm demonstrates superior performance, achieving 

the lowest energy consumption and task rejection rate compared to alternative 

allocation strategies. Additionally, a heuristic algorithm is presented, decoupling 

wireless transmission optimization from implemented computations and wired 

transmission, providing optimal or near-optimal solutions across various scenarios. 

1.3 Issues Related to Fog Computing 

Cloud computing is expanded by Fog computing, which also affects IoT. These 

gadgets, also known as fog nodes, can be set up anywhere there is a network 

connection. Fog computing provides extra storage capabilities at the periphery to 

handle the demands. As a result, the Fog server must modify its services, which 

increases administration and maintenance expenses. The operator must also deal with 

the following problems. 

1.3.1 Privacy  

Because wireless dominates fog computing, network privacy is a major challenge. 

The network operator manually creates settings, deploys fog nodes at the edge of the 

internet, and incurs significant maintenance costs. The exposure of personal 

information when utilizing networks is receiving more attention. The Fog nodes have 

easier access to the end consumers. Because of this, Fog nodes gather more sensitive 

data than faraway clouds. To address these problems, encryption techniques like 

HAN4  might be applied. 

 

 

 

 
4Home-Area Network 
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1.3.2 Network Security 

Fog networks may be vulnerable to various network-level attacks, such as Denial of 

Service, Man-in-the-Middle, or network sniffing attacks. It is crucial to implement 

robust network security measures, including firewalls, intrusion detection systems, 

and secure communication protocols, to detect and prevent these attacks and protect 

the integrity and availability of the network. Fog nodes and IoT devices connected to 

the fog network can be targets for exploitation and compromise. Weak device 

security, such as default or easily guessable passwords, outdated firmware, or 

unresolved vulnerabilities, can lead to unauthorized access and control. Implementing 

secure device configurations, regular security updates, and strong security policies can 

mitigate these risks. 

1.3.3 Network Management  

Network management in Fog computing refers to the processes, tools, and strategies 

used to efficiently control, monitor, and maintain the network infrastructure and 

devices in a fog computing environment. Fog computing introduces additional 

complexity to network management due to the distributed nature of the architecture 

and the heterogeneity of devices involved. Efficient network management in fog 

computing is crucial to ensure the reliable and secure operation of the fog network. It 

involves continuous monitoring, optimization of network performance, resource 

allocation, configuration management, fault handling, and security measures to 

maintain a robust and scalable fog computing environment. Fog computing 

environments require continuous monitoring of network performance to ensure 

efficient and reliable service delivery.  

Network administrators need to monitor network traffic, latency, bandwidth 

utilization, and other performance metrics to identify bottlenecks, congestion, or 

potential issues that could impact the quality of service. Real-time monitoring tools 

and analytics are employed to proactively manage and optimize network performance. 

If SDN5 and NFV6 approaches SD are not used, controlling the network, the fog 

nodes, and the connections between each node would be difficult when linked to 

heterogeneous devices. 

 
5 Software-Defined Networking 
6 Network Function Virtualization 



8 

 

1.3.4 Placement of Fog Servers 

The placement of fog servers requires careful consideration to ensure optimal 

performance and cost-effectiveness for the area. One approach to reducing 

maintenance costs is to thoroughly assess the capabilities and workload of each server 

node before deployment. Before deploying fog servers, a comprehensive analysis 

should be conducted to understand the specific needs and requirements of the area. 

This analysis can involve evaluating factors such as network traffic patterns, latency 

requirements, data processing demands, and the distribution of edge devices. By 

examining the workload completed by each server node, it becomes possible to 

identify the areas where fog servers would be most beneficial. This assessment helps 

in determining the optimal placement of Fog servers, ensuring that they are 

strategically located to reduce latency and efficiently process data closer to the source. 

Additionally, considering the proximity of Fog servers to edge devices can help 

minimize data transmission delays and enhance real-time processing capabilities. 

Placing Fog servers near areas with high concentrations of edge devices can improve 

response times and reduce network congestion. Furthermore, it is essential to assess 

the scalability and flexibility of Fog server deployments. As the needs of the area 

evolve, Fog servers should be easily adjustable and expandable to accommodate 

changing demands. 

Effective placement of fog servers involves analyzing the workload of server nodes, 

considering network traffic patterns, optimizing proximity to edge devices, and 

ensuring scalability. By carefully considering these factors, it is possible to deploy fog 

servers in a manner that meets the needs of the area while minimizing maintenance 

costs. 

1.3.5 Delay in Computing 

Delays in computing can have significant impacts on the efficiency and performance 

of various services and applications that rely on data processing. One of the primary 

reasons for delays is the aggregation of data. When data from multiple sources is 

collected and combined for processing, it may take time to complete the aggregation 

process, leading to delays in computing. Additionally, resource overuse can 

exacerbate the delay issue. Fog servers, which are responsible for processing data 

locally, may become overloaded with tasks, leading to slower processing times. This 
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resource constraint can hinder the effectiveness of Fog computing services, making 

them less responsive and efficient. To address these challenges and reduce delays in 

computing, it is essential to implement efficient data aggregation techniques. Data 

should be aggregated in a manner that minimizes processing time while ensuring the 

accuracy and integrity of the information. This involves optimizing algorithms and 

strategies for data aggregation to achieve faster processing. 

Furthermore, Fog nodes, which are distributed computing resources, should be 

carefully managed to avoid resource overuse. Scheduling algorithms that prioritize 

critical tasks and consider the mobility of Fog nodes can help distribute the processing 

load more effectively. By using a priority and mobility paradigm in scheduling, fog 

nodes can be dynamically allocated based on their availability and proximity to data 

sources, reducing delays and improving overall performance. Moreover, optimizing 

the communication and networking infrastructure between fog nodes and data sources 

is crucial. Efficient data transmission protocols and network configurations can 

minimize latency and ensure timely data delivery to Fog servers for processing. 

Overall, addressing the delay in computing in fog environments requires a 

comprehensive approach that involves optimizing data aggregation, managing 

resources effectively, and improving communication infrastructure. By doing so, Fog 

computing services can offer faster and more responsive data processing, enhancing 

the overall user experience and system performance. 

1.3.6 Energy Consumption 

In Fog computing settings where multiple fog nodes are used, the distribution of 

computing tasks can result in increased energy consumption. To address this issue, 

reducing energy usage becomes crucial. This can be achieved through various 

strategies, such as employing energy-efficient hardware components, implementing 

dynamic resource allocation techniques, utilizing sleep mode and power management 

features, adopting energy-aware task scheduling algorithms, implementing data 

compression and aggregation methods, monitoring energy consumption, and 

exploring the integration of renewable energy sources. By implementing these 

measures, fog computing environments can minimize energy consumption, improve 

sustainability, and reduce long-term energy costs. 
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Fog computing, while offering numerous benefits, faces challenges in terms of 

network security, privacy, interoperability, resource management, and scalability. 

Network security and privacy concerns arise due to the distributed nature of fog 

computing, necessitating robust security mechanisms and encryption techniques to 

protect sensitive data. The heterogeneity of Fog nodes and edge devices poses 

interoperability challenges, requiring standardization efforts and protocols for 

seamless communication and device management. Resource management and load 

balancing become complex with increasing numbers of devices and applications, 

necessitating dynamic resource provisioning and monitoring. Additionally, scalability 

becomes crucial to handle the growing demands of Fog computing, requiring scalable 

architectures and mechanisms for efficient resource allocation. Addressing these 

issues through effective security measures, interoperability standards, resource 

management techniques, and scalable architectures is essential for the successful 

implementation and operation of Fog computing systems. 

Fog computing offers substantial benefits but also faces several issues. Security is a 

paramount concern as distributing computing resources closer to the edge increases 

the attack surface. Interoperability challenges persist among diverse IoT devices and 

fog nodes, hindering seamless data exchange. Resource allocation and load balancing 

are complex due to dynamic workloads. Privacy issues arise from the vast data 

generated and processed at the edge. Standardization efforts, security protocols, and 

robust management systems are crucial to address these challenges and unlock the full 

potential of fog computing, ensuring it can efficiently support IoT applications while 

safeguarding data and systems. 

1.4 IoT-Based Architectures and Protocols 

IoT-based architectures and protocols are essential components that enable the 

seamless integration and communication of various devices and systems in the IoT 

ecosystem. These architectures and protocols play a crucial role in ensuring efficient 

data exchange, interoperability, and security in IoT applications. 

1.4.1 Three and Five-Layer Architectures 

The IoT is a transformative concept that envisions a network of interconnected 

devices, sensors, and systems communicating and exchanging data to provide 

innovative services and valuable insights. In the realm of IoT architecture, two 
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common frameworks are the Three-Layer Architecture and the Five-Layer 

Architecture. Accordingly, Figure 1.2 shows Three-Layer Architecture comprises the 

Perception Layer, where data is collected from IoT devices and sensors; the Network 

Layer, responsible for facilitating communication between devices and data 

processing systems; and the Application Layer, where data is processed and 

transformed into meaningful insights. On the other hand, the Five-Layer Architecture 

presents a more comprehensive model with the addition of the Middleware Layer, 

which acts as an intermediary for data normalization and transformation, and the 

Business Layer, where business logic and decision-making occur based on insights 

generated from the Application Layer. Both architectures play a crucial role in 

organizing the flow of data and services within the IoT ecosystem, catering to diverse 

use cases and providing a structured framework for the successful implementation of 

IoT solutions. The choice between these architectures depends on the specific 

requirements and complexity of the IoT application at hand. Three-layer design was 

first used in the early stages of this field of study. The perception, network, and 

application layers are its three layers. 

The physical layer, which has sensors for sensing and gathering environmental data, is 

the perception layer. It detects certain physical parameters or locates other intelligent 

objects in the surrounding area. The network layer is in charge of establishing 

connections with other intelligent objects, network components, and servers. 

Additionally, it uses its characteristics to communicate and interpret sensor data. 

The Application layer, delivering application-specific services to the user is the 

responsibility of the application layer. It describes a variety of uses for the IoT, 

including smart homes, smart cities, and smart health. The three-layer design 

encapsulates the core concept of the IoT, however research on IoT frequently focuses 

on its more intricate details, therefore it is insufficient. Because of this, the literature 

has suggested a lot more layered structures. The first is the five-layer architecture, 

which also has layers for processing and business. Perception, transport, processing, 

application, and business layers make up the five layers as shown in Figure 1.2, The 

perception and application layers play the same role as in a three-layer design.  
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Figure 1.2:  Three(A) and Five-Layer(B) Architectures (Lai, 2021) 

The Transport layer, through networks including WiFi7, 3G8, LAN9, Bluetooth, 

RFID10, and NFC11, the transport layer moves sensor data from the perception layer to 

the processing layer and back again. The processing layer, also known as the 

middleware layer, plays a crucial role in a fog computing architecture. This layer 

receives a substantial volume of data from the transport layer and performs various 

tasks such as processing, storing, and analyzing it. It possesses the capability to 

handle and provide a diverse range of services to the lower tiers. The processing layer 

leverages different technologies, including modules for big data processing, cloud 

computing infrastructure, and databases. By utilizing these technologies, the 

processing layer enhances the overall functionality and performance of the fog 

computing system. The business layer oversees the whole IoT system, including all 

applications, revenue streams, and user privacy. 

IoT-based architectures and protocols are pivotal in enabling the seamless operation 

of interconnected devices and systems. These frameworks, including restful APIs, 
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MQTT, and CoAP, facilitate efficient communication and data exchange. They play a 

crucial role in building scalable, interoperable, and secure IoT ecosystems. Selecting 

the appropriate architecture and protocol depends on specific use cases, emphasizing 

the need for careful consideration in implementing IoT solutions that align with 

performance, scalability, and security requirements. 

1.4.2 IoT Device Connectivity: Architectures and Protocols 

The IoT is only able to function properly and transfer data when all of the connected 

devices are online and securely linked to a communications network. Standards and 

protocols for the IoT start to become relevant here. Both IP and non-IP networks can 

be used to link devices that are part of the IoT. IP network connections are highly 

complicated and need an increase in memory as well as power from the IoT devices; 

nevertheless, range is not an issue. On the other hand, non-IP networks have a range 

constraint and need a far lower amount of power and memory than IP networks do. 

1.4.3 IoT Protocol Architecture 

The architecture of the IoT is dependent on the functioning and execution of its 

components in various industries. The IoT is constructed on top of a fundamental 

process flow, which has two main architectures: a 3-layer architecture and a 5-layer 

architecture. 

1.4.4 Layer IoT Architecture 

The most fundamental architecture consists of three distinct layers. It is composed of 

three layers: the perception layer, the network layer, and the application layer 

respectively. The physical layer is known as the perception layer, and it is comprised 

of all of the intelligent sensor-based devices that collect data from their surrounding 

environment. 

The network layer is in charge of establishing connections between the many devices 

and applications that make up the IoT ecosystem. It is comprised of all of the wireless 

and wired communication technologies that are currently available. After that, the 

data is sent to the application layer for processing. 
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It is the responsibility of the application layer to provide the user with services that 

are unique to the program. It describes a variety of applications that may be used to 

implement IoT, including smart homes, smart cities, and health care. 

1.4.5 Five-Layer IoT Architecture 

The three-layer design has been expanded into a five-layer architecture figure 1.3 

shows this by adding two more layers, the processing layer, and the business layer 

respectively. In the 5-layer design, the perception and application layers function in a 

manner that is analogous to the 3-layer architecture. Networking technologies such as 

WiFi, Bluetooth, 3G, RFID, and NFC are utilized by the transport layer to convey the 

sensor data from the perception layer to the processing layer and vice versa. The 

processing layer, also known as the middleware layer, is responsible for storing, 

analyzing, and processing large amounts of data delivered by the transport layer. This 

layer uses a wide variety of technologies, including databases, cloud computing, and 

Big Data processing modules. The whole IoT system, including apps, companies, and 

the privacy of individual users, is managed by the business layer. 

 

Figure 1.3: IoT Architecture (Lai, 2021) 

 

The Transport layer, through networks including WiFi, 3G, LAN , Bluetooth, RFID, 

and NFC, the transport layer moves sensor data from the perception layer to the 

processing layer and back again. IoT architecture can be centralized or decentralized, 
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depending on the application requirements and scale. The design of the architecture 

needs to consider scalability, interoperability, data integrity, and energy efficiency to 

create a robust and reliable IoT ecosystem that can support a wide range of 

applications and services. 

1.4.6 Types of IoT Connections 

When it comes to data communication, an IoT system utilizes one of four distinct 

types of transmission channels. Device-to-device communication, often known as 

D2D12 communication enables devices that are physically adjacent to one another to 

talk to one another via wireless protocols such as Bluetooth, ZigBee, or Z-Wave. By 

the use of a D2D connection, it is possible to create a link even in the absence of a 

network in Figure 1.4. 
 

 

 

Figure 1.4: Types of IoT Connections (Adel, 2020) 

The deployment of an intermediate platform enables communication to occur between 

devices and gateways at each stage of the network. The majority of the time, gateways 

are employed for two distinct functions: first, to collect data from sensors and transmit 

it to the appropriate data system; and second, to evaluate data and transmit it back to 

the device if any problems are discovered while the data is being analyzed. Both of 

these functions are essential to the operation of a gateway. 

 
12Device-to-Device 
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When someone refers to “gateway-to-data systems communication,” they are 

referring to the process in which data is sent from a gateway to the appropriate data 

system. Communication between the many different data systems might take place 

either within a data center or within the cloud itself. For this sort of connection, the 

protocols need to be easy to put into action and uncomplicated to include programs 

that are already in existence. They are required to have high availability, appropriate 

capacity, and trustworthy disaster recovery capabilities. 

 

Figure 1.5: Publish / Subscribe Architecture (Ansari, 2018) 

Figure 1.5 shows MQTT13 Publish / Subscribe Architecture there are two types of IoT 

protocols: Protocols for the network layer: and IoT network protocols that link 

devices requiring medium to high amounts of electricity to the network. With this 

protocol, it is possible to communicate data from one end of the network to the other 

within the network. A few of the most common network protocols for the IoT are 

HTTP14, LoRaWAN15, Bluetooth, and Zigbee. 

 

Data protocols for the IoT: Data protocols for the IoT link low-power IoT devices. 

These protocols are capable of providing end-to-end communication with the 

hardware even in the absence of any Internet connection. Connection in the data 

protocols of the IoT can be accomplished by either a wired or cellular network. 

MQTT, CoAP16, AMQP17, XMPP18, DDS19 are some common IoT data protocols. 

 
13 Message Queuing Telemetry Transport 
14 Hypertext Transfer Protocol 
15 Long Range Wide Area Network 
16 Constrained Application Protocol 
17 Advanced Message Queuing Protocol 
18 Extensible Messaging and Presence Protocol 
19 Data Distribution Service 
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IoT protocols and network standards: There is a wide variety of IoT protocols 

available to cater to a variety of applications and needs. Yet, each has its own set of 

benefits and drawbacks for a variety of IoT use cases. This research work will go 

through some of the IoT protocols that are the most popular overall. 

1.5 Cloud and Fog-Based Architectures 

Recently, there has been a shift toward fog computing, a system architecture in which 

network gateways and sensors perform some of the data processing and analytics. 

Cloud and fog-based architectures are fundamental paradigms in modern computing. 

Cloud computing involves centralized data processing in remote data centers, while 

fog computing disperses computing resources to the edge of the network. Both play 

key roles in supporting a wide range of applications, balancing data processing, and 

enabling scalability in an increasingly interconnected world. 

Cloud and Fog computing architectures are advanced paradigms for distributed 

computing. Cloud computing typically involves centralized data centers for resource-

intensive tasks, while Fog computing extends this concept to the edge of the network, 

closer to end-users and devices. Both offer unique advantages.  

Cloud computing provides scalability, cost-efficiency, and vast resources for data 

processing and storage. Fog computing complements this by enabling low-latency, 

real-time processing and reducing network congestion, making it ideal for 

applications like IoT and autonomous vehicles. These architectures also foster data 

security and privacy concerns, which require careful management. Recent research 

delves into optimizing the integration of Cloud and Fog, ensuring seamless 

coordination between central and edge resources. This involves developing efficient 

data transfer, task offloading, and orchestration techniques. Additionally, AI and 

machine learning are integrated to enhance decision-making processes in these 

architectures, paving the way for more intelligent, context-aware applications in 

diverse domains like healthcare, smart cities, and Industry 4.0. 
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Figure 1.6:  Cloud and Fog-Based Architectures (Gupta, 2016) 

Figure 1.6 shows illustrate Fog architecture’s tiered approach, inserting security, 

monitoring, and pre-processing layers between the physical and transport levels. 

Power, resources, and services are all tracked by the monitoring layer. Filtering, 

processing, and analytics of sensor data are carried out by the pre-processing layer. 

Data replication, dissemination, and storage are just a few of the storage capabilities 

offered by the temporary storage layer. The security layer also assures data integrity 

and privacy and performs encryption and decryption. On the network’s edge, 

monitoring and pre-processing are carried out before data is sent to the cloud. The 

temporary storage layer in fog computing provides various storage capabilities, 

including data replication, dissemination, and storage. It serves as a crucial 

component for managing data within the fog environment. Additionally, the security 

layer plays a vital role in ensuring data integrity and privacy. It performs encryption 

and decryption operations to safeguard sensitive information.  

Cloud and Fog-based architectures offer versatile solutions for diverse computing 

needs. Cloud provides centralized, scalable, and reliable data processing, while fog 

extends computing to the network edge, reducing latency.  
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1.6 Social IoT 

SIoT20 evaluate social interactions between objects in the same manner that social 

relationships between people are considered. SIoT represents the integration of IoT 

technology with social networks and human interactions. It enables smart devices to 

collect and share data, enhancing user experiences, enabling collaborative decision-

making, and fostering a deeper connection between the physical and digital worlds 

through social engagement and data sharing. The three basic components of a SIoT 

system are as follows: 

• One can navigate the SIoT. We can begin with a single device and browse all 

of the devices that are linked to it. New devices are simple to find, 

and services utilize an IoT social network like this. 

• There is a requirement for reliability between gadgets  

• To analyse the social networks of IoT devices, we can use models similar to 

those used for researching human social networks. 
 

SIoT refers to the integration of social networking principles and techniques into the 

IoT paradigm. It combines the power of social interactions and networked devices to 

enhance communication, collaboration, and information sharing among IoT devices 

and users. 

 
20Social Internet of Things. 
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      Figure 1.7:  IOT & FOG Computing (Gupta, 2016) 

In SIoT, devices are considered social entities, and relationships between devices are 

established based on trust, reputation, and user preferences. This social aspect 

enables devices to interact and collaborate in a more intelligent and context-aware 

manner. SIoT offers several benefits. It enables efficient device discovery, where 

devices can be easily found and connected based on their social relationships. It 

promotes information sharing and collaborative decision-making among devices, 

leading to improved efficiency and productivity. Additionally, it enhances user 

experience by providing personalized and socially influenced services. However, 

SIoT also presents challenges such as security and privacy concerns, managing 

complex social networks of devices, and developing appropriate social networking 

models for IoT environments. Overall, the integration of social aspects into the IoT 

ecosystem through SIoT has the potential to revolutionize the way devices interact, 

collaborate, and share information, paving the way for more intelligent and socially 

aware IoT applications in Figure 1.7. 
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Social IoT bridges the gap between the physical and digital realms by connecting 

IoT devices with social interactions. It transforms data sharing, fosters collaborative 

decision-making, and enriches user experiences. By integrating technology with 

human connections, Social IoT has the potential to drive innovation, improve 

communication, and create more personalized and interconnected digital 

ecosystems. 

1.7 Implication of Fog Computing 

Fog Computing is a promising paradigm that complements cloud computing by 

extending computing and storage capabilities to the network edge. This 

methodology focuses on leveraging fog computing to enhance the infrastructure of a 

smart city. Smart cities are urban environments that integrate information and 

communication technologies to optimize the efficiency of various systems, such as 

transportation, energy, waste management, and public services. By utilizing 

advanced technologies and data analytics, smart cities aim to improve the quality of 

life for citizens, enhance sustainability, and enable better resource management. 

The smart city concept opens up a new area to explore and It also brings new 

challenges to implement and design it as a sustainable solution. The smart city has 

great potential for economic growth and lifting the quality of life in cities. As 

increasing numbers of citizens migrate to cities, the demand for services and 

resources continues to increase. The World Bank predicts that over the next two 

decades, India’s urban population will more than double to 33 % of the total 

population. The emerging IoT introduces many challenges that cannot be handled by 

today’s cloud computing. In this research work, we deal with the IoT Environment 

features like low latency, high distribution, large-scale sensor network, mobility 

support, and device heterogeneity. This proposed SMART FOG system allows us to 

create a collaborative environment for IoT networks. In the proposed system, we are 

going to implement a SMART FOG protocol-based technique which will allow Fog 

nodes to share computing and storage power to IoT devices that have low 

computational power within IoT network. The proposed system will be able to 

schedule the tasks assigned to fog node for easy processing and efficient resource 

management. The proposed work is focused on creating a resilient environment 

using SMART FOG which will create trust in fog computing. As fog computing is 
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in its infancy, there are still many open challenges present. The SMART FOG will 

create trust between fog clients and fog environment by providing fault-tolerant and 

secure techniques for fog computing. This research will identify some of these 

challenges and try to find the solution in proposed system. 

Fog computing has attracted by huge number of researchers, so it is a trending topic 

for research. The literature study motivates research in Fog Computing by 

introducing a bright future and application of it. The researchers stated that Fog 

Computing will the how today’s IoT and cloud computing are working. The 

researchers also stated the challenges to be faced in the implementation of Fog 

Computing in real-life applications. Currently, researchers are working on the 

implementation of fog for commercial applications. The challenge for further studies 

and solutions from experts is that we need to keep ourselves updated for online 

publications and updates from OpenFog consortium related to Fog Computing. 

According to author Sheikh (2023), Fog Computing's dynamic nature demands 

innovative solutions for effective task scheduling. Integrating K-Means clustering 

with fuzzy logic, addresses Fog's resource constraints, offering adaptability in task 

allocation. Leveraging machine learning, our methodology optimizes execution 

time, response time, and network usage by intelligently assigning tasks to Fog 

nodes.  

1.8 Fog Computing Task Scheduling 

Fog computing task scheduling refers to the process of efficiently allocating 

computational tasks to fog nodes in a fog computing environment. It plays a crucial 

role in optimizing resource utilization, reducing latency, and improving overall 

system performance. Task scheduling in fog computing involves determining which 

tasks should be executed, where they should be executed, and when they should be 

executed. This decision-making process takes into account various factors such as 

the computational requirements of tasks, the availability and capabilities of fog 

nodes, network conditions, and user requirements. Efficient fog task scheduling 

involves several considerations. These include load balancing, where tasks are 

evenly distributed among fog nodes to avoid overloading or underutilization of 

resources.  
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Proximity-aware scheduling considers the geographic proximity of fog nodes to 

edge devices to minimize communication delays and improve real-time processing 

capabilities. Furthermore, energy-aware task scheduling focuses on optimizing 

energy consumption by intelligently allocating tasks to energy-efficient fog nodes or 

selectively activating certain nodes based on workload requirements.  

Deadline-aware scheduling ensures that tasks with time constraints are scheduled 

promptly, meeting their deadlines. Various scheduling algorithms and techniques are 

employed in fog computing, such as heuristic-based algorithms, optimization 

algorithms, and machine learning-based approaches. These algorithms aim to 

balance the trade-offs between task performance, resource utilization, energy 

efficiency, and other system objectives. 

The study by Aimal (2022) addresses the challenges posed by traditional task 

scheduling methods in Fog computing for latency-critical applications. By 

introducing the "Critical Task First Scheduler", which prioritizes tasks based on 

their nature, particularly focusing on critical tasks with larger MIPs21 sizes, the 

proposed methodology aims to reduce latency, energy consumption, and network 

utilization. Implemented in a healthcare scenario using the Fog simulator, the 

Critical task First Scheduler, scheduler demonstrates superior performance 

compared to First Come First Served, Shortest Job First, and cloud-only approaches. 

Simulation results highlight the efficacy of the Critical task First Scheduler approach 

in enhancing latency, energy efficiency, and network utilization for critical tasks 

 
21 Million Instructions Per Seconds 
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Figure 1.8:  Fog Computing Task Scheduling (Alizadeh, 2020) 

Figure 1.8 shows the following categories can be used to categorize task scheduling 

techniques in a fog computing environment are as follows: 

• Static task scheduling methods 

• Dynamic task scheduling methods 

• Hybrid task scheduling methods 
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Overall, fog computing task scheduling plays a critical role in achieving efficient 

and effective utilization of fog resources. By carefully managing task allocation and 

considering various factors, fog computing systems can provide low-latency, 

energy-efficient, and responsive services to edge devices, enabling a wide range of 

applications in areas such as IoT, real-time analytics, and edge computing. 

1.8.1 Static Scheduling Strategy 

The task requirements must be available to the task scheduler before the initial 

cutting scheduling strategy for static task scheduling approaches to work. Before 

beginning any scheduling procedure, the task scheduler calculates the needs for each 

job. In this case, the tasks are sent to the system without regard to the availability of 

computing resources or the statuses of those resources. The First Come First Serve 

scheduling approach and the round-robin method are the two most popular task-

scheduling techniques in this category. There is different static scheduling strategies 

as follows: 

First Come First Served Method 

The First Come First Serve CPU scheduling algorithm processes jobs in the order 

that they arrive in the ready queue. Newly arrived processes are added to the tail of 

the FIFO queue. The first process in the queue is scheduled first and removed from 

the queue. 

Max Min Method 

Performs a linear transformation on the original data. This technique gets all the 

scaled data in the range (0,1). The formula to achieve this is that Min-max 

normalization preserves the relationships among the original data values. 

Minimum Completion Time Method  

This algorithm locates the task with minimum execution time and allocates the task 

to the resource on a first come first served basis. Severe load imbalance is the major 

issue in this algorithm. It does not consider the resource availability and its load. 
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Opportunistic Load Balancing Method  

Is a static load balancing algorithm. OLB keeps all nodes busy, so don't think about 

previous loads. However, OLB22 does not consider the execution time of the task on 

this node. 

Round Robin Method  

 reduce a multi-class problem to multiple two-class problems by learning one 

classifier for each pair of classes, using only training examples for these two classes, 

and ignoring all others 

Figure 1.9 shows static task scheduling approaches, the task requirements must be 

known to the task scheduler before initiating any scheduling strategy. The scheduler 

calculates the resource needs for each job before the scheduling process begins. 

Consequently, tasks are sent to the system without considering the availability or 

status of computing resources. Within this category, several task-scheduling 

techniques are commonly employed. 

 

Figure 1.9:  Static Scheduling Strategy (Alizadeh, 2020) 

One such method is the First Come First Served approach, where tasks are executed 

in the order they arrive, with no consideration for their resource requirements or 

priorities. Another technique is the round-robin method, which assigns each task a 

fixed time slice for execution in a cyclic manner, regardless of their resource needs. 

Additionally, there are other methods like the Max-Min Method, which allocates 

resources to tasks based on maximum possible resource utilization, and the Min-Min 

Method, which focuses on minimizing the completion time of the smallest tasks. 

 
22 Opportunistic load balancing 
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Furthermore, the Minimum Completion Time Method prioritizes tasks with the 

shortest expected completion times, and the Opportunistic Load Balancing Method 

dynamically allocates resources based on real-time availability and task demands. 

Each method has its advantages and limitations, and the choice of a specific task 

scheduling technique depends on the nature of the tasks, the system's resource 

capabilities, and the desired performance objectives. 

1.8.2 Dynamic Task Scheduling Methods 

Based on the task's arrival at a specific time and the status of the system machine, 

dynamic scheduling methods are created. These techniques might take into account 

a single task at a time or several tasks at once. 

Cross Entropy  

Cross-entropy, also known as logarithmic loss or log loss, is a popular loss function 

used in machine learning to measure the performance of a classification model. 

Namely, it measures the difference between the discovered probability distribution 

of a classification model and the predicted values. As per-word cross-entropy is the 

average number of bits required per word, which has the advantage that you can 

interpret it without knowing. randomly. Perplexity is closely related to per-word 

cross-entropy; it just undoes the log. One advantage is that you can interpret it 

without knowing the base of the log. 

Genetic Algorithm  

The genetic algorithm is a method for solving both constrained and unconstrained 

optimization problems that are based on natural selection, the process that drives 

biological evolution. The genetic algorithm repeatedly modifies a population of 

individual solutions. In computer science and operations research, a genetic 

algorithm GA is a metaheuristic inspired by the process of natural selection that 

belongs to the larger class of evolutionary algorithms EA. Genetic algorithms are 

commonly used to generate high-quality solutions to optimization and search 

problems by relying on biologically inspired operators such as mutation, crossover, 

and selection. Some examples of GA applications include optimizing decision trees 

for better performance, solving sudoku puzzles, hyperparameter optimization, causal 

inference, etc. 
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Immune Algorithm 

The immune algorithm is a new optimization algorithm imitating the immune 

system to solve the multimodal function optimization problem. This paper offers a 

newly modified immune algorithm based on several former immune algorithms and 

shows its ability to solve the multimodal function optimization problem. A digital 

immune system is a software development practice for safeguarding applications 

and services from software bugs and security flaws. 

Particle Swarm Optimization  

An iterative optimization technique that was inspired by the behavior of social 

animals such as birds or fish. It involves a group of particles, or agents, that move 

through a search space and try to find the optimal solution to a given problem. In 

computational science, particle swarm optimization (PSO) is a computational 

method that optimizes a problem by iteratively trying to improve a candidate 

solution concerning a given measure of quality. 

Ant Colony Optimization  

In computer science and operations research, the ant colony optimization algorithm 

is a probabilistic technique for solving computational problems that can be reduced 

to finding good paths through graphs. Artificial ants stand for multi-agent methods 

inspired by the behavior of real ants. The pheromone-based communication of 

biological ants is often the predominant paradigm used. Combinations of artificial 

ants and local search algorithms have become a method of choice for numerous 

optimization tasks involving some sort of graph. 

 

Figure 1.10:  Dynamic Task Scheduling (Alizadeh, 2020) 
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According to Figure 1.10, the dynamic scheduling approach reduces computing 

costs and long-term service latency. It utilized both a double deep Q learning-based 

task scheduling method and the reinforcement learning technique. The allocation of 

user tasks to virtual machines has previously been studied through studies that took 

into account the propagation, waiting, transmission, and execution delays of various 

activities. The experimental findings supported the methodology as superior to the 

existing algorithms. 

 

Figure 1.11: Hybrid Task Scheduling Methods (Wang, 2019) 

The combination of both Static Scheduling Strategy and Dynamic task scheduling is 

shown in Figure 1.11. Static scheduling is a strategy where tasks are assigned to 

resources before program execution and remain fixed during runtime, while dynamic 

task scheduling involves assigning tasks based on real-time conditions and workload 

variations. Static scheduling strategies, such as round-robin or block scheduling, 

provide predictable execution patterns but may not adapt well to dynamic changes. 

On the other hand, dynamic task scheduling strategies, like work-stealing or task 

prioritization, dynamically adjust task assignments to optimize performance, 

considering factors like load balancing and task dependencies. Dynamic scheduling 

offers flexibility but introduces overhead due to runtime decisions and coordination. 
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1.8.3 Hybrid Task Scheduling Methods 

Hybrid task scheduling methods in fog computing combine multiple approaches or 

techniques to optimize task allocation and resource utilization. These methods 

leverage the strengths of different scheduling strategies to address the unique 

challenges and requirements of fog computing environments. 

One common approach is to combine centralized and decentralized scheduling 

techniques. In centralized scheduling, a central controller or orchestrator is 

responsible for making task allocation decisions based on a global view of the 

system. Decentralized scheduling, on the other hand, distributes the task allocation 

decision-making process among fog nodes themselves. Hybrid methods may use a 

combination of both approaches, with the central controller handling high-level task 

allocation decisions and individual fog nodes making local decisions based on their 

local knowledge and resources. 

Another hybrid approach is to combine static and dynamic scheduling. Static 

scheduling involves pre-determining task assignments based on static parameters 

such as task characteristics and node capabilities. Dynamic scheduling, on the other 

hand, adjusts task assignments in real-time based on changing system conditions and 

workload demands. Hybrid methods can utilize static scheduling for long-term task 

allocation planning while incorporating dynamic scheduling to adapt to dynamic 

changes in the system. 

Furthermore, hybrid methods may integrate heuristic algorithms with optimization 

techniques. Heuristic algorithms provide fast and approximate solutions by utilizing 

predefined rules or guidelines. Optimization techniques, such as genetic algorithms 

or particle swarm optimization, aim to find optimal solutions by exploring the search 

space. Hybrid methods leverage the speed and simplicity of heuristics for initial task 

allocation and use optimization techniques to refine and improve the initial 

solutions. Hybrid task scheduling methods in fog computing are designed to strike a 

balance between efficiency, scalability, adaptability, and system performance. By 

combining different scheduling approaches, these methods can effectively handle 

the complexity and variability of fog computing environments, leading to optimized 

task allocation, reduced latency, improved resource utilization, and enhanced overall 

system performance. 
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1.9 Fog Computing Challenges 

Fog computing faces several challenges that need to be addressed for its successful 

implementation and operation. Overcoming the challenges requires collaborative 

efforts from researchers, industry stakeholders, and standardization bodies to 

innovate and develop solutions that maximize resource utilization, enhance security, 

promote interoperability, scale the system, reduce energy consumption, and optimize 

task allocation. By addressing these challenges, fog computing can realize its 

potential in enabling efficient and reliable edge computing solutions for various 

applications. These challenges include:  

1.9.1 Drones 

Drones can be used in ITS23 applications not just as dumb sensors but also as smart 

fog nodes, with external devices like the Raspberry Pi, Intel Edison, and ROCK64 

placed on the top of the drone to aid in traffic monitoring by seeing and locating 

errant cars. Similar to this, a drone can serve as a flying policeman in tele-

surveillance applications, able to identify and apprehend criminals. Therefore, 

further research must be done to determine how drones can be used in a fog 

computing architecture. 

1.9.2 Machine learning 

Applications like ITS, healthcare, and tele-surveillance require real-time data 

processing and speedy replies, which might be given by implementing machine 

learning in fog nodes. To make judgments based on the information gathered from 

the sensors, the fog nodes must be intelligent enough. We are proposing a more 

robust approach that integrates drones with machine learning and extends it to 

capture the misbehaving cars and the driver's face identification. An earlier study 

recommended utilizing machine learning in fog nodes to anticipate busy locations. 

1.9.3 Security and Privacy 

The sensors' limited resources prevent a large computation cryptography approach 

from being used. The current priority is to secure the system and duty of the fog 

nodes to prevent the spread of clouds with harmful packets.  Using the Diffie-

Hellman problem for cryptography regarding the use of hash collision cryptography 

 
23Intelligent Transportation System 
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for traffic security ITS applications that use a light system and fog devices signal 

light. Additionally, fog nodes must confirm the queries made by IoT devices when 

the devices themselves must confirm the security of the fog node. 

1.9.4 Autonomic Fog Management and Connectivity 

To meet the real-time processing needs of ITS, tele-surveillance, and healthcare 

applications, fog devices must be able to control themselves independently. 

Additionally, it poses a problem to maintain a smooth connection between all 

deployed devices in the fog computing architecture because of the expectation that 

they would be diverse. 

Fog computing faces several challenges that require collaborative efforts to address 

and overcome. These challenges include the integration of drones as smart fog nodes 

for applications such as traffic monitoring and tele-surveillance, the implementation 

of machine learning in fog nodes for real-time data processing, ensuring security and 

privacy despite limited sensor resources, and achieving autonomic fog management 

and connectivity for efficient and smooth operations. Overcoming these challenges 

is crucial for realizing the potential of fog computing in enabling efficient edge 

computing solutions for various domains. Further research, innovation, and 

standardization efforts are necessary to tackle these challenges and unlock the full 

capabilities of fog computing. 

1.10 Machine Learning Algorithms 

To avoid imprecise or erroneous predictions, the data collected / generated must go 

through pre-processing, merging, modifying, and learning. the computational 

intensity and speed of a specific technique are two significant characteristics to 

consider while employing ML. techniques. The best algorithm is chosen based on 

the user application and should be fast enough to track changes in the input data and 

provide the desired output in a reasonable amount of time. ML algorithms create a 

mathematical model using sample data, known as "training data," on which to make 

predictions or choices. The training phase of supervised ML classifier development 

involves training a specific classifier from a set of labeled data. As the size of the 

training data increases, so do the classifiers. Some of the most popular ML 

algorithms are detailed further below. 
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1.10.1 Naive Bayes 

Based on Bayes' theorem, a naive Bayes classifier is a probabilistic classifier that 

works by assuming that no pair of features are dependent. Naive Bayes is a simple 

but powerful machine learning algorithm based on Bayes' theorem and the 

assumption of independence between features. Despite its simplicity, Naive Bayes is 

often effective and computationally efficient, so it is often used in a variety of 

classification tasks. It is particularly suitable for text classification and spam 

filtering. 

1.10.2 Logistic Regression  

Logistic regression is a machine learning algorithm commonly used for binary 

classification tasks, where the goal is to predict whether an instance belongs to one 

of two classes. Despite its name, logistic regression is more of a classification 

algorithm than a regression algorithm. Logistic regression is a fundamental machine 

learning algorithm that is widely used in various applications such as medical 

diagnostics, spam detection, and credit scoring due to its simplicity, interpretability, 

and effectiveness. Although it is designed for binary classification, it can be 

extended to handle multiple classes through techniques such as one-vs-rest 

regression and softmax regression. 

1.10.3 Sequential Minimal Optimization 

SMO is a machine learning algorithm designed to train SVMs in supervised 

learning. SVM is used for classification and regression tasks, and SMO is a specific 

algorithm used to efficiently solve the optimization problems associated with 

training these models. Although SMO is an important algorithm for SVM training, 

there are alternative approaches and optimizations to solve SVM problems, such as 

the widely used libsvm library that implements more general optimization 

techniques. Still, understanding SMO provides insight into the support vector 

machine training process. 

1.10.4 Instance-Based Learner 

IBk is a machine learning algorithm used for classification and regression tasks. It is 

part of the family of k-NN¹ algorithms, where the prediction of a new instance is 

based on the majority class for classification or mean for regression of the k-nearest 

neighbors in a function space. The main feature of the IBk algorithm is Instance-
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based learning. This means that no explicit model is created during training. Instead, 

save the training instance and use it to make predictions for new instances. In K-NN 

Predictions for new instances are determined by examining the class labels for 

classification or values for regression of the k-nearest neighbors in the training data 

set. Small values of k give the model that is more flexible and sensitive to noise, and 

large values of k gives the model that is smoother and less sensitive. Regression uses 

the average of the k nearest neighbor target values as the prediction. IBk can be 

computationally expensive, especially for large datasets, as it must calculate the 

distance for each prediction. It is often more efficient when the dataset is small. IBk 

performance can be sensitive to feature scaling. Therefore, it is often recommended 

to normalize or standardize features to obtain a similar scale. IBk is a simple but 

effective algorithm, especially in situations where the decision boundary is complex 

and not easily captured by parametric models. It is widely used in various fields such 

as pattern recognition, classification, and regression. 

1.10.5 K-Star 

K Star was developed in 2009. K Star was originally implemented as part of DiPro 

toolset for generating counterexamples in probabilistic model checking. K. Star A 

directed search algorithm also called K. It Finds the k shortest paths between the 

given pair of vertices in the given directed weighted graph. K Star works on the fly. 

This means that the graph does not have to be made explicitly available and stored in 

main memory. K Star can be also be controlled using a heuristic function. 

1.10.6 Multi Class Classifier 

A multiclass classifier is a type of machine-learning algorithm that can assign 

instances to one of three or more classes. Unlike binary classifiers, which distinguish 

between two classes such as positive or negative, multiclass classifiers handle 

scenarios where there are multiple possible classes. Some of the common Multi 

Class algorithms are Support vector machine, Random Forest, K Nearest 

Neighbours, Neural Networks and Decision Trees. The choice of algorithm often 

depends on factors such as the size and type of the dataset, computational efficiency, 

and the desired interpretability of the model. 
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1.10.7 Random Forest 

A decision tree-based supervised machine learning approach called RF depends on 

values from a random vector that is sampled separately and with the same 

distribution across all of the trees in a forest. By averaging the results, this ensemble 

method lowers over-fitting and bias-related error, leading to superior outcomes. 

Random Forest is a powerful and versatile machine learning algorithm that belongs 

to the ensemble learning category.  

Ensemble learning combines the predictions of multiple models to create a more 

robust and accurate model. Random forests are particularly effective for both 

classification and regression tasks. The main features and characteristics of the 

Random Forest algorithm are: Ensemble of Decision Trees: Random Forest is an 

ensemble of Decision Trees. A decision tree is a discrete model that makes 

predictions based on a series of hierarchical decisions. Random forests create 

multiple decision trees and combine their predictions during the training phase. 

During the training process. Random Forest randomly selects a subset of the training 

data (with permutations) to train each decision tree. This process is called 

bootstrapping. Additionally, at each decision point in the tree, a random subset of 

features is also considered. Random Forest uses a technique called bagging, where 

each decision tree is trained independently on a different subset of the data. The final 

prediction is determined by aggregating the predictions of all trees. By training 

multiple decision trees on different subsets of data and features, random forests 

become more robust and less prone to overfitting compared to a single decision tree. 

Overfitting occurs when a model learns the training data well enough but is unable 

to generalize to new, unseen data. Random Forest provides a measure of feature 

importance.  

Analysing the contribution of each feature across multiple trees can help determine 

which features have the greatest impact on predictions. The training of individual 

decision trees in a random forest can be performed in parallel, resulting in a scalable 

algorithm that can efficiently process large amounts of data. Random forests tend to 

be less sensitive to outliers in a dataset. Because each tree is trained on a subset of 

the data, the impact of outliers is reduced. Random Forest has been implemented in 

various machine learning libraries such as Scikit-Learn in Python, making it highly 

accessible and widely used. 
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1.10.8 Random Tree 

Random Tree is a term often associated with two different machine learning 

algorithms, Random Forest and Highly Randomized Trees Extra Trees. Both 

algorithms fall into the category of ensemble learning and are used for classification 

and regression tasks. Both Random Forest and Extra Trees are powerful algorithms 

that leverage the concept of ensemble learning to improve predictive performance. 

They are widely used in various applications such as classification, regression, and 

feature importance analysis. The choice between random forests and extra trees may 

depend on the specific properties of your data and the desired trade-offs between 

computational efficiency and model accuracy. 

1.10.9 Multi-Layer Perceptron  

It is fully connected dense layers, which transform any input dimension to the 

desired dimension. A multi-layer perception is a neural network that has multiple 

layers. To create a neural network, we combine neurons so that the outputs of some 

neurons are inputs of other neurons. A multi-layer perceptron has one input layer 

and for each input, there is one neuron (or node), it has one output layer with a 

single node for each output and it can have any number of hidden layers and each 

hidden layer can have any number of nodes.  

1.10.10 k-Nearest Neighbors 

The k-nearest neighbor algorithm is a non-parametric, supervised learning classifier, 

which uses proximity to make classifications or predictions about the grouping of an 

individual data point. It is one of the popular and simplest classification and 

regression classifiers used in machine learning today. While the KNN algorithm can 

be used for either regression or classification problems, it is typically used as a 

classification algorithm, working off the assumption that similar points can be found 

near one another. 

1.10.11 Supervised 

Giving training data that has previously been "known" or "labeled" with the proper 

response and consists of N input-output pairs (X,Y) is how supervised learning 

functions. The ANN then generates an output 2 for each unknown X, which is then 

compared against Y using an error cost or distance function. Finally, an iterative 

process is used to minimize this mistake. Image Classification: Training with 
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image/label datasets are examples of supervised learning methods. A new image is 

then presented later with the hope that the computer will pick up on the new object. 

Regression: Giving the system marked historical data so it can forecast the future 

result of an identical circumstance. 

1.10.12 Unsupervised 

Using unsupervised learning methods, it self-organizes and finds hidden patterns in 

unlabeled input data to create neural networks. It can analyse data without sending 

an error signal so that the potential fix can be assessed. Unsupervised learning can 

occasionally be useful since it allows the algorithm to search the past for patterns 

that weren't previously taken into account. Unsupervised learning is necessary 

because manually inspecting huge datasets like those for speech recognition is 

highly expensive. Clustering is a very basic but well-known example of 

unsupervised learning. 

1.10.13 Semi-Supervised 

This category is a hybrid of the previous two. The algorithm is trained on a dataset 

that contains both labeled and unlabeled data. It works by taking enormous amounts 

of input data and labeling only a subset of it as training data. Reinforcement 

learning, a related strategy, provides feedback to guide the computer program in 

interacting with a dynamic environment. In this approach, a model is deployed using 

a small set of labeled samples and a larger set of unlabeled samples. The goal is to 

use labeled data to make predictions about unlabeled data and use the additional 

information to improve model performance. 

1.11 Fog Computing Real-Time Applications 

Fog computing offers significant advantages in real-time applications. It is often 

utilized in IoT applications that need real-time data. It functions as a more advanced 

kind of cloud computing. It serves as a conduit between end users and the cloud. It 

may be utilized in both scenarios—between humans and machines or between 

machines and machines. 

1.11.1 Mobile Big Data Analytics 

Data acquired by IoT devices is gathered in large quantities, making cloud storage 

ineffective. Fog computing, which uses nodes that are considerably closer to end 
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systems than cloud computing, is advantageous in such circumstances. It also gets 

rid of additional issues like delays, traffic, processing speed, delivery time, response 

time, data processing, data storage, and data transportation. IoT applications of the 

future may use fog computing. 

1.11.2 Dams Safety 

Dam sensors transmit data to the cloud, where it is examined and if there are any 

anomalies then officials are notified the issue here is the potentially deadly 

information delay. Fog is utilized to address this, and because it is located close to 

the end systems, it is simpler to send data, evaluate it, and provide immediate 

response. In dam monitoring scenarios, sensors play a vital role in collecting data 

related to dam conditions, such as water level, pressure, temperature, and structural 

integrity. Traditionally, this data was transmitted directly to the cloud for analysis 

and decision-making. To address this challenge, fog-based architecture, also known 

as edge computing, is employed. Fog nodes, placed near the dam sensors, act as 

local processing hubs. These fog nodes receive the data from the sensors and 

perform real-time analysis and anomaly detection locally. By doing so, they 

significantly reduce the data transmission time to the cloud and enable swift 

evaluation of dam conditions. 

1.11.3 Smart Utility Service 

Here, saving time, money, and energy is the major goal. Data analysis must be 

conducted every minute on current data. Since end users are primarily involved, 

cloud computing may not be useful. These programmers daily notify users of which 

appliances utilize the least amount of energy. Fog is an excellent option since IoT 

generates a lot of network traffic that makes it difficult to transfer other data. 

1.11.4 Health Data 

When information needs to be shared between hospitals, strict security, and data 

integrity are requirements. Fog may be used to achieve this because the data is 

conveyed locally. The laboratories may utilize these fog nodes to update the patient's 

lab information, which the adjacent hospitals can simply access. Since any clinician 

may access this unified information, patients do not need to carry hard copies of 

their medical histories or health concerns. 
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1.11.5 Smart Cities 

The idea of a "smart city" has generated a great deal of attention in recent years 

because it promises to improve the quality of life. An urban setting known as a 

"Smart City" is one in which several sectors work together to produce sustainable 

outcomes by analyzing real-time data. Building smart cities presents the problem of 

assuring accuracy and speed in reaction times when assessing the condition of 

infrastructure components like gas and oil pipelines, subways, and roadways. 

Additionally, the enormous amount of data the sensors produce creates problems 

with big data processing. 

1.11.6 Tele-Surveillance 

The concept of placing fog nodes next to CCTV24 cameras at shopping malls and 

railway stations to get data from them to identify hazards like trespassing in security 

zones and gunshots. A video content management system is employed in the fog 

nodes to process and store the footage for the threat detection process. 

Fog computing offers numerous benefits for real-time applications, particularly in 

the context of the IoT. It serves as an advanced form of cloud computing, acting as a 

bridge between end users and the cloud. Fog computing finds relevance in various 

scenarios, including human-machine and machine-machine interactions. Some 

notable real-time applications of fog computing include mobile big data analytics, 

ensuring dam safety through immediate data analysis and response, smart utility 

services for efficient energy consumption, secure health data exchange between 

hospitals, the development of smart cities for sustainable outcomes, and tele-

surveillance systems for threat detection. Fog computing provides advantages such 

as reduced delays, improved processing speed, enhanced data storage and 

transportation, and localized data communication, making it a valuable solution in 

these real-time scenarios. 

  

 
24Closed-Circuit Television 
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A literature review is a critical and comprehensive summary and analysis of existing 

scholarly research and publications relevant to a specific topic or research question. 

Its primary purpose is to provide an overview of the existing knowledge, identify 

research gaps, and establish the context and significance of the new study within the 

academic discourse. By identifying relevant studies, analyzing key findings, and 

synthesizing information from various sources, researchers can develop a well-

supported theoretical framework and justify their research objectives. A well-

conducted literature review showcases the researcher's ability to critically evaluate 

and integrate existing knowledge, laying the foundation for a new study and 

contributing to the advancement of the field. The chapter includes the previous 

studies related to Fog, IoT25, Cloud computing, and machine learning algorithms for 

developing task offloading and resource allocation models.  

2.1 IoT Overview 

According to IEEE26 Communication Magazine, the IoT is a framework that gives 

every object a digital representation and online presence. More precisely, the IoT 

intends to provide brand-new services and applications that connect the real and 

virtual worlds. M2M27 communications serve as the foundational communication for 

interactions between Things and cloud-based applications. Oxford Dictionaries 

provides a summary definition that calls the Internet an element of “IoT the 

interconnection via the Internet of computing devices embedded in everyday objects, 

enabling them to send and receive data”.  

Aalsadie (2022) discussed that billions of physical objects have been connected 

thanks to the development of IoT cloud computing to share and gather data for 

various uses. Despite significant developments, some latency-specific applications 

are still impractical in the real world because of the limitations of current IoT 

devices and the distance between the cloud and IoT devices. Fog computing, which 

makes use of the availability of computing and storage resources at the edge of the 

network close to the IoT devices, has been created to address the difficulties of 

 
25 Internet of Things 
26Institute of Electrical and Electronics Engineers 
27Machine-to-Machine 
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latency-sensitive applications. Fog computing does, however, have several 

drawbacks, including heterogeneity, storage, processing, and memory constraints. 

As a result, it necessitates a suitable job scheduling technique for making the most 

use of computing resources at the Fog layer. This article offers a thorough analysis 

of several job scheduling techniques used in fog computing. It examines and 

contrasts several task scheduling techniques created for a Fog computing 

environment to highlight their benefits and drawbacks.  

Abohamama (2022) says that applications for the IoT are now essential for raising 

living standards. However, the resources of conventional cloud data centers are 

under strain due to the growing volume of data produced by IoT devices. Because of 

this, cloud data centers are unable to meet the needs of IoT applications, especially 

those that demand fast response times. A more contemporary computing model 

called Fog computing brings cloud resources out to the network's edge. Task 

scheduling is still difficult under this computer paradigm, though. For bag-of-tasks 

applications in the cloud-fog environment, a semi-dynamic real-time task scheduling 

technique is presented in this paper. Task scheduling is formulated as an 

optimization issue using permutations in the suggested scheduling technique. For 

each scheduling cycle, a modified version of the genetic algorithm is employed to 

give several permutations for jobs that have arrived. The jobs are then assigned to a 

virtual machine with enough resources to meet the lowest expected execution time, 

in the order determined by the best permutation. According to an optimality analysis 

that was done, the suggested algorithm performs comparably to the best option. In 

terms of make pan, total execution time, failure rate, average delay time, and elapsed 

run time, the suggested method is also contrasted with the first fit, best fit, the 

genetic algorithm, and the bee's life algorithm.  

Atzori, Iera, and Morabito's (2010) comprehensively delve into the intricate 

landscape of the IoT. The authors meticulously dissect the key components of IoT, 

spanning architectures, communication protocols, and diverse application domains. 

Their thorough analysis not only identifies challenges but also sheds light on the 

myriad opportunities within the IoT realm. This work stands as an invaluable 

resource, catering to researchers, practitioners, and policymakers alike, providing a 

holistic understanding of the evolution and impact of IoT. 
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Bandyopadhyay and Sen (2011) focus on the applications of IoT, accentuating 

technological challenges and standardization issues. This work is pivotal in bridging 

the theoretical concepts of IoT with pragmatic considerations, serving as a practical 

guide for industry professionals navigating the intricate landscape of IoT 

implementation and standardization. 

Berman, Cabrera, Jebari, and Marrakchi's (2022) contribution to Patterns introduces 

the innovative "impact universe" framework. This framework serves as a compass 

for assessing and prioritizing public interests in IoT deployments, addressing ethical 

considerations and societal impacts. The work significantly contributes to the 

ongoing discourse on responsible IoT development, offering crucial insights for 

policymakers and industry leaders striving to align IoT innovations with societal 

needs. 

Borodin's (2014) article in Educational Resources and Technologies anticipates the 

transformative potential of IoT in education. By envisioning the integration of IoT 

into educational settings, the author foresees a paradigm shift in how information is 

accessed and disseminated, laying the groundwork for discussions on leveraging IoT 

for educational advancements. 

Bubnova and Kryukova's (2014) work in Economics and Society explores the 

intersection of IoT and customer-centric strategies in modern business practices. 

Focusing on social client-oriented technologies, the authors illuminate the evolving 

dynamics of customer engagement. This article serves as a valuable resource for 

businesses seeking to leverage IoT to enhance customer experiences and adapt to the 

dynamic landscape of market trends. 

The China Internet Watch Team's report (2023) forecasts China's substantial 

investment in the IoT, projecting spending to reach an impressive US$298 billion by 

2026. The comprehensive analysis highlights key IoT market trends in China, 

offering valuable insights into the nation's technological landscape and its strategic 

positioning in the global IoT arena. The report serves as a vital resource for industry 

stakeholders, businesses, and researchers seeking to understand and navigate China's 

dynamic IoT market. 
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Chiang (2016) surveyed various articles on fog and IoT. The authors overviewed the 

research opportunities of Fog Computing. They provide summarized information 

about the opportunities and challenges of Fog, over the networking context of IoT. 

The fundamental challenges discussed are like stringent latency requirements, 

network bandwidth constraints, resource-constrained devices, cyber-physical 

systems, uninterrupted services to the cloud, and security threats etc. 

DeMedeiros, Hendawi, and Alvarez's (2023) survey, published in Sensors, focuses 

on AI-based anomaly detection in IoT and sensor networks. This research critically 

examines the integration of artificial intelligence into anomaly detection systems, 

providing a thorough understanding of current trends and advancements. The survey 

is a valuable reference for researchers and practitioners involved in IoT security, 

offering insights into the evolving landscape of anomaly detection. 

Duarte's (2023) exploration of the number of IoT devices becomes particularly 

relevant in understanding the proliferation of connected devices. As the IoT 

continues to expand, Duarte's work, available on Exploding Topics, offers valuable 

data and insights into the sheer scale and growth of IoT devices. This information is 

crucial for stakeholders, businesses, and policymakers shaping the future trajectory 

of IoT. 

Dubravac and Ratti's (2015) form part of the IoT report series by American 

International Group. The document critically analyzes the trajectory of IoT, 

exploring whether its development represents an evolutionary process or a 

revolutionary shift. This whitepaper is a foundational resource for professionals, 

policymakers, and academics seeking a nuanced understanding of IoT's historical 

development and future implications. 

Guinard, Trifa, Karnouskos, Spiessand Savio's (2010) delve into interacting with the 

Service-Oriented Architecture-based IoT. The study emphasizes aspects like 

discovery, query, selection, and on-demand provisioning of web services in the 

context of IoT. This work is essential for researchers and practitioners involved in 

IoT architecture and service provisioning, providing insights into the fundamental 

principles shaping IoT interactions. 
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Guzuyeva's (2018) contribution in the proceedings of the IV International 

Correspondence Scientific and Practical Conference focuses on the application of 

information technology in large and small businesses. The research explores the role 

of IT in different business scales, offering practical insights into the varied 

applications of technology in contemporary business environments. This work 

serves as a valuable reference for academics, business professionals, and 

policymakers interested in the intersection of information technology and business 

operations. 

Hakan's (2023) focus on bibliometric analysis and scientific mapping of IoT, 

featured in the Journal of Computer Information Systems, contributes to the 

scholarly understanding of IoT research trends. The work employs bibliometric 

techniques to map the landscape of IoT research, offering valuable insights into the 

growth, trends, and focal points of the field. This research is particularly relevant for 

academics, researchers, and institutions seeking to comprehend the current state and 

future directions of IoT research through a quantitative lens. 

Katal (2022) discussed the development of new methods to make cloud operations 

more accessible has increased with the proliferation of IoT devices. The IoT has 

grown over the past ten years as a result of ongoing developments in hardware, 

software, and communication technologies, with a daily increase in the number of 

linked items. The creation of an adequate system architecture capable of processing 

and storing all of the data is required due to the enormous volume of data generated 

by these devices. The separate idea of "Fog computing" and the integrated fog-to-

cloud computing paradigm is particularly important in this regard for decentralizing 

the cloud and bringing services closer to the finished system. Fog computing's main 

objective is to improve common IoT situations by minimizing delays and saving 

traffic by bringing awareness to the entrance point. Fog computing applications 

include real-time requirements, wireless networks, and low-power devices. An 

appropriate Fog computing protocol should be portable, adaptable, and lightweight 

in light of these factors.  

Tzavaras, Mainas, and Petrakis (2023) presented an innovative OpenAPI framework 

designed for the Web of Things. Published in the IoT journal, the paper introduces a 

framework that leverages OpenAPI specifications to enhance the interoperability of 
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Web of Things applications. The authors provide insights into the development and 

implementation of this framework, contributing to the ongoing discourse on 

standardization and interoperability in the IoT domain. 

Uckelmann, Harrison, and Michahelles (2011) propose an architectural approach for 

the future IoT. This seminal work, presented in the book "Architecting the IoT," lays 

out a comprehensive framework for understanding the architecture of IoT systems. 

The authors explore crucial aspects such as communication protocols, data models, 

and system components, providing a foundational resource for researchers, 

practitioners, and educators involved in IoT architecture. 

Van Kranenburg (2014) delivers an open lecture on the IoT, contributing valuable 

insights to the discourse on IoT concepts and applications. This lecture, conducted at 

MEPhI, covers fundamental aspects of IoT, fostering a deeper understanding of the 

technology's implications in various domains. 

Wagan (2022) conducted a comprehensive review focusing on the Internet of 

IoMT28 and converging technologies with real-time applications. Published in the 

Journal of King Saud University – Computer and Information Sciences, the paper 

provides an in-depth exploration of IoMT, offering valuable insights into its 

applications and the integration of trending technologies in the healthcare domain. 

Wang (2013) presented a system framework for security management in enterprise 

systems. Published in Systems and Behavioral Research Science, the research work 

addresses critical aspects of security management, offering a systematic approach to 

enhance the security posture of enterprise systems. The authors contribute valuable 

knowledge to the field of enterprise security. 

Wattics (2011) provides insights into smart metering, emphasizing its role in energy 

management. As a key player in the energy management sector, Wattis offers 

information on smart metering solutions, contributing to the broader understanding 

of technologies aimed at optimizing energy consumption. 

 
28Internet of Medical Things 
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Withers (2023) explores how organizations in the AP29 region can effectively 

harness the power of the IoT. The article, featured in Computer Weekly, provides 

strategic insights and recommendations for APAC businesses aiming to leverage IoT 

technologies for enhanced operations and growth. 

Wu, Sheng, and Zeadally (2013) delve into RFID, examining its opportunities and 

challenges. Published in the book "Next-generation Wireless Technologies," the 

chapter provides a comprehensive overview of RFID technology, shedding light on 

its applications, benefits, and challenges that need to be addressed for widespread 

adoption. 

Xing, Li, Wilamowska-Korsak, and Zhang (2013) presented a comprehensive 

review of Operations Research in service industries. Published in Systems and 

Behavioral Research Science, the paper explores the applications of operation 

research methodologies in optimizing service processes across various industries. 

The authors contribute valuable insights into the role of operation research in 

enhancing operational efficiency in service-oriented sectors. 

Xu (2011) provides a comprehensive exploration of enterprise systems, examining 

their state-of-the-art features and future trends. Published in the IEEE Transactions 

on Industrial Informatics, the paper contributes to the understanding of evolving 

enterprise technologies, making it a valuable resource for researchers and 

professionals in the field. 

Ystgaard (2023) conducted a comprehensive review focused on the theory, 

principles, and design requirements of the human-centric IoT. Published in the 

Journal of Ambient Intelligence and Humanized Computing, the paper emphasizes 

the importance of user-centric design in IoT systems, contributing to the 

development of more inclusive and user-friendly IoT technologies. 

Yudidharma (2023) conducted a systematic literature review, focusing on messaging 

protocols and electronic platforms used in the IoT for building smart homes. 

Published in Procedia Computer Science, the review provides a comprehensive 

overview of the state-of-the-art IoT protocols and platforms for smart home 
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applications. The authors contribute valuable insights into the technological 

landscape shaping smart home development. 

This section describes in detail the different communication protocols used in fog 

computing and makes comparisons between them based on important criteria. The 

explanation of the research difficulties for the communication protocols of fog 

computing serves as its conclusion. 

2.2 Fog and Edge Computing 

Fog and edge computing, helps devices to get faster results by processing the data 

simultaneously received from the devices. Fog computing helps in filtering 

important information from the massive amount of data collected from the device 

and saves it in the cloud by sending the filtered data. 

Ahmad (2021) discussed that the number of people utilizing the Internet has 

increased with the spread of smart gadgets worldwide. The primary goal of the fog 

computing paradigm is to connect a vast array of intelligent objects billions of 

objects to create a bright future for smart cities. Due to the widespread use of smart 

gadgets, it is anticipated that these devices will produce enormous volumes of data 

and transmit that data through the Internet. Fog Computing also refers to an edge-

computing architecture that lessens the problem by implementing knowledge 

discovery at the edges utilizing a data analysis technique. To create a sustainable 

infrastructure for smart cities, the IoT and Fog Computing techniques can cooperate. 

The weighted round-robin scheduling technique is the one the author suggests be 

used to execute the job from one fog node to another fog node and finally to the 

cloud. First, IoT infrastructure for smart cities is designed using a Fog simulator and 

the emergent Fog Computing idea. Then, data gathering and routing are done using 

the spanning-tree routing protocol. The establishment of quick transmission and user 

communication via 5th Generation networks is also envisaged. The effectiveness of 

our suggested method is then assessed in terms of reaction time, latency, and data 

use. 

Bittencourt, Lopes, Petri, and Rana (2015) presented research on P2P, Parallel, Grid, 

Cloud, and Internet Computing, this work is likely to explore virtual machine 

migration in Fog computing. The authors may discuss the challenges and potential 
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benefits associated with migrating virtual machines in Fog computing environments, 

contributing to the understanding of resource management in distributed systems. 

Bose, Aujla, Singh, Kumar, and Cao (2019) investigated the application of 

blockchain as a service for software-defined networks, focusing on potential denial-

of-service attacks. The authors may discuss how blockchain technology can be 

leveraged to enhance the security of software-defined networks and address 

challenges related to denial-of-service attacks. 

Dsouza, Ahn, and Taguinod (2014) introduce a policy-driven security management 

framework for fog computing in their 2014 paper presented at the IEEE 

International Conference on Information Reuse and Integration. The work may 

propose a preliminary framework and provide a case study, contributing valuable 

insights to the development of security management strategies in fog computing 

environments. 

Huang, Yang, and Wang (2017) work is likely centered around secure data access 

control in fog computing for the IoT. The authors may discuss innovative techniques 

such as ciphertext update and computation outsourcing to ensure secure data access, 

particularly crucial in the context of IoT where data privacy is paramount. 

Kumar (2022) says that network's edge, Fog computing provides an integrated key 

to enable communications, data collection, device management, services 

capabilities, storage, and analysis. This makes it possible to install infrastructure that 

is centrally controlled in a highly dispersed setting. The most important uses of Fog 

computing for smart city infrastructure are covered in the current study. The most 

crucial issue arises when operating a large number of IoT-based services in a smart 

city context. To deliver novel services, thousands of smart things, cars, phones, and 

people connect; in this situation, the fog computing infrastructure may be very 

helpful from a data and communication standpoint. Three primary topics are the 

subject of this section 

a) The deployment of data and applications in fog nodes  

b) 5th Generation connectivity leveraging the fog infrastructure 

c) Fog-based data management and analytics 
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These fog computing applications are illustrated with working models from all 

angles. The effective integration of smart city infrastructure has new use cases. An 

increasing interest in smart cities has also been taken into account while presenting 

the difficulties and prospects. 

Martin (2017) discussed the OpenFog security requirements and its approaches. This 

paper provided a security overview of OpenFog architecture and also provided a 

survey on the functional requirements and the technical approaches. This paper aims 

to simulate further dialogue on security in OpenFog and fostering future 

development of novel technologies and practices. 

Mebrek (2017) introduces a solution for the increasing demand for IoT devices 

through the study of the Fog Computing suitability assessment. The authors focus on 

energy consumption and the Quality of Service as two important aspects of the 

performance of Fog computing. Therefore, they present the modeling of these two 

metrics in the fog. The authors expressed the problem as constrained optimization 

and solved it efficiently using Evolutionary Algorithms. The authors stated that their 

approach stands out as an energy-efficient solution. 

Mohamed (2017) says that Unmanned Aerial vehicle-based Fog Computing IoT 

aims to utilize the advantages and features of both technologies to effectively 

support IoT applications. This proposed Unmanned Aerial Vehicle Fog provided fast 

deployment of Fog capabilities at remote or challenging locations to effectively 

support dynamic IoT applications. The authors proposed that Unmanned Aerial 

vehicles equipped with Fog computing capabilities can be used to travel to a specific 

location when needed and remain in that location to support their IoT applications. 

The authors discussed some scenarios for such deployments, their advantages, and 

the issues involved when using the proposed model. 

Naha (2018) surveyed trends, architecture, requirements, and research directions. 

This survey paper is useful to industries and research communities to synthesize and 

identify the requirements for Fog Computing. The authors overviewed Fog 

definition, research trends, and the technical difference between Fog and cloud. The 

authors investigated numerous proposed Fog architectures and discussed the 

components of these architectures. The authors discussed the taxonomy of Fog 
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computing by considering the requirements, as well as authors discussed the 

research gap in resource allocation and scheduling, fault tolerance, simulation tools, 

and Fog-based microservices. Also addressed the limitations of current research 

work, and presented open issues and future direction for Fog computing. 

Pek, Buttyán, and Bencsáth (2013) survey likely provides an extensive overview of 

security issues in hardware virtualization. The authors may cover various security 

challenges associated with hardware virtualization, offering valuable insights into 

securing virtualized environments. 

Pooranian (2017) proposed a distributed Fog-based networked architecture that 

preserves energy in Fog data centers. The authors present a new Internet of 

Everything architecture for Fog centers to implement the resulting Fog of 

Everything technology platform. The authors also present the energy-aware 

algorithm adopt Fog data centers and obtain numerical performance, for a real-world 

case study that shows that their approach saved energy consumption in Fog data 

centers. 

Ren, Zhu, Qi, Wang, and Sangaiah, A.K. (2019) explore identity management and 

access control based on blockchain in edge computing for the industrial IoT. The 

work may discuss how blockchain technology enhances security measures, ensuring 

robust identity management and access control in industrial IoT environments. 

Tao et al. (2019) published a survey of virtual machine management in edge 

computing. The authors may provide a comprehensive overview of challenges, 

techniques, and future directions in the management of virtual machines within the 

context of edge computing. 

Sabireen (2021) discussed that performance, security, latency, and network failure 

are just a few of the problems that integrated cloud computing must contend with as 

IoT applications continue to grow. These problems are solved by bringing cloud 

computing closer to the IoT thanks to the development of fog computing IoT. The 

main purpose of the fog is to deliver the data produced by the edge IoT devices. 

Instead of sending the data to a cloud server, local processing, and data storage are 

carried out at the fog node. When compared to the cloud, fog computing offers high-

quality, quick-response services. Fog computing may thus be the best choice for 
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enabling the IoT to provide a reliable and highly secure service to a large number of 

IoT customers. It enables management of services and resource provisioning outside 

of central control, closer to devices, at the network edge, or eventually at locations 

designated by SLAs30. Fog computing is a prevalent element, not a substitute for 

cloud computing While providing the option to connect with the cloud's data center, 

it permits information processing at the edge. The author presents different 

computing paradigms, fog computing features, an extensive reference architecture of 

fog with its various levels, a thorough analysis of fog with IoT, different fog system 

algorithms, and also systematically examines the challenges in fog computing, 

which serves as a middle layer between IoT sensors or devices and cloud data 

centers. 

Satyakam (2021) says that Fog Computing is sometimes referred to as edge 

computing, which broadens the cloud computing concept while increasing 

productivity and reducing latency. With the help of cloud computing, Fog 

computing is employed to keep up with the steadily expanding demand for IT31-

related services. With the rapid advancement of IT, fog computing is emerging as a 

desirable method for retrieving and transforming data connected to IoT applications. 

This article examines the idea, the architecture, and the use of Fog computing in 

both current and future applications. Fog technology is quite sophisticated and 

diverse. One of the main difficulties in running the research work objective is to 

review recent research on resource distribution in the fog region. The purpose of this 

survey is to understand the use of Fog computing and make some changes to current 

technology.  

Savya (2021) says that for smart manufacturing, Fog computing offers processing, 

storage, and network services. The task requests, terminal equipment, and fog nodes, 

on the other hand, are very heterogeneous in a smart factory. For example, different 

task characteristics of terminal equipment include high real-time demands for fault 

detection tasks, high calculation requirements for production scheduling tasks, high 

storage requirements for inventory management tasks, and so on. The Fog nodes 

also include a variety of processing capabilities, making powerful fog nodes with 
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large computational resources competent to assist terminal equipment in processing 

difficult tasks like factory inspection, defect detection, status analysis of devices, 

and so forth. With the dispersed architecture that Fog computing offers at the 

network's edges, access is low-latency, and application requests are handled more 

quickly. With this increased computational power, new techniques for managing and 

allocating resources may be created to benefit the Fog infrastructure. 

Sood and Mahajan (2017) presented a Wearable IoT sensor-based healthcare system 

designed for identifying and controlling the Chikungunya virus. The work likely 

explores the integration of wearable IoT sensors into healthcare, aiming to enhance 

real-time monitoring and management of viral outbreaks. The authors may discuss 

the technical aspects of the system, potential applications, and the impact on public 

health. 

Syed (2016) discussed a fog computing pattern, contributing to the field of pattern 

languages in programs. Patterns often encapsulate proven solutions to recurring 

problems, and this work may offer insights into common challenges and effective 

solutions within the context of fog computing. 

Wadhwa and Aron (2018) presented at IEEE International Conference on Parallel & 

Distributed Processing, likely offer a comprehensive exploration of Fog computing 

integrated with the IoT. The paper may delve into the architecture, applications, and 

future directions of this integration, shedding light on the evolving landscape of Fog 

computing in conjunction with IoT. 

Yuan and Li (2018) introduced a reliable and lightweight trust computing 

mechanism for IoT edge devices. The authors may discuss how multi-source 

feedback information fusion contributes to enhancing trust in IoT edge devices, 

addressing reliability and security concerns associated with these devices. The 

research is likely to be beneficial for understanding and implementing trust 

mechanisms in IoT edge computing environments. 

Both fog and edge computing aim to process data more efficiently, enabling faster 

response times and reducing the need for long-distance data transmission and 

storage. These technologies will continue to play a crucial role as we move towards 

more interconnected and data-intensive systems. 
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2.3 IoT and Fog Computing Applications 

Popular Fog computing applications include smart grids, smart cities, smart 

buildings, vehicle networks, and software-defined networks. Despite the broad 

utilization of cloud computing, some applications and services still cannot benefit 

from this popular computing paradigm due to inherent problems of cloud computing 

such as unacceptable latency, lack of mobility support, and location awareness. 

Aljumah (2018) discussed Fog Computing related security issues. They stated that 

Fog Computing poses a threat to privacy and security of the data and services. The 

existing security and privacy mechanisms of cloud computing cannot be applied to 

Fog computing due to the distributed structure, mobility, and heterogeneous nature. 

This paper provides an overview of present issues in Fog computing. 

Aljumah and Ahanger (2018) conducted a comprehensive examination of Fog 

computing and its associated security issues, presenting their work at an 

international conference. Reviews, such as theirs, are essential for synthesizing 

existing knowledge and providing valuable insights into the security challenges 

associated with Fog computing. This work is particularly valuable for those seeking 

a consolidated understanding of these issues. 

Alonso (2017) proposed Fog computing using public resource computing and 

storage. Authors introduced the idea to use public-resource computing and storage 

techniques to shift the workload of the cloud. In this idea, the devices work as 

participants, who form a data center between cloud and end devices. The participant 

can be any type of device, from a traditional personal computer to smartphones or 

tablets, etc. The authors simulate the use of participating nodes in video transfer 

applications and their results show that the proposed system can be used to solve the 

bandwidth and computation issue that affects the cloud storage system the author 

concluded that their system is a feasible solution for applications that process or 

store public data. 

Alrawais, Alhothaily, Hu, and Cheng (2017) delve into the intersection of Fog 

computing and the IoT, emphasizing security and privacy issues. Given the 

proliferation of IoT devices and the crucial role of Fog computing in their 

ecosystem, this research likely scrutinizes challenges related to data security and 
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user privacy. The findings are likely to be pertinent for professionals engaged in 

designing and securing IoT systems. 

Alwarafy (2020) presents a comprehensive survey addressing security and privacy 

issues in edge-computing-assisted IoT. Published in the IEEE IoT Journal, their 

work offers a systematic examination of security and privacy concerns in the context 

of edge computing and IoT. The authors provide insights into the current state of 

research and outline potential directions for addressing security challenges in this 

evolving landscape. 

Badidi, and Ragmani (2020) propose an architecture for QoS32fog service 

provisioning, contributing to the optimization of Fog computing resources. 

Published in Procedia Computer Science, their work focuses on enhancing the 

provisioning of services in fog environments while considering QoS requirements. 

The authors offer a detailed architecture and discuss its implications, providing 

valuable insights for researchers and practitioners aiming to improve service quality 

in fog computing. 

Chiang and Zhang (2016) provide an overview of research opportunities at the 

intersection of fog computing and the IoT. Published in the IEEE IoT Journal, their 

work addresses the evolving landscape of research possibilities within the context of 

fog computing and IoT. The authors discuss key challenges, potential applications, 

and future directions, offering valuable insights for researchers and practitioners 

exploring this dynamic field. 

Delfin (2019) explores the emergence of Fog computing as a new era in Cloud 

computing. Presented at the International Conference on Computer, Mathematics, 

and Control, their work contributes to defining the landscape of Fog computing as a 

distinct paradigm. The authors discuss the characteristics and potential applications 

of Fog computing, providing valuable insights for researchers, practitioners, and 

enthusiasts aiming to understand the evolving dynamics of cloud computing. 

Din (2018) Published in IEEE Access in 2018work focuses on trust management 

techniques for the IoT. The study likely offers a survey of existing trust mechanisms, 
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addressing the unique challenges posed by the IoT environment. Trust is crucial in 

IoT systems, and this research is likely to provide valuable insights for ensuring 

secure and reliable IoT deployments. 

Ema (2019) assesses the suitability of integrating Fog computing alongside Cloud 

computing. Contributes to the ongoing discourse on the complementary roles of Fog 

and Cloud computing. The authors discuss the advantages and challenges of using 

Fog computing alongside cloud resources, offering valuable insights for researchers 

and practitioners navigating the integration of these computing paradigms. 

Gandotra and Lall (2020) focus on the evolution of air pollution monitoring systems, 

particularly for green 5thGeneration, transitioning from cloud to edge computing 

their work contributes to the development of environmentally conscious solutions 

for air quality monitoring. The authors discuss the shift from traditional cloud-based 

systems to edge computing, providing valuable insights for researchers and 

practitioners involved in environmental monitoring and the deployment of green 

technologies. 

González-Martínez (2015) presented a comprehensive survey on the intersection of 

cloud computing and education, offering a state-of-the-art analysis. Published in 

Computers & Education, their work is instrumental in understanding the 

transformative impact of cloud technologies on educational practices. The authors 

delve into various facets, from infrastructure to pedagogical approaches, 

contributing a valuable resource for educators, policymakers, and researchers in the 

field. 

Heck (2018) investigates the current status and future trajectories of IoT applications 

within the realms of fog and edge computing. The research work provides a 

roadmap for understanding the evolving landscape of IoT deployment. The authors 

discuss potential applications and challenges, contributing valuable insights for 

researchers, developers, and industry professionals involved in the convergence of 

IoT, fog, and edge computing. 

Henze (2020) addresses the critical issue of data handling requirements in cloud 

storage systems, providing insights into compliance measures. Published in the 

IEEE Transactions on Cloud Computing, their work contributes to the evolving 
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landscape of cloud security. By emphasizing the importance of adhering to data 

handling standards, the authors offer valuable guidance to practitioners and 

researchers navigating the complexities of secure cloud storage. 

Huttunen (2019) explores the synergy of big data, cloud computing, and data science 

in the domains of finance and accounting their work sheds light on the 

transformative impact of cutting-edge technologies in financial practices. The 

authors provide valuable insights into the applications and implications of big data 

and cloud computing in the financial sector. 

Kaur (2020) conducted a systematic literature review addressing security issues 

within the Fog computing environment. Published in the International Journal of 

Wireless Information Networks, their work critically examines the current state of 

security concerns in Fog computing. The authors provide a comprehensive 

overview, identifying challenges and proposing potential solutions, making it a 

valuable resource for researchers and practitioners navigating the security landscape 

of Fog computing. 

Khan (2017) presented a comprehensive review of Fog computing security, focusing 

on current applications and security solutions. Published in the Journal of Cloud 

Computing, their work provides a detailed analysis of security challenges in Fog 

computing environments. The authors explore existing applications and propose 

security solutions, contributing valuable insights for researchers, practitioners, and 

policymakers concerned with the secure implementation of Fog computing 

technologies. 

From the view of Lai (2021) discussed that the application of the IoT and Fog 

computing are essential to the development of smart cities because they allow for the 

administration and interchange of massive amounts of data. The expansion of 

transportation, tourism, industries, as well as business, has been made possible in 

recent years by the two major sectors of Fog computing and the IoT. Therefore, the 

establishment of a smart city will require careful research as well as approaches to 

use technology innovation to increase the city's strengths. Increase the city's power 

on numerous fronts. To address the difficulties of network scalability and large data 

processing, we have explored the advantages of Fog computing in this study using 

an IoT architecture that is integrated with Fog computing. As a result, the IoT 
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system's design is created in a way that allows the smart city to operate more 

effectively through network transmission, information processing, and intelligent 

perceptions. 

Li (2016) provides an overview of the progress and challenges in mobile edge 

computing. Presented at the IEEE Mobile Cloud, their work addresses the dynamic 

landscape of mobile edge computing, discussing advancements and potential 

hurdles. The authors contribute valuable insights into the current state of research 

and development in mobile edge computing, making it a useful resource for 

researchers and practitioners exploring the integration of computing resources at the 

network edge. 

Mao (2017) conducted a survey focusing on mobile edge computing from the 

communication perspective. Published in the IEEE Communications Surveys & 

Tutorials, their work offers a comprehensive analysis of mobile edge computing, 

emphasizing communication aspects. The authors delve into key challenges, 

solutions, and research directions, providing valuable insights for researchers, 

practitioners, and industry professionals involved in mobile edge computing. 

Marbukh (2019) FoNUM33 for the effective management of Fog computing 

resources, the research work contributes to the optimization of resource utilization in 

fog computing environments. The author introduces FoNUM as a framework, 

discussing its implications and potential applications. This work is valuable for 

researchers and practitioners seeking to enhance the efficiency and utility of Fog 

computing resources. 

Matrouk (2021) says that applications for the IoT have emerged as the most 

significant methods in the world for facilitating interactions between people and 

objects to improve quality of life in recent years. Consequently, as more devices are 

employed in these applications, massive volumes of data will be generated. In 2012, 

Cisco put out the concept of Fog computing, which sits in between end users 'IoT 

devices and cloud computing. While Fog computing does not completely replace 

Cloud computing, it does lessen its downsides, increase its efficiency, and offer 

storage and computing capabilities at the edge of the internet. The job is a tiny 
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portion of work that needs to be finished in a certain amount of time. Task 

scheduling becomes difficult in Fog computing because of the varied and scattered 

resources it incorporates. To find the best solution for the NP-hard issue of task 

scheduling, efficient task scheduling techniques must be used. In the preceding 

years, several scheduling algorithms were suggested; most of them were used in 

cloud computing, while a smaller number were used in fog computing. The primary 

current scheduling methods in fog computing are reviewed and analyzed in-depth in 

this study. 

Mebrek (2017) proposes an efficient green solution addressing energy consumption 

and delay considerations in the context of IoT-fog-cloud computing. Presented at the 

IEEE NCA34, their work contributes to the development of environmentally 

sustainable solutions for the integration of IoT, fog, and cloud computing. The 

authors discuss the challenges and benefits of their proposed approach, offering 

insights for researchers and practitioners aiming to enhance the efficiency of energy 

usage in such computing environments. 

Naha (2018) conducted a comprehensive survey examining trends, architectures, 

requirements, and research directions in Fog computing. Published in IEEE Access, 

their work provides an extensive overview of the evolving landscape of Fog 

computing. The authors delve into key aspects, offering insights into trends, 

architectural considerations, and future research directions. This survey is a valuable 

resource for researchers, practitioners, and policymakers interested in the state of 

Fog computing. 

Parikh, Dave, Patel, and Doshi (2019) explore security and privacy issues in cloud, 

fog, and edge computing. This research likely offers a comparative analysis of 

security challenges across these computing paradigms, providing insights into the 

unique considerations for each. As computing architectures continue to evolve, 

understanding the nuanced security and privacy issues is crucial, making this work 

relevant for researchers and practitioners alike. 
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According to Priyadarshinee (2021) by identifying the crucial success criteria in the 

Indian context, the paper offers a two-stage SEM-ANN35 model for the 

establishment of Smart cities using Fog Computing and the IoT. The study offers a 

brand-new element, called fog computing. The IoT is further broken down into three 

independent variables: IoP36, IoS37, and IoE38. A study of 13 smart cities and 379 

respondents was used. ANN39 and SEM40, which quantify both linear and non-linear 

interactions respectively, are used to analyze the data. The results of SEM show that 

Fog computing has significantly benefited from the IoT, IoP, and IoS. The sole 

exception in the study for the direction of future research in this field is that IoE 

hurts Fog computing. IoT was shown to have a significant impact on Fog computing 

in the subsequent layer of ANN analysis using the Structural Equation Modeling 

accepted variables as input Fog computing. IoT was shown to have a significant 

impact on Fog computing in the subsequent layer of ANN analysis using the SEM-

accepted variables as input Fog computing. Results from the Structural Equation 

Modeling and neural network are also compared. 

Sha (2020) conducted a survey examining edge computing-based designs 

specifically addressing security concerns in the IoT. Published in Digital 

Communication and Networks, their work explores the intersection of edge 

computing and IoT security. The authors provide an overview of existing designs, 

shedding light on the current landscape of security solutions for IoT within the 

context of edge computing. 

Stojmenovic and Wen (2014) presented at the Federated Conference on Computer 

Science and Information Systems, introduced the Fog computing paradigm. This 

foundational work likely outlines various scenarios where Fog computing can be 

applied and explores associated security issues. As pioneers in the field, the authors 

contribute key insights into the potential applications and security considerations of 

Fog computing. 

 
35Structural Equation Modeling-Artificial Neural Network 
36Internet of People 
37Internet of Services  
38Internet of Energy 
39Artificial Neural Networks 
40 Structural Equation Modelling 
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Yi (2015) conducted a survey addressing security and privacy issues in Fog 

computing. Presented at the International Conference on Wireless Algorithms, 

Systems, and Applications, their work contributes to understanding the multifaceted 

challenges surrounding security and privacy in Fog computing environments. The 

authors explore existing issues and propose potential solutions, offering valuable 

insights for researchers, practitioners, and policymakers concerned with the secure 

implementation of Fog computing technologies. 

Zhang (2018) provide a comprehensive examination of security and trust issues 

within Fog computing. As Fog computing becomes increasingly integral to network 

architectures, understanding the associated challenges becomes paramount. The 

authors likely explore various dimensions of security concerns, ranging from data 

integrity to trust establishment. The survey format indicates a broad analysis of 

existing literature, offering valuable insights for researchers, practitioners, and 

decision-makers navigating the evolving landscape of Fog computing security. 

The study's findings support the building of additional Smart Cities and assist India's 

government reach its goal of creating 100 SC41 as it moves toward sustainable 

development IoT and Fog computing are revolutionizing industries by connecting 

everyday objects to the internet and processing data closer to the source. They find 

applications in smart cities, healthcare, manufacturing, and agriculture. In smart 

cities, they monitor traffic and enhance public safety. Healthcare benefits from 

remote patient monitoring, while manufacturing gains real-time quality control. 

Agriculture uses IoT for precision farming. These technologies enable real-time data 

analysis and control, transforming the way we live and work by increasing 

efficiency and reducing latency in various sectors. 

2.4 Fog Computing and Smart Cities 

Fog computing is a technology that is rapidly influencing emerging digital 

technologies and applications. There are many challenges in maintaining the data 

through Fog computing technologies, these challenges are mentioned along with 

their security concerns that help for the transition from cloud to Fog 
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Abbas, Shaheen, Elhoseny, Singh, and Majid (2018), introduce a novel approach to 

developing sustainable smart cities using self-regulated agent systems and Fog 

computing. It employs systems thinking to address the complexities of urban 

environments, offering valuable insights into creating intelligent and eco-friendly 

cities. The integration of self-regulated agent systems and Fog computing showcases 

a forward-looking perspective on urban development. 

Ahmed (2019) delivers a thorough examination by presenting a comprehensive 

taxonomy and a set of requirements tailored for Fog computing applications. It 

systematically categorizes various applications and delineates crucial criteria that are 

integral to their successful implementation within Fog computing environments. The 

work serves as a valuable resource for both researchers and practitioners, offering a 

structured guide for navigating the intricate landscape of Fog computing 

applications. With its detailed classification and outlined criteria, the study 

contributes significantly to enhancing the understanding and practical deployment of 

Fog computing technologies. 

Adel (2020) says that the architecture dispersed throughout a region is referred to as 

Fog computing architecture. This architectural arrangement primarily focuses on 

software for the aim of constructing a good network, as well as physical and logical 

network components. Users may communicate flexibly thanks to Fog computing 

architecture, which also makes sure that storage services are kept up to speed for 

handling data. However, it has been noted that the real-time application aspect of 

Fog computing architecture has greatly increased its relevance in the field of 

education. The survey's primary goal is to provide a comprehensive literature 

evaluation of the technology of Fog computing in the IoT system for education. The 

survey also concentrates on assessing the crucial elements that play a significant role 

in the fields of education as well as looking into the limitations and results related to 

the use of Fog computing technologies in educational systems from the perspectives 

of privacy, security, and agility. 

Al-khafajiy, Baker, Asim, Guo, Ranjan, Longo, Puthal, and Taylor (2020) this 

research introduces COMMITMENT, a fog computing trust management approach, 

addressing the critical aspect of trust in distributed environments. The proposed 
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model contributes to enhancing trustworthiness in fog computing systems, making it 

a significant addition to the field of trust management in decentralized computing. 

Alavi, Jiao, Buttlar, and Lajnef (2018) focused on the integration of the IoT in smart 

cities, this paper presents a state-of-the-art review and outlines future trends. It 

provides an extensive overview of IoT-enabled smart cities, offering valuable 

insights into current advancements and potential directions for future development. 

Arcaini, Riccobene, and Scandurra (2015) research work delves into the modeling 

and analysis of MAPE-K42 feedback loops for self-adaptation in software systems. 

By focusing on the MAPE-K feedback loop, the authors provide insights into the 

mechanisms of self-adaptation, contributing to the broader field of autonomic 

computing. 

Atlam, Walters, and Wills (2018) according paper comprehensively explores fog 

computing in conjunction with the IoT. It offers a critical analysis of the role of Fog 

computing in IoT scenarios, highlighting its potential benefits and challenges. The 

work serves as a valuable resource for researchers, practitioners, and policymakers 

interested in the intersection of fog computing and IoT. 

Badraddin (2019) explore the effectiveness of service decomposition in Fog 

computing architecture for the IoT. It investigates how breaking down services in 

Fog computing environments can enhance the efficiency of IoT applications. The 

findings contribute to optimizing the design and deployment of services in Fog 

computing for improved IoT functionality. 

Baouya, Chehida, Bensalem, and Bozga (2020) presented at the Mediterranean 

Conference on Embedded Computing, this paper explores the joint use of Fog 

computing and blockchain for massive IoT deployment. It investigates the synergies 

between Fog computing and blockchain technologies, providing insights into 

potential applications and benefits in large-scale IoT scenarios. 

Bellavista, Berrocal, Corradi, Das, Foschini, and Zanni (2019) they surveyed offers 

an in-depth examination of Fog computing in the context of the IoT. It covers a wide 
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range of topics, including architectures, communication protocols, and application 

domains specific to Fog computing for IoT. The survey is a valuable resource for 

researchers and practitioners seeking a comprehensive understanding of the 

intersection of Fog computing and IoT. 

According to Bonomi (2012), they surveyed that the characteristics of Fog 

Computing make it an appropriate platform for critical IoT services and applications 

like connected cars, smart grids, smart cities, and wireless sensor and actuator 

networks. The author mentioned three main applications that are suitable for the Fog 

computing architecture. First, connected vehicles, where cars are connected to other 

cars and the surrounding environment. Second, smart grid, is an intelligent power 

supply system for widely distributed suppliers and consumers. Third, wireless sensor 

networks, are widely geographically distributed sensors for environment monitoring 

systems. 

Bosman, Lukkien, and Verhoeven (2011)  work focuses on gateway architectures for 

service-oriented application-level gateways. It addresses the challenges and 

considerations in designing gateways that facilitate communication between service-

oriented applications. The research is particularly relevant for those involved in the 

development and optimization of gateway systems. 

Bourque and Fairley's (2014) research work outline the knowledge areas essential 

for software engineering practitioners. As a widely recognized resource, Software 

Engineering Body of Knowledge serves as a guide for educators, professionals, and 

organizations in understanding the key concepts and practices in software 

engineering. 

Brogi, Forti, and Ibrahim (2018) researcher investigates the cost aspects associated 

with deploying fog applications. By addressing the economic considerations of 

deploying applications in Fog computing environments, the authors contribute to the 

understanding of the financial implications and challenges in Fog application 

deployment. 

Cheng (2018) proposed easy programming of IoT services, authors stated the issues 

in current programming models. As per author the most of the existing Fog 

Computing frameworks either lack services programming models or defined 
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programming models based on their own private data model and interfaces. So, the 

openness and interoperability of smart cities are quite limited. To tackle this problem 

authors proposed an approach to design and implement a new Fog Computing 

framework, named Fog Flow, for IoT smart city platforms. The proposed framework 

may allow developers to program elastic IoT services easily over the cloud and 

edges. In this paper to showcase how smart city use cases can be used with Fog 

Flow authors describe different use cases and implement the application for anomaly 

detection of energy consumption in smart cities. 

Dang (2017) addressed the data security and performance issues. For this, the 

authors proposed a Region-based Trust-Aware technique for trust-based 

computation allocation to fog nodes of the region. The authors also proposed 

privacy-aware role-based access control for fog nodes and also developed a mobility 

management service that handles the changes in users and fog device’s locations. 

Ghobaei-Arani (2020) discusses the fundamental difficulty in fog computing is 

scheduling. Tasks that need computational intensity and tasks that require data 

intensity are separated into two categories in a Fog environment. The task execution 

time is shortened because the scheduler migrates the data to the high-productivity 

resource when scheduling jobs that need intensive computation. On the other hand, 

it is tried to minimize the amount of data transfer when scheduling the tasks needing 

data intensity. As a result, data transfer takes less time. 

Hamza and Attila (2020) explore approaches to integrating blockchain with Fog 

computing, addressing the intersection of these two emerging technologies. The 

work provides insights into the challenges and opportunities associated with 

combining blockchain and Fog computing, contributing to the ongoing discourse on 

secure and decentralized systems. 

Hutun, Sariand Austerberg (2019) investigated the security implications of Fog 

computing in the IoT, this paper provides insights into potential security challenges 

and solutions. It contributes to the growing body of knowledge on securing IoT 

ecosystems, particularly in the context of Fog computing. 

Khakimov (2018) discussed the study of Fog Computing Structure. As the authors 

discussed, the growth of mobile traffic, the support of mobility, and geometric 
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distribution are no less important. So, the emergence of Cloud computing for 

centralized storage, retrieval, and management of information, and integration to 

different mobile applications is an important task, for Fog computing is introduced 

by Cisco, which is designed for local processing of tasks on Fog devices. In this 

paper, authors emulated the operations of network nodes under Fog computing 

conditions. 

Kumari (2019) says that current power grid system has to be upgraded since there is 

a rising daily demand for electricity. The contemporary, ICT-based smart grid has 

already taken the place of the conventional electricity system. As the volume, 

velocity, and diversity of the data generated by Singapore's smart meters fluctuate, it 

is difficult to store, handle, and evaluate. Cloud computing, which offers real-time 

response for several applications, is used to store and analyze the data. Fog 

computing is a novel technique that places most of the computer resources near to 

the end users, and has evolved to address the latency issue during data processing. 

To bridge the gap between the processing power of remote data centers and SDs43 in 

SG44 systems, it functions as a bridge between SG and Cloud computing. In the 

forthcoming fifth generation, it is necessary to set up an advanced sensors and 

measurement system with a communication network backbone to address the 

difficulties 5th Generation. To determine the amount of energy needed by smart 

devices at the fog layer, we have addressed the architecture of SG about Fog 

computing in this work. Additionally, the setting of 5thGeneration network 

infrastructure is examined about the communication and computing components. 

The authors investigate the impact of Fog computing on reaction time, transmission 

delay, and energy management expenses for applications with a high sensitivity to 

delays. 

Luigi (2010) considered a seminal work, this survey by Atzori, Iera, and Morabito 

provides a comprehensive overview of the IoT. It covers key aspects such as 

architectures, communication protocols, and application domains, offering a 

foundational understanding of IoT concepts. The survey has been widely cited and 

remains a fundamental reference in the IoT literature. 

 
43Smart Devices 
44Smart Grid 
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According to Qasem (2020), Fog computing is a novel network architecture and 

computing paradigm that performs some processing tasks using user or near-user 

devices (network edge). As a result, it gives cloud computing greater flexibility than 

that offered by ubiquity networks. In this research, a flexible hierarchical Fog 

computing-based smart city is suggested. By utilizing several network designs, 

including Cloud computing, autonomous network architecture, and ubiquitous 

network architecture, the suggested design seeks to solve the drawbacks of the 

earlier methods. In light of this, the suggested method reduces the latency of data 

processing and transmission with allowed real-time applications, distributes the 

processing jobs among edge devices to lower the cost of data processing, and 

enables cooperative data interchange among the applications of the smart city.  

The architecture consists of five primary layers that may be raised or combined 

depending on how much data is processed and sent in a given application. 

Connection layer, real-time processing layer, neighborhood connecting layer, 

primary processing layer, and data server layer are the related layers. Utilizing 

simulating fog computing scenarios, a case study of a unique smart public parking, 

travel, and direction adviser was built, and the findings demonstrated a considerable 

reduction in real-time application latency, as well as cost and network use as 

compared to the Cloud computing paradigm. Additionally, compared to a stationary 

Fog-computing design, the suggested technique does not significantly compromise 

time, cost, or network consumption while increasing the scalability and 

dependability of the users' access. 

According to Songhorabadi (2020), the development of smart cities today, 

particularly in location-aware, latency-sensitive, and security-critical applications 

(like emergency fire events, patient health monitoring, or real-time manufacturing), 

heavily depends on more sophisticated computing paradigms that can meet these 

requirements. Because it is situated closer to the end devices, Fog computing, a 

strong Cloud computing supplement, plays a significant role in this respect. 

However, the methods used in smart cities are typically cloud-based, which limits 

the flexibility and dependability as well as the security and time-sensitive services. 
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This research work suggests a systematic literature review (SLR45) for the cutting-

edge Fog-based technologies in smart cities to circumvent the limits of the cloud and 

other associated computing paradigms, such as edge computing. In addition, a 

proposed taxonomy is divided into three types based on the content of the examined 

studies: service-based, resource-based, and application-based. Additionally, each 

class's evaluation criteria, tools, techniques, merits, and demerits are examined in 

this SLR. Additionally, each class's proposed algorithm types are specified. By 

categorizing future trends and difficulties into useful sub-classes, it is possible to 

give complete and distinct open topics and challenges while also taking into 

consideration different viewpoints. 

Velasco (2018) reviewed distributed and ultra-dense Fog Computing infrastructure, 

which can be allocated at the extreme edge of wired and wireless networks for 

telecom operators to provide multiple unified, cost-effective, and new 5thGeneration 

services, such as Network Function Virtualization, Mobile Edge Computing, and 

services for third parties e.g., smart cities, vertical industries or IoT. The proposed 

architecture consists of three main building blocks: a scalable node that is 

seamlessly integrated into the Telecom infrastructure; a controller, focused on 

service assurance that is integrated into the management and orchestration 

architecture of the Telecom operator, and services running on top of the Telecom 

infrastructure. 

Zhang (2020) discussed building "smart cities" makes extensive use of Fog 

computing and IoT technologies, which has the potential to significantly improve 

the administration and interchange of urban information. Fog computing and the 

IoT, two emerging network technologies, may be utilized to make it simpler to 

create smart cities, which are beneficial for the growth of urban business, industry, 

and other industries as well as tourist and transit management. As a result, the 

creation of a smart city will significantly strengthen the city's capacity for overall 

growth.  
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We examine the benefits of Fog computing and suggest a Fog computing-based IoT 

architecture that successfully addresses the issues of huge data processing and 

network scalability. Based on this, a layered fog computing network architecture is 

suggested to improve the city's functioning through different intelligent perceptions, 

information processing, and network transmission techniques. 

2.5 Resource Allocation and Task Scheduling Technique 

Task scheduling and resource allocation are mandatory parts of cloud computing 

research. The efficiency of resource uses depends on the scheduling and load-

balancing methodologies, rather than the random allocation of resources. Cloud 

computing is widely used for solving complex tasks 

Aazam (2015) discussed a system for supplying resources in a Micro data center 

using fog. This document unequivocally indicates that resources are calculated and 

managed based on variable customer service client relinquish likelihood. Based on 

previously predicted resources from the service provider, this model offers the best 

service possible to its clients. This mechanism is evaluated using the Cloud Sim 

toolkit, and a probabilistic model is utilized to estimate the availability of resources. 

This technique aids in determining the precise number of resources that the client 

will require. Additionally, it decreases resource waste, boosts revenue, and may be 

used in a wide range of cloud service provider scenarios. 

Aazam (2015) provided a method to estimate resources for a Fog-based mini data 

center and created a pricing structure for an IoT. Issues including resource 

estimation, reservations, and pricing strategy for current and potential clients 

depending on their attributes were all tackled in this research work. Using data from 

previous resource usage by cloud service users, resources are allotted to existing 

clients. As a result, resource prediction and pre-allocation are also based on user 

behavior and the likelihood that resources will be used in the future. This method 

makes it simpler for all types of cloud service providers to anticipate how their 

customers will use their resources. 
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Abdul-Qawy (2015) introduces the power of information and communications 

technology ICT46 as it becomes a vital component of our infrastructure that is 

essential to our way of life by enabling the connecting of heterogeneous devices in 

various ways. To mention few, examples include personal computing, sensing, 

surveillance, smart homes, entertainment, transportation, and video streaming. The 

Internet is a vital living system that is continually changing and growing, giving rise 

to new technologies, applications, protocols, and algorithms. As wireless 

communication trends pick up speed, mobile broadband, and Internet access are 

becoming increasingly innovative. Communication devices that don't require 

infrastructure are becoming more common, intelligent, powerful, connectable, 

compact, affordable, and simple to install. This introduces a new direction for ICT 

civilization in the future the IoT. The IoT, formerly known as Machine-to-Machine 

communications, has recently gained prominence in the ICT industry and research 

communities. We present an overview of the IoT paradigm, its concepts, principles, 

and prospective advantages in this article. We concentrate on the key IoT 

technologies, developing protocols, and well-known applications. This introduction 

might be useful for anyone who wants to learn more about the IoT and get involved 

in its development. 

Abomhara (2014) discussed connecting common things, connectivity fosters the 

growth of the IoT. Because even little interactions between these things might 

contribute to collective intelligence in an IoT network, the connectivity of these 

objects is crucial. It makes things compatible with and accessible via networks. By 

connecting smart items and apps, this connection can open up new commercial 

prospects for the IoT. The IoT requires connectivity that goes beyond just attaching 

a Wi-Fi module and calling it a day. Network compatibility and accessibility are 

made possible via connectivity. Accessibility involves joining a network, whereas 

compatibility gives everyone the same capacity to use and create data. If this seems 

familiar, it's probably because Metcalfe's Law applies to the IoT 

 

 
46Information and Communications Technology 
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Attar and Sutagundar (2018) research work provides a survey on resource 

management for fog-enhanced services and applications. It comprehensively reviews 

existing approaches and strategies for managing resources in Fog computing 

environments. The survey serves as a valuable resource for researchers and 

practitioners seeking an overview of the state-of-the-art in fog computing resource 

management. 

Bitam (2018) discussed the better distribution of a set of jobs among all the Fog 

computing nodes and suggested a BLA47. When compared to the genetic algorithm 

and particle swarm optimization algorithms, the suggested approach performs better 

in terms of execution time and memory allocation. However, the suggested 

technique has a low degree of scalability. Additionally, it ignores the dynamic work 

scheduling. Furthermore, the approach has only been evaluated by the BLA, authors 

on tiny datasets, and task execution reaction time is lengthy. 

Chen (2014) discussed the main function of the IoT is data collection from its 

surroundings, which is made possible by the dynamic changes that occur around the 

devices. These devices' states fluctuate dynamically, for instance, whether they are 

sleeping or waking up, connected or not, and in various contexts that include 

temperature, location, and speed. The quantity of devices fluctuates dynamically 

with a person, place, and time in addition to the status of each gadget. Device 

context, such as location and speed, as well as the states of devices, such as sleeping 

and waking up, connected and/or disconnected, also alter dynamically. Additionally, 

the quantity of devices may fluctuate. 

Confais (2017) proposes a first-class object store service for fog facilities. The 

proposed system is built with Scale-out Network Attached Storage 2 system and 

Inter Planetary File System 3, a Bit Torrent-based object store spread throughout the 

fog infrastructure. Authors used Scale-out Network Attached Storage on each site to 

reduce inter-site exchanges that are mandatory for metadata management in Inter 

Planetary File System implementation. This experiment gives direction to improve 

the performance and fault tolerance of Fog. 

 
47Binary Lion Algorithm 
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Edemacu and Bulega (2014) explore the resource sharing between M2M and H2H48 

traffic under a time-controlled scheduling scheme in Long-Term Evolution 

networks. The research addresses the challenges of efficiently allocating resources to 

accommodate both M2M and H2H communications, contributing to enhanced 

network performance. 

As per the research, Giordano (2016) Global Smart City projects are made possible 

by new IoT applications that make use of ubiquity in connection, big data, and 

analytics. With the help of these brand-new apps, users will be able to monitor, 

manage, and control devices remotely as well as extract valuable insights and 

information from huge streams of real-time data. The adoption of new paradigms is 

necessary to support this novel approach. To develop control systems based on the 

decentralization of control functions across distributed autonomous and cooperative 

entities that are operating at the edge of the network, agent technology is integrated 

with the emerging notion of Fog computing in this study. The Rainbow platform 

aims to minimize the computation's distance from the physical component. Using 

adaptive and decentralized algorithms that take advantage of the concepts of 

collective intelligence, multi-agent systems running on top of Rainbow develop 

smart services. 

As per Gu (2015) a methodology for heuristic resource management in fog was put 

forth by the author. For the formulation of this problem, mixed linear programming 

and mixed nonlinear programming serve as the fundamentals. To cut costs in 

Medical Cyber-Physical Systems, they proposed a two-step nonlinear heuristic 

approach. They demonstrated that this method performs better than previous 

algorithms by comparing it to the existing greedy technique. Due to the high 

computing complexity of the mixed integer linear programming model, they used a 

two-phase linear heuristic approach to lower the cost of medical cyber-physical 

systems. 

Hamdoun, Rachedi, and Ghamri-Doudane (2015) the paper introduces an 

interference-aware bipartite graph approach for radio resource sharing in MTC49 

 
48Human-to-Human 
49Machine Type Communication 
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within Long-Term Evolution Advanced Networks. The work addresses the 

challenges of efficient radio resource allocation for MTC applications, contributing 

to improved communication reliability and performance. 

Hassan (2015s) authors focus on the most current research directions in this area to 

highlight the IoT idea in general and discuss the major issues of the IoT ecosystem. 

IoT a new technology that expresses a contemporary wireless communications 

network, may be characterized as an intelligent and interoperable node connected to 

a dynamic global infrastructure network. It also aims to execute the connection 

notion of everything from anywhere at any time. The IoT environment has a wide 

range of challenges that have an impact on their performance. These challenges can 

be categorized into two groups: i) General challenges, like communication, 

heterogeneity, virtualization, and security; and ii) Unique challenges, like WSN50, 

and QoS, which is thought of as a factor that unites both general and special 

challenges. 

As per Heer (2011) is focused on the security problem in IP-based IoT systems. The 

author claimed that the internet serves as the foundation for all device connectivity 

in an IoT system. Security concerns in IP51-based IoT systems are therefore a major 

problem. Additionally, the capabilities and life cycle of every IoT system object 

should be taken into account while designing the security architecture. It also 

incorporates the use of security standards and a trusted third party. It is also desired 

to have a security architecture that can grow to accommodate both small- and large-

scale IoT objects. The study made the point that because the IoT has spawned a new 

kind of cross-network communication between various objects, standard end-to-end 

internet protocols are unable to accommodate this communication. Therefore, to 

assure end-to-end security, new protocols need to be established taking the 

translations at the gateways into account. All communication-related levels have 

their security concerns and needs. As a result, if just one layer's criteria are met, the 

system will be susceptible, hence security needs to be provided for all layers. 

 
50Wireless Sensor Networks 
51Internet Protocol 
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Hoang and Dang (2017) present paper an optimization approach for task scheduling 

in fog-based regions and the cloud. The work addresses the coordination and 

scheduling challenges in distributed fog and cloud environments. Optimizing task 

scheduling enhances resource utilization and performance in fog computing 

architectures. 

Jia, Hu, Zeng, Xu, and Yang (2018) authors present a double-matching resource 

allocation strategy designed for Fog computing networks with a focus on cost 

efficiency. This strategy aims to optimize the allocation of resources to tasks in a 

way that enhances cost-effectiveness. The work contributes to the economic viability 

of fog computing networks. 

Kimovski (2018) introduces an adaptive nature-inspired fog architecture, presenting 

a novel approach to designing Fog computing systems. The architecture draws 

inspiration from natural systems to enhance adaptability and efficiency in fog 

environments. By presenting this innovative perspective, the authors contribute to 

the development of more resilient and self-adapting Fog computing infrastructures. 

Liu (2018) proposed object tracking using fog-based intelligent surveillance in 

public spaces. In this system, Fog computing platform was deployed to accelerate 

the proposed tracking approach. The tracker was constructed to take multiple 

positions’ detections. The detection position was then adjusted as per the optical 

flow of the object and the alternate template was stored with the template update 

mechanism, and all were computed at the fog layer. 

Li, Zhao, Gong, and Zhang (2019) researcher address energy-efficient computation 

offloading and resource allocation in fog computing environments for the Internet of 

Everything. The authors propose strategies to optimize the allocation of resources 

and the offloading of computations, contributing to the energy efficiency of fog-

based Internet of Everything systems. 

Liu, Qi, Zhou, and Wu (2018) the authors propose a task-scheduling algorithm for 

fog computing environments based on classification mining. This algorithm 

leverages data classification techniques to optimize task scheduling in fog 

computing systems. The work addresses the challenge of efficient resource 
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utilization in dynamic fog environments, contributing to the improvement of task 

execution in such settings. 

Liu, Yang, Wang, and Mao (2018) propose a dispersive stable task scheduling 

algorithm designed for heterogeneous fog networks. This algorithm aims to optimize 

task scheduling by considering the diverse characteristics of nodes in heterogeneous 

fog environments. The work contributes to the efficient utilization of resources in 

fog networks with varying capabilities. 

Mohan and Thangavel (2013) focus on resource selection in grid computing 

environments, incorporating trust evaluation using feedback and performance 

metrics. The work addresses the challenges of selecting trustworthy and efficient 

resources in grid environments, contributing to the overall reliability of grid-based 

computing systems. 

Ni, Zhang, Jiang, Yan, and Yu (2017) research work introduces a resource allocation 

strategy for Fog computing based on priced timed Petri nets. This modeling 

approach enables the efficient allocation of resources in fog environments, 

considering both time and cost factors. The strategy contributes to the effective 

utilization of resources in Fog computing architectures. 

Paharia (2018) says that Fog Computing is a protective mechanism against 

Distributed Denial of Service attacks. The authors proposed an architecture to block 

the malicious traffic generated by the Distributed Denial of Service attack from user 

to cloud. Fog functions as a filtering layer for the traffic generated. This study 

primarily works to improve the overall performance of the network and enhances the 

reduction in traffic forwarded to the cloud. 

Pham et al. (2017) research work introduces an innovative and cost-effective 

approach for task scheduling, focusing on collaborative efforts between cloud and 

fog computing. The primary goal is to dynamically allocate tasks in a manner that 

optimizes both cost and performance considerations. By adopting a collaborative 

strategy, the proposed approach enhances resource utilization efficiency and 

improves the overall execution of tasks. This novel method not only addresses the 

challenges of task allocation in a dynamic environment but also contributes to 

achieving a balance between cost-effectiveness and high performance. The 
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integration of cloud and fog computing in task scheduling demonstrates a forward-

thinking solution that can potentially bring about significant advancements in 

optimizing computational resources and task execution efficiency. 

Prakash and Ravichandran (2012) research authors propose an efficient resource 

selection and binding model for job scheduling in grid computing environments. 

This model aims to optimize the allocation of resources for executing jobs, 

contributing to improved efficiency and performance in grid computing systems. 

Rahmani (2015) says that IoT communication is dominated by wireless nodes. Many 

wireless protocols are tuned to utilize less power for functioning, limited 

communication, or increased coverage range due to resource limitations at the 

perception layer. Currently, the sector offers a wide range of various approaches. To 

speed communication with the cloud layer and combine these many wireless 

protocols, the fog layer is in a perfect position. As a result, system reliability is 

increased, security is provided, communications between devices are routed, and the 

administration of sensor and actuator subnetworks is aided. Furthermore, this layer 

enables the compatibility of diverse protocols by detecting and comprehending the 

representation format. Non-IP-based devices may now be seen and reached over the 

Internet thanks to the Fog layer. 

According to Ravi (2016), Fog's architectural design makes it simple to operate and 

communicate with the devices on the platform. The physical layer is the 

foundational component of a Fog computing system. This layer is in charge of 

connecting many tools or devices to a common platform and facilitating information 

flow. There are devices, terminals, sensors, and virtual sensors in the physical layer. 

The nodes of this layer are managed according to their purposes, and sensors in this 

layer are decentralized to detect data from surrounding places faster and 

communicate it to a higher layer of the architecture. The monitor layer, which is the 

second layer in the Fog computing architecture, keeps an eye on resource utilization 

as well as the performance of nodes and sensors. The preprocessing layer, which is 

the next layer in the Fog computing architecture, is in charge of maintaining the 

record data and carrying out information analysis. 
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Saini (2019) says that a worldwide network made up of people, intelligent things, 

smart gadgets, information, and data transformed thanks to the IoT. It goes without 

saying that as more gadgets connect to the internet, the difficulties in protecting the 

information they broadcast and the communications they start grow. IoT device 

usage has increased significantly over the years, mostly in the home and in 

manufacturing. With the former, a whole ecosystem centered on Amazon's Echo 

devices that make use of the Alexa Voice Service has been created. Apple, Google, 

and Microsoft have all done the same. The onus of protecting the devices falls to the 

platform providers because they are separate, closed platforms. We focus on cyber 

security in manufacturing and associated industries in this study. As more and more 

equipment and devices are brought online, sectors including manufacturing, oil and 

gas, refining, pharmaceuticals, food and beverage, water treatment, and many more 

are continually trying to add the necessary levels of security. Manufacturers of 

devices and plant operations managers are under continual pressure to safeguard 

their physical assets from cyber threats. Additionally, there are significant 

differences between each of these businesses' data types, IoT device topologies, 

threat management challenges, and compliance requirements. 

In the research study done by Shalini (2019), paradigm of Cloud computing has 

been advanced or extended by Fog computing. It is a sophisticated distributed 

system that works over the whole network; it keeps data near to the user and speeds 

up information delivery. In this study, the architecture of Fog computing is 

discussed. The various levels are used to describe how Fog computing functions. 

The downsides of Cloud computing and how Fog computing addresses them were 

explored, along with certain obstacles, unresolved problems, and Fog computing 

applications in many sectors. 

Skarlat (2016) provided a method to estimate resources for a Fog-based mini data 

center and created a pricing structure for an IoT. Issues including resource 

estimation, reservations, and pricing strategy for current and potential clients 

depending on their attributes were all tackled in this research work. Using data from 

previous resource usage by cloud service users, resources are allotted to existing 

clients. As a result, resource prediction and pre-allocation are also based on user 

behavior and the likelihood that resources will be used in the future. This method 
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makes it simpler for all types of cloud service providers to anticipate how their 

customers will use their resources CSP52. Fog colonies are small data centers made 

up of a lot of Fog cells. The network may switch from centralized to decentralized 

processing with the help of the Fog colonies, which also facilitate requests from the 

fog cells for resource provisioning tasks. By managing fog cells, Fog orchestration 

manages the Fog colony and offers resource provisioning services via the Fog cloud 

interface. 

Sun and Zhang (2017) present a resource-sharing model based on a repeated game in 

Fog computing environments. The model explores the dynamics of resource sharing 

over time, considering the repeated interactions between nodes. The proposed 

approach contributes to a deeper understanding of resource-sharing dynamics in Fog 

computing systems. 

Wang (2019) proposes to address the issue of terminal devices with constrained 

computational capabilities, excessive energy consumption, and offer a job 

scheduling HH53 algorithm for various fog nodes. The IPSO54 method and the 

IACO55 algorithm is combined in the HH algorithm. MATLAB is used by the 

writers to evaluate their work. Results of the experiment demonstrate that the 

algorithm outperforms IPSO, IACO, and RR56on three performance criteria Make-

span, energy consumption, and reliability. After all, the clustering of tasks and fog 

nodes is not covered by this approach. 

The research study was done by Yin (2018), As an extension of cloud computing, 

Fog computing has been proposed to offer processing, storage, and network service 

at the network edge. If the intermediary layer between the industrial cloud and 

terminal device is taken into account, Fog computing can offer a plethora of 

computational and storage capabilities, such as defect detection and status analysis 

of devices in assembly lines. However, the deployment of novel virtualization 

technologies in the job scheduling and resource management of Fog computing is 

hampered by limited resources and low-latency services. As a result, we create a 

 
52Cloud Service Providers 
53 Hybrid Heuristic 
54Improved Particle Swarm Optimization 
55Improved Ant Colony Optimization 
56Round Robin 
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new work scheduling model by taking containers into account. Then, to guarantee 

task completion on time and maximize the number of concurrent jobs for the Fog 

node, a task scheduling algorithm is built. Finally, by the properties of the 

containers, we suggest a reallocation strategy to decrease task delays. The outcomes 

show that our suggested task scheduling technique and reallocation strategy may 

successfully decrease task delays and increase the number of processes running 

concurrently in Fog nodes. Considers the function of containers in a task scheduling 

paradigm. To increase the number of concurrent jobs for the Fog node and ensure 

that tasks are completed on time, they also created a task scheduling algorithm. 

Additionally, they suggested a reallocation strategy to decrease task latency based 

on the features of the containers. When a job's request is approved, the task 

scheduler distributes it. The work is delivered directly if it can only be finished in 

the cloud or the fog node. The task scheduler will need to choose where to put it as 

long as the cloud and the fog node both successfully execute the task. Low-

computing tasks are carried out at fog nodes, whilst high-computing tasks are sent to 

the cloud. The suggested algorithm and reallocation method shorten task delays and 

increase the efficiency with which Fog nodes use their resources. However, the 

authors overlook the computing time on the cloud, which in a practical scenario 

should be considered. To shorten task execution time, the picture positioning of 

containers is also an important issue that has to be resolved. 

Yin, Luo, and Luo (2018) address task scheduling and resource allocation in Fog 

computing with a focus on containers for smart manufacturing. This work explores 

the use of containerization technology to enhance the efficiency of task scheduling 

and resource allocation in fog environments, specifically in the context of smart 

manufacturing. 

Yang, Wang, Zhang, Chen, Luo, and Zhou (2018) introduced a maximal energy-

efficient task scheduling algorithm tailored for homogeneous fog networks. The 

focus is on optimizing energy consumption in Fog computing environments with 

uniform node characteristics. The proposed algorithm aims to achieve efficient task 

scheduling while minimizing energy usage, contributing to sustainability in Fog 

computing. 
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Yang, Zhao, Zhang, Chen, Luo, and Wang (2018) introduced a delay energy-

balanced task scheduling algorithm designed for homogeneous fog networks. The 

algorithm aims to balance both delay and energy considerations in the scheduling of 

tasks, contributing to improved overall system performance. DEBTS addresses the 

trade-off between latency and energy consumption in fog computing environments. 

Yuan (2017) proposed a fast search and find density peaks-based fog node location 

technique. The authors used a density peaks-based fog node location strategy to 

locate the fog nodes and determine their resources. To locate fog node authors 

treated this problem as a clustering problem with different attributes. To perform 

this, they proposed an improved Fast Search and Find of Density Peaks-based fog 

node location algorithm, which uses time-sensitive features of IoT applications and 

improves the fast search and finds density peaks clustering algorithm to make this 

clustering algorithm more robust and adaptable. 

Zhenqi, Haifeng, Xuefen, and Hongxia (2013) research focus on the uplink 

scheduling algorithm for massive M2M and H2H services in Long-Term Evolution 

networks. The study addresses the specific challenges associated with coordinating 

uplink communications for diverse services, contributing to the optimization of 

network resources. 

The literature review is very promising for future research in Fog Computing and its 

different applications in Smart Cities. In above literature reviewed different proposed 

Fog Computing architectures. The literature also identified challenges like security and 

privacy issues, scheduling, and allocation of resources, etc. These challenges can be 

achieved using research in fog computing, IoT, and traffic congestion through ML57 

revealing the significant impact of ML techniques in addressing traffic-related 

challenges in IoT-based fog computing environments. Fog computing is a 

decentralized architecture that extends Cloud computing capabilities to the edge of 

the network, enabling real-time data processing and reducing latency for IoT 

devices. ML algorithms are leveraged to analyze the massive data generated by IoT 

devices, predict traffic patterns, and optimize traffic flow. The review highlights the 

use of ML-based traffic prediction models, such as time-series forecasting, neural 

 
57 Machine Learning 
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networks, and support vector machines, to accurately predict traffic congestion and 

provide timely information to drivers and transportation authorities. Moreover, the 

integration of fog computing and ML facilitates real-time data analytics and 

decision-making, enabling adaptive traffic management and intelligent resource 

allocation to alleviate congestion and improve overall traffic efficiency. The 

literature demonstrates the potential of Fog computing and ML in transforming 

transportation systems, reducing traffic congestion, and enhancing the overall 

transportation experience in smart cities and urban environments.  
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Research methodology is the systematic and scientific approach used to conduct 

research, investigate problems, and gather data for a specific purpose. It involves 

techniques and procedures to identify, collect, analyze, and interpret data, addressing 

research questions or solving research problems 

3.1 Significance of Research  

Research methodology is the systematic approach to solving research problems, it 

involves selecting appropriate methods for data collection, analysis, and 

interpretation to ensure the validity and reliability of results. Key components 

include defining research questions, conducting literature reviews, choosing 

qualitative, quantitative, or mixed methods, and employing tools like surveys, 

experiments, or case studies. The proper methodology enables rigorous and 

reproducible findings, essential for advancing knowledge in their field. 

Understanding and applying the right methodology is crucial for producing high-

quality, impactful research that withstands academic scrutiny. 

The methodology ensures the research's validity, reliability, and reproducibility. Key 

aspects include selecting tools like surveys, experiments, or case studies, and 

applying statistical or thematic analysis techniques. A well-defined methodology is 

crucial for producing credible, high-quality research that contributes meaningfully to 

the academic field. 

3.2 Research Gaps 

Fog computing has attracted a great number of researchers so, it is a trending topic 

for research. The literature study motivates research in Fog Computing by 

introducing a bright future and its application of it. The researchers stated that Fog 

Computing will show how today's IoT and cloud computing work. The researchers 

also stated the challenges to be faced in the implementation of Fog Computing in 

real-life applications. Currently, researchers are working on the implementation of 

fog for commercial applications. The challenge for further studies and solutions 

from experts is that we need to keep ourselves updated for online publications and 

updates from the Open Fog consortium related to Fog Computing. 

Even though fog computing has emerged as a potential standard paradigm that offers 

services to different IoT and mobile devices at the network edge, there are still many 

https://paperpal.com/blog/academic-writing-guides/what-is-research-methodology
https://paperpal.com/blog/academic-writing-guides/what-is-research-methodology
https://paperpal.com/blog/academic-writing-guides/what-is-research-methodology
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research issues that need to be resolved. Reaching the desired performance level, 

computing resource provisioning in terms of task offloading, and achieving the best 

response time with reduced latency are some examples of research challenges due to 

the heterogeneous nature of fog in terms of node capabilities while residing within 

the IoT domain. 

Fog-Cloud Collaboration is a computing model that uses both fog and cloud 

computing. Fog computing processes data close to the source, reducing latency, 

while cloud computing handles large-scale data storage and processing. Together, 

they provide efficient, flexible data management, enhancing IoT performance, 

improving security, and supporting real-time applications. This collaboration 

optimizes resource usage, offering a scalable, sustainable solution for complex 

computing needs. 

 

 

Figure 3.1: Data Processing Challenges at Cloud Data Center (Deafallah, 2022) 

Figure 3.1 shows cloud data centers encounter several significant challenges in data 

processing due to the vast scale and complexity of their operations. Managing and 

processing big data from various sources requires robust distributed storage systems 

and parallel processing capabilities. Data security and privacy are crucial concerns, 

necessitating stringent access controls, encryption, and compliance with privacy 

regulations. Latency and network congestion can impact data processing 
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performance, motivating the use of content delivery networks and edge computing 

strategies. Scalability, resource allocation, energy efficiency, data backup, and 

disaster recovery planning are essential for maintaining optimal performance. 

Moreover, addressing data processing bottlenecks, handling heterogeneous data 

formats, complying with data privacy regulations from multiple jurisdictions, and 

enabling real-time data processing pose additional challenges. Cloud data centers 

continuously innovate and leverage advanced technologies to overcome these 

challenges, ensuring efficient and reliable data processing services for their users. 

3.3 Problem Statement  

Our research aims to understand the importance of cloud computing and fog 

computing. Fog computing solves problems like delay in response, insufficient 

bandwidth, no immediate response, security, and reduces the latency issue of cloud 

computing. The central problem focuses on: 

“Smart Fog is a Collaborative Approach to Share Computational Power of Fog 

Devices for Fog Computing in Smart City IoT Network” 

The research work studies the level of computational work, latency issue, and the 

efficiency of fog computational devices over various parameters like processing 

speed, scheduling, and task allocation in the fog layer, using fog computing and 

Machine Learning algorithms to reduce the problem and find trends, issue, 

challenges, suggestion, and future potential of computing problem in Fog 

Computing environment will share computational power to IoT devices with low 

computational power. Overall, the research work finds the use of fog computing 

networks to solve the future journey. 

3.4 Objectives 

The objectives of the research are clearly defined goals that guide the study, 

focusing on specific outcomes to be achieved. They include exploring new areas, 

describing phenomena, explaining relationships, predicting future events, and 

applying findings to solve real-world problems. Research objectives are specific 

goals that guide the focus and outcomes of a study. These objectives can vary widely 

but generally include exploration, description, explanation, prediction, application, 

evaluation, theory development, action, documentation, and innovation. These 
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objectives ensure that the research remains focused, relevant, and systematic. They 

also help in evaluating the success and impact of the study. The purpose of this 

research work is to propose a “SMART FOG” protocol based on a technique to 

connect FOG computational devices which enables devices to share their resources 

within the Fog network and reduces the latency issue of cloud computing.  

1. To study IoT-based architectures and protocols for understanding the 

connectivity between IoT devices.  

 

2. Analyse the current IoT infrastructure and evaluate various layers of 

communication protocols to design the SMART FOG Protocol-based 

technique.  

 

3. Exploring the challenges to be faced in implementing the SMART FOG 

protocol-based technique on computation-enabled devices.  

 

4. To explore the task scheduling and allocation techniques for Fog 

Computing nodes in SMART FOG.  

 

5. Determine the fault tolerance mechanism in SMART FOG protocol-

based technique by allocating tasks to multiple recipients.  

 

6. Discover the efficiency of fog computational devices over various 

parameters like processing speed, scheduling, and task allocation in fog 

layer. 

Our research work focuses on the above-stated objective which aims to use the 

computational power of computation-enabled devices to collaboratively perform 

tasks and speed up the processing. 

3.5 Hypothesis 

The hypothesis is nothing but a tentative statement to predict the expected outcomes 

of a study. Defining hypothesis helps in designing new experiments and 

observations. The following hypotheses were tested for the system in the proposed 

research work.  

This hypothesis is subdivided into H01 to H06 to explore the efficiency and various 

measures of the Smart Fog protocol-based system compared to cloud-based systems, 

aiming to comprehensively evaluate their impact and effectiveness. The sub 

hypothesis from Ha1 to Ha6 are as follows: 
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1. H01: There is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure 

execution time. 

2 H02: There is no significant difference between SMART FOG protocol-

based System and cloud-based system based on the performance measure 

latency. 

 

3 H03: There is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure 

energy consumed. 

4 H04: There is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure 

cost of execution. 

5 H05: There is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure of 

total network usage. 

6 H06: There is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure 

computational power consumed. 

Dividing the main hypothesis into these sub-hypotheses enables researchers to 

methodically investigate different facets of the Smart Fog protocol-based system and 

compare its efficiency and performance against a cloud-based counterpart. This 

methodical approach facilitates a thorough assessment of Fog Computing 

technology and its potential benefits in comparison to traditional cloud solutions 

within IoT environments. 
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3.6 Scope of Study 

As studying about advances in new computational paradigm and the use of cloud 

computing and IoT have great futuristic applications. This emerging IoT introduces 

many challenges which cannot be handled by today’s cloud computing. In this 

research work we deal with the IoT Environment features like low latency, high 

distribution, large-scale sensor network, and mobility support and device 

heterogeneity. This proposed SMART FOG system allows us to create a 

collaborative environment for IoT network. In the proposed system, we are going to 

implement SMART FOG protocol-based technique which will allow Fog nodes to 

share computing and storage power to IoT devices that have low computational 

power within IoT network. The proposed system will be able to schedule the tasks 

assigned to fog node for easy processing and efficient resource management. The 

proposed work is focused on creating a resilient environment using SMART FOG 

which will create trust in fog computing. As fog computing is in its infancy, there 

are still many open challenges are present. The SMART FOG will create trust 

between fog clients and fog environment by providing fault-tolerant and secure 

technique for fog computing. This research will identify some of these challenges 

and try to find a solution in the proposed system. 

3.7 Research Methodology 

The research methodology deals with the hypothesis which is the outcome of the 

objectives with the results. The proposed study attempts to implement SMART 

FOG, a collaborative approach using Fog Computing. The research involves 

quantitative and qualitative approaches. The SMART FOG collaboratively used 

computational power and storage of devices connected within Fog layer. The fog 

layer acts as an intermediate between IoT networks and Cloud centers. In this 

research, we have identified different open challenges in fog computing and tried to 

resolve some of them using SMART FOG. The hypothesis is nothing but a tentative 

statement to predict the expected outcomes of a study. Defining hypotheses helps in 

designing new experiments and observations. The following hypothesis is being 

tested for the system in the proposed research work. The hypothesis has arrived at 

the expected outcome of the system. “SMART FOG protocol-based technique to 

create Fog Computing environment will share computational power to IoT devices 

with low computational power”. 
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3.7.1 Sources of Information 

Information is gathered from journals, articles, and publications about fog 

computing are the main sources of information. The OpenFog consortium provided 

white papers which are very useful as the main source of information. The OpenFog 

community provided papers on the taxonomy of Fog Computing, basic architectural 

design, and structure of fog computing and their multiple layers of implementation. 

For further information, various articles from industrial experts who are connected 

to Fog Computing will act as a lighthouse in the dark. 

3.7.2 Data Collection  

The universe for the present study is comprised of smart city applications, all 

peoples within a smart city, and cloud centers. The universe also includes the 

devices within the IoT network, fog devices, etc. The smart city sample application 

is being randomly selected to implement SMART FOG and the overall performance 

and efficiency are being evaluated.  

As per the SMART FOG applications, the IoT network generates some amount of 

data using sensors that are being used in computing and to test the performance of 

SMART FOG. The data generated in this research work is application-oriented. If 

we consider security surveillance applications for smart cities then the data is 

collected of images of events, video streams collected from cameras, and being used 

for further applications. The main input to the proposed system is requests from IoT 

devices for shared computational power. 

Cloud -Fog Simulators for Data Collection 

The primary goal of the research work is to examine and find the technologies 

associated with the SMART FOG project. To find new emerging technologies that 

can impact the cloud system in SMART FOG computing and also improve the 

reliability of Predictive models based on Artificial Intelligence and Machine 

Learning Algorithms is being developed to resolve computing problems. 

iFogSim Simulators 

Many available simulators can simulate the scenarios of cloud-fog computing 

environments such as EdgeCloudSim, MobIoTSim, SimpleIoTSimulator, IBM 

BlueMix, Google IoT Sim, and EmuFog. Most of the available simulators are 
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similar in their functionalities, programming language, or architecture. Therefore, 

we limited our study to only eight main simulators. The simulators are analyzed both 

from theoretical and practical perspectives. In theoretical comparisons, all eight 

simulators (iFogSim, iFogSim2, FogNetSim++, EdgeCloudSim, FogComputingSim, 

PureEdgeSim, YAFS, and LEAF) are compared based on their technical and non-

technical characteristics, whereas for practical comparison use iFogSim, are in terms 

of their execution time, memory usage, and CPU consumption for simulating 

different applications under varying complexities. 

 

Figure 3.2: iFogSim Architecture (Muhammad, 2023) 

The iFogSimToolkit provides a platform for modeling and simulation of resource 

management techniques in edge, Fog computing, and cloud environments. A newer 

version of iFogSim, adds distributed clustering, mobility, and microservices 

management as new features. Furthermore, it includes new example scenarios to 

validate and demonstrate their extension for the iFogSim. the architecture used by 

iFogSim is shown in Figure 3.2. 

Due to the IoT revolution, almost everything is becoming a source for data 

generation. As a result, a tremendous amount of data is generated every second. 

Huge amount of data processed on workstations. typical data sources include 

mobiles, various types of sensors and actuators including thermostats, engines of 

airplanes, factories, mobiles, computers, automobiles such as driverless cars, metros, 

human health data, smart devices such as Google Home, Alexa Echo Dots, smart 

homes, smart shoes, watches, and, in general, all wearables, etc., and the number of 

items on the list increases all of the time. These data need to be pre-processed before 
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something useful can be derived from them because only some of the generated data 

are relevant or useful. This section will look at the various sources from which data 

is generated. 

3.7.3 Through Participation in Conference and Paper Published  

To collect insight into the subject and dive deeper into the details of fog computing, 

Cloud Computing, Artificial Intelligence, and Machine Learning algorithms 

following conferences were attended.   

a) International Virtual Conference “Emerging Era of Applications of 

Computer: The Survey on Fog Computing and its Applications” on 15th 

-16th of January 2022 Organized by Pacific University Udaipur. 

 

b) “Use of Clustering Machine Learning Algorithms in Fog Computing for 

Task Scheduling and Resource Allocation” has been published in 

European Chemical Bulletin (ISSN: 2063-5346), Volume 11, Issue 8, 

2022 Date of Publication: - August 2022. 

 

c) National Seminar on “Implementation of Academic Bank of Credit 

(ABC) in Higher Education Institutes” on 21st March 2023 Organized by 

Avinashilingam Institute for Home Science and Higher Education for 

Women University Udaipur. 

 

d) IP Awareness Training Program under “National Intellectual Property 

Awareness Mission” Organized by Intellectual Property Office, India on 

18, January 2023. 

 

e) “A Comparative Study of Various Classification Machine Learning 

Algorithms in Fog Computing: Task Scheduling” has been published in 

Industrial Engineering Journal (ISSN 0970-2555), Volume: 52, Issue 5, 

No. UGC Care Approved, Group I, Peer Reviewed Journal 4, May: 2023. 

I am grateful to all Conference Organizers and my fellow presenters and researchers 

who not only provided me with the platform to showcase my talent but also helped 

me with rich technical experience by actively participating in a conference to collect 

data. These gatherings have provided me the stage for scholarly exchange which 

helped me a lot in coming out with Machine learning solutions for traffic congestion 

problems. 
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3.7.4 Performance Evaluation  

The performance of the developed machine learning predictive model is analyzed 

using various performance measures such as prediction accuracy, incorrectly 

classified instances, kappa score, and various confusion matrix parameters such as 

true positive rate, false positive rate, precision, recall, and F1-score. Compare the 

performance of the model with existing traffic prediction models and assess its 

effectiveness in predicting traffic congestion and optimizing transportation systems. 

3.7.5 Machine Learning Predictive Model Development 

Designed and developed a machine learning predictive model for smart fog systems 

using the gathered data and insights from the literature review. Utilize appropriate 

machine learning algorithms such as regression, Random Forest, Random Tree, 

Bayes net, naïve Bays, SMO, IBK, Logistic Regression, K-Star, and Multiclass 

classifier in addressing cloud issues. 

3.8 Tools and Technique  

A method known as SMART FOG uses nearby fog nodes to complete tasks to 

utilize cloud centers less frequently and with less delay. Therefore, to put this system 

into place, firstly build an IoT network and cloud application that can handle 

requests from the IoT network and store the data on servers. After that, an interface 

protocol is created to essentially connect the cloud and Internet of Things network 

and process requests that he can process rather than sending them to the cloud. 

Finally, the IoT network receives the results.  

In the proposed system, the requesting IoT device can use the publish method to 

submit a request to the closest fog devices, and the nearest fog device that is 

available will accept the request and subscribe to share computing power. A few 

further security precautions are required and are being implemented in SMART 

FOG to safeguard the connection to prevent attacks like Man-In-the-Middle or 

identity theft. 

Fog computing requires various tools, techniques, and algorithms to optimize data 

processing and management close to the network edge. Key components include 

Network Management Software-defined networking tools that optimize traffic 

routing and resource allocation. Virtualization technology tools like Docker deploy 
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applications in isolated environments efficiently Data Analytics Real-time analytics 

tools, such as Apache Kafka and Apache Storm, process data streams at the fog 

layer, Weka 3.8.6. Machine Learning Algorithms like decision trees, K-Nearest 

Neighbor, Logistic regression, K-Star, IBK, J48, Bagging, MLP clustering, and 

neural networks analyze and predict data trends locally, and Resource Management 

Algorithms include load balancing and task scheduling algorithms to optimize 

resource utilization and performance. These tools and techniques collectively 

enhance the efficiency, scalability, and security of fog computing systems. 

To evaluate the performance and effectiveness of the smart fog systems, various 

metrics and statistical methods were employed. Percentage analysis, measures of 

central tendency, measures of dispersion, cumulative frequency, correlation 

coefficient, and regression analysis were used to analyze the collected mining data. 

Hypothesis testing was performed using the Chi-Square test. The study involved the 

simulation of data and model building, utilizing multiple regression analysis. A 

conceptual model based on regression was developed to examine the significance of 

different technologies. Additionally, the study aimed to assess the usefulness of loT, 

Artificial Intelligence, and Machine Learning-based models in addressing 

commuting problems. The Weka tool and Python were used for simulation and 

predictive analysis. Overall, the study employed a research design that combined 

qualitative and quantitative research approaches. The qualitative nature of the study 

facilitated the exploration of various concepts and ideas, leading to findings and 

recommendations for improving fog computation.  

3.8.1 Weka Tools Techniques  

The Weka Experimenter is a tool within the Weka software package that allows 

users to design, run, and analyze machine learning experiments systematically. It is 

particularly useful for comparing multiple machine learning algorithms and 

configurations on various datasets, helping researchers and practitioners make 

informed decisions about which algorithms work best for their specific tasks. Here’s 

a more detailed explanation of the Weka Experimenter’s key features and 

functionalities. 
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Experiment Design: The Experimenter allows users to design experiments by 

specifying different machine learning algorithms, datasets, and evaluation metrics. 

Users can choose from a wide range of classification, regression, and clustering. 

Algorithms available in Weka. They can also select multiple datasets to test the 

algorithms’ performance across different data domains. 

Parameter Sweeping: Users can explore the effect of different parameter settings 

on the performance of machine learning algorithms. The Experimenter enables 

parameter sweeping, where users can specify a range of values for certain 

parameters of the algorithms. The Experimenter then systematically runs 

experiments with different parameter combinations to find the optimal settings. 

Cross-Validation and Evaluation Metrics: The Experimenter supports various 

techniques for evaluating machine learning models, including cross-validation (k-

fold cross-validation, leave-one-out cross-validation, etc.). Users can select different 

evaluation metrics such as accuracy, precision, recall, F1-score, and others to assess 

the performance of the algorithms. 

Batch Execution: The Experimenter can run experiments in batch mode, allowing 

users to schedule multiple experiments to run sequentially or concurrently. This 

feature is particularly useful for running large-scale experiments overnight or on 

computing clusters. 

Result Analysis and Comparison: After the experiments are completed, the 

Experimenter provides detailed summary reports and visualizations of the results. 

Users can compare the performance of different algorithms on various datasets using 

statistical tests and visualizations like charts and graphs. This comparative analysis 

helps users identify the best-performing algorithms and configurations for their 

specific problem domains. 

Reproducibility: The Experimenter ensures the reproducibility of experiments by 

allowing users to save the experiment configurations and results. Researchers can 

share these configurations and results with others, making it easier to validate and 

replicate experiments. 
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Integration with Other Weka Tools: The Experimenter seamlessly integrates with 

other Weka tools and interfaces, allowing users to utilize preprocessing techniques, 

attribute selection methods, and various machine learning algorithms available in 

Weka. 

The Weka Experimenter provides a user-friendly environment for designing, and 

running. And analyzing machine learning experiments. Its capabilities make it a 

valuable tool for researchers and practitioners who want to systematically evaluate 

and compare different machine-learning algorithms and configurations on multiple 

datasets. Some key tools and techniques available in Weka Explorer include: 

• Preprocessing Tools 

• Classification Algorithms 

• Clustering Algorithms 

• Attribute Selection 

• Evaluation Techniques  

• Visualization Tools 

 

 

 

Figure 3.3: Weka Tool K-Star 

Figure 3.3 shows the preprocessing tool in Weka applied to This interface includes 

details about the number of instances, number of attributes, relation, selected 

attribute tab, etc. In the present scenario, the details of the Time attribute are shown 

in the selected attributes tab. 
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3.8.2 Experimental Setup 

CCTV applications process data recorded by cameras deployed at STL58. The source 

task, located at the STL, sends 10 Mbps of video data to a processing task that 

requires 30,000 MIPS and is responsible for traffic monitoring, enforcing traffic 

laws, and automatic incident detection. The 200 kbit/s of resulting data are sent to 

the sink task located in the cloud for further analysis and storage. 16 of these 

applications are running in our scenario, one for each STL. 

Although the computational and network load required by the CCTV applications is 

constant during the entire simulation, the reported power consumption varies over 

time. This is because we allocate the static power consumption of fog nodes 

proportionally to applications running on them and fog nodes are utilized 

inefficiently in this experiment. Especially at night when only a few taxis are on the 

road, the relative power demanded by the CCTV applications rises. 

3.8.3 Hypothesis Testing Tool 

To test the famed null hypothesis, three types of statistical methods were used. The 

applied tests were the Pearson Chi-Square test, ANNOVA Test, and T-Test. 

Chi-Square Test: 

The Chi-Square test is a statistical method used to determine if there is a significant 

association between categorical variables. It compares observed frequencies with 

expected frequencies, assessing whether any differences are statistically significant. 

 

 

 

 
58 Seasonal and Trend decomposition using Loess 
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3.9 Applied Methodology 

In this section, the proposed model, and the interaction among its components with 

the essential interfacing requirements are demonstrated. The proposed model 

consists of three layers concerning intelligent task offloading in fog cloud systems. It 

is composed of both fog and cloud servers. The underlying fog-cloud environment is 

comprised of distributed resources that are heterogeneous in terms of network 

hierarchy starting from the very basic physical layer of a network to the centralized 

cloud environment. Heterogeneous means these devices are dispersed at different 

geolocations and not stationary. The host servers, which perform as computing 

resources, intended for providing services to various application tasks, are enriched 

with a diverse set of resources. It is based on two types of applications, i.e., delay-

sensitive applications and computation-intensive applications. 

3.9.1 Fog-Cloud Smart Task Offloading Model 

Mainly the architecture includes three layers with a smart task offloading 

management system which includes predictive and prescriptive constructs as shown 

in the figure below. The three layers included are the IoT or physical layer, Fog node 

layer, and the Cloud layer. 

Offloading Management System is an intelligent framework designed to optimize 

task offloading decisions in distributed computing environments, particularly in fog 

computing and edge computing systems. The starting point in a task offloading 

procedure possess five main features: 

1) Policy Repository regarding Offloading criteria 

2) Recent status of fog snapshot  

3) Receive, analyse, and offload the tasks  

4) Prediction construct 

5) Prescriptive construct 

The entire process is activated by the Smart OMS. Its formation consists of a Policy 

Repository regarding Offloading criteria, monitoring & organizing offloading 

procedures, a recent snapshot of fog competence & readiness, a Prediction construct, 

and a Prescriptive construct. 
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3.9.2 Task Offloading 

The volatile demand from IoT and mobile devices, which may not be predicted or 

anticipated immediately due to the unpredictability of the fog resources, the issue 

has to be handled. The main goal of this study is to provide a predictive and 

prescriptive approach for cost-effective task offloading and resource scheduling that 

will maximize the cost of these devices executing their applications. As a result, 

this research work cover addresses the mentioned issues and offers suggestions for 

how to fix them. Furthermore, some tasks share the same fog resources; as a result, 

there may be resource conflicts in some situations that could result in deadlock, 

some tasks experience delayed responses, and it's possible that new tasks won't be 

able to acquire resources at all, which is where latency comes into play. To ensure 

the equitable use of the underlying resources, it must be decided to improve fog 

performance by offloading some activities to adjacent nodes. 

 

Figure 3.4: Task offloading Criteria (Satyakam, 2021) 

Figure 3.4, shows Task offloading is a crucial process in fog computing and edge 

computing environments, where computational tasks are transferred from resource-

constrained IoT devices to more capable fog nodes or cloud servers. 

The decision-making process for task offloading considers various conditions, such 

as resource constraints, network latency, load balancing, security, privacy, data 

evaluation, storing bulk data, execution time, energy consumption, and other 

specific criteria. By balancing these factors, task offloading aims to optimize 



99 
 

resource utilization, reduce latency, improve energy efficiency, and enhance overall 

system performance. Offloading computationally intensive tasks to more powerful 

nodes, considering network conditions, and ensuring data privacy and security play 

key roles in achieving efficient and effective task offloading in distributed 

computing systems. 

 

 

Figure 3.5: Flow Diagram: SMART FOG Task Offloading (Li, 2019) 
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Figure 3.5 shows the various steps used for the task offloading as shown above in 

the figure. In the proposed flowchart, a task is generated on an IoT node, and the 

node evaluates its capability to execute machine learning algorithms locally. If the 

IoT node lacks resources or the task complexity exceeds its capacity, the task is 

offloaded to the cloud. Alternatively, if the IoT node can handle the task, it executes 

the machine learning algorithms. The task is then sent to a fog node, which assesses 

its resources and executes machine-learning algorithms like classification and 

clustering. If the fog node is unable to handle the task, it may offload it back to the 

cloud. After the completion of tasks, results are delivered to the IoT node or end-

user, based on application requirements and data privacy considerations. This 

dynamic process ensures optimal resource utilization, reduced latency, and enhanced 

performance in the IoT and fog computing environments. 

3.9.3 Workflow Diagram 

workflow diagram illustrating the progression of research and development in the 

field of SMART FOG. The workflow diagram illustrates the progression of research 

and development in the field of SMART FOG. It starts with understanding cloud, 

IoTs, and fog computing concepts and then delves into analyzing IoT-based 

architectures and protocols. Next, the focus shifts to evaluating various layers of 

communication protocols and devising improved task scheduling and allocation 

techniques for fog computing nodes. 
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Figure 3.6: Workflow Diagram 

Figure 3.6 shows depict the implementation and functioning of the Smart Offloading 

Management System, which optimizes task offloading decisions. It also highlights 

the identification and incorporation of fault tolerance mechanisms in SMART FOG 

to ensure system reliability. Furthermore, the diagram emphasizes the importance of 

measuring the performance of fog computational devices and the SMART FOG 

system. Finally, the challenges faced during the implementation of SMART FOG 

are outlined, underscoring the need to overcome hurdles to achieve successful 

deployment and operation. 
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3.10 Performance Metrics   for    Supervised     and      Unsupervised         

        Algorithms 
Performance metrics for supervised algorithms include accuracy, precision, recall, 

F1-score, and area under the ROC curve, which assess the model's prediction 

quality. For unsupervised algorithms, metrics like silhouette score, Davies-Bouldin 

index, and clustering accuracy evaluate the coherence and separation of clusters. 

These metrics help determine how well the algorithms perform their respective tasks 

in various data analysis scenarios. 

According to Figure 3.7, various studies to find the quality and performance of the 

various clustering algorithms various measures are being suggested but finding one 

is a challenging task in unsupervised learning. Some of the major performance 

evaluation clustering methods or clustering validity indexes can be classified as 

external, internal, and relative as shown in the figure below. 

 

Figure 3.7: Cluster validity index (Wang, 2019) 

3.10.1 Internal Validation 

Figure 3.8 shows internal validation criteria are being used when we are not having 

additional information about the datasets. In such cases, the quality of the clustering 

algorithm can be measured by the two basic approaches partitioned and 

Hierarchical. 
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Figure 3.8: Internal Validation Method (Wang, 2019) 

In situations where external information or ground truth labels are unavailable, 

internal validation criteria play a crucial role in assessing the quality of clustering 

algorithms. These methods evaluate clustering results based solely on the data's 

characteristics and clustering structure.  

3.10.2 External Validation 

External validation methods are considered with the supervised learning or 

classification problems. External validation methods can be also incorporated if 

additional information or class labels are available in the particular clustering 

problems that have the class labels for the training sets. For applying external 

validation various aspects are to be taken into consideration which are as follows   

• Required to find clustering tendency for a particular dataset  

• Find the correct number of clusters. 

• Use internal methods for measuring the quality of clusters first. 

• Now compare the internal method results with the external information. 

• Make a comparison between the two sets of clusters to find the best one. 

Figure 3.9 shows to find the clustering tendency for a given dataset, internal 

clustering validation methods are utilized to measure the quality of clusters without 

relying on external information. These methods, such as the Silhouette Score, 

Davies-Bouldin Index, and Dunn Index, help identify the correct number of clusters 

that yield the highest quality results. By comparing the internal validation outcomes 

with external information, obtained through external validation methods like 
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Adjusted Rand Index or Normalized Mutual Information when available, the 

clustering results can be evaluated against known class labels or ground truth data. 

The best clustering solution is determined by considering both internal and external 

validation results, aiming to achieve consistency and high-quality clusters. 

 

Figure 3.9: External Validation Method (Wang, 2019) 

The external criteria are applied as in the clustering algorithm suppose C = {C1, 

C2…...Cm} represent the clustered partition and P = {P1, P2…. Ps} represent the 

true partition obtained from expert knowledge or class labels.  

TP59: The no. of data points found in the same particular cluster, both C and P. 

 
59 True Positive 
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FP60: The no. of data points found in the same particular cluster in C but in a 

different cluster. 

FN61: The no. of data points found in different clusters in C but in the same cluster 

in P. 

TN62: The no. of data points found in different clusters, both in C and in P. 

The no. of data points found in the same cluster in C: 

m1 = TP + FP. 

The no. of data points found in the same cluster in P: 

m2 = TP + FN. 

M = TP + FP + FN + TN. 

These external validation methods help assess the accuracy, consistency, and 

robustness of clustering algorithms by comparing their results with known ground 

truth information or externally provided criteria. By utilizing these validation 

techniques, researchers and practitioners can make informed decisions about the 

suitability and performance of clustering algorithms for their specific applications 

and datasets. 

Matching Sets 

The first category in external criteria includes the measuring parameters like recall, 

precision, TP, TN, FP, FN, error, F- measure, etc. Precision can be calculated by 

number of the true positives 

 

Recall measures the percentage of data points properly included in the same 

particular cluster: 

 

The F-measure is a combination of precision and recall 

 
60 False Positive 
61 False Negative 
62 True Negative 
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The F-measure, also known as the F1 score, is a metric used to evaluate the accuracy 

of a classification model, particularly in binary classification tasks. It combines both 

precision and recall into a single measure, providing a balanced assessment of a 

model's performance. 

Peer-to-peer Correlation 

The second category includes the following methods: Peer-to-peer correlation refers 

to the degree of similarity or correlation between individuals or entities within a peer 

group or network.  

Jaccard coefficient: The Jaccard coefficient is used to find the similarity of the 

identified clusters C to the true values in P 

 

The Rand coefficient is also similar to the Jaccard coefficient although used to 

measure considering the total data set (accuracy).  

 

The Folkes and Mallows coefficient also finds the similarity between the particular 

clusters generated by particular clustering algorithms as independent markers 

 

Hubert statistical coefficient 
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Peer-to-peer Correlation includes Jaccard coefficient, Hubert statistical coefficient, 

Rand coefficient, and Folkes and Mallows coefficient which helps in finding the 

association between the entities. 

Measures Based on Information Theory 

Measures based on information theory assess the amount of information present in a 

system. Key metrics include entropy, reflecting dataset uncertainty, and mutual 

information, quantifying shared information between variables. Entropy can be 

considered as the reciprocal of the purity measure to find the degree of disorder 

among clusters: 

 

Mutual information is used to measure the reduction in uncertainty in clustering: 

 

These measures find utility across disciplines like machine learning and signal 

processing for optimizing systems and analyzing data. Mutual information quantifies 

the reduction in uncertainty about cluster assignments when clustering a dataset. By 

measuring the amount of shared information between data points and cluster labels, 

mutual information assesses how well clustering reduces uncertainty by revealing 

underlying patterns or structures in the data. 

Optimization Metrics  

Optimization metrics in fog computing are essential for measuring the efficiency and 

performance of distributed computing at the network edge. These metrics enable the 

assessment and improvement of resource utilization, latency reduction, and overall 

system optimization in fog-based architectures. 

The goals of resource allocation, task scheduling, and workflow scheduling are to 

maximize the resources of fog nodes by optimizing the job execution process. 

Resource allocation, task scheduling, and workflow scheduling in fog computing 

aim to maximize fog node resources by optimizing job execution. Key objectives 

include efficient task allocation, minimizing delays, and improving overall system 

performance 
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Figure 3.10: Optimization Metrics (Marbukh, 2019)  

Figure 3.10 shows optimization metrics such as makespan, latency, throughput, 

energy consumption, load balancing, and quality of service play a crucial role in 

achieving these goals. By considering these metrics and employing appropriate 

algorithms and techniques, fog computing systems can enhance resource utilization, 

reduce delays, and provide efficient and reliable execution of tasks and workflows. 

Optimization metrics in fog computing are critical for achieving optimal 

performance, resource management, and latency reduction at the network edge. 

They guide decision-making, ensuring that fog architectures deliver on their promise 

of efficient and responsive edge computing solutions. 

Performance Metrics 

Performance metrics in fog computing are vital for evaluating the efficiency and 

effectiveness of edge computing systems. These metrics provide valuable insights 

into processing speed, resource utilization, and data transfer rates, enabling the fine-

tuning and improvement of fog-based architectures. 
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Performance metrics in task scheduling for fog computing refer to the parameters 

used to evaluate and measure the effectiveness and efficiency of the task scheduling 

process. These metrics provide insights into the performance of the system and help 

in assessing the quality of the scheduling algorithm or approach. Common 

performance metrics include makes pan (total time taken to complete all tasks), 

latency (response time between task submission and completion), throughput 

(number of tasks completed per unit of time), resource utilization (percentage of 

resources utilized), and fairness (equitable distribution of resources and workload 

among fog nodes). These metrics allow for quantitative assessment and comparison 

of different task scheduling techniques, enabling the selection of optimal approaches 

for improved performance in fog computing environments. The parameters of 

performance metrics are as follows: 

Latency 

One of the most crucial variables for evaluating the effectiveness of any task-

scheduling system is latency. Other names for latency include delay and reaction 

time. The sum of the transmission delay and the computing latency is the total 

latency. 

 

• 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑖: latency,  

• 𝑇𝐿𝑖: transmission latency  

• Computational latency of task ‘i’. 

 

Execution Time 

Execution time is the length of time it takes for a system to complete a task. CPU or 

execution time does not account for the time spent waiting for I/O or other 

operations to complete. 

 

• 𝐸𝑥𝑒𝑇𝑖𝑚𝑒𝑖: overall execution time, 

• 𝐹𝑇𝑖: finish time 

• STi: the start execution time of task ‘i’. 
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Make Span 

Make span is a key goal of task scheduling that shows how long it will take to 

execute a process in its entirety. 

 

• 𝐶𝑇𝑙: time when the last task is completed  

• 𝑆𝑇𝑓: starting time of the first task. 

Throughput 

The number of tasks finished in a system's throughput is measured in units of time. 

 

Throughput, in the context of computing and systems, refers to the rate at which 

tasks or operations are completed or processed within a given time frame. It is a 

performance metric that measures the efficiency and productivity of a system, 

indicating how many tasks or units of work are accomplished in a specific period. 

The measurement of throughput is typically expressed in terms of tasks per second, 

operations per second, or any other appropriate unit of time. Higher throughput 

indicates that the system can handle a greater volume of work and is more capable of 

processing tasks efficiently. 

Deadline 

The deadline is the amount of time between when a task is submitted and when it 

must be finished. The completion of each activity at the designated deadline is 

crucial in real-time applications. Missing a task deadline may be disastrous, 

especially for difficult real-time applications like air traffic control Jamil (2022). 

Meeting task deadlines is critical in real-time applications as it ensures timely 

processing and response. In fog computing, where tasks are distributed across fog 

nodes, the deadline parameter becomes crucial for efficient task scheduling. The 

deadline specifies the maximum acceptable delay for task completion, and 

scheduling algorithms must consider this constraint to ensure tasks are allocated to 

appropriate nodes that can meet the specified deadlines. Failure to meet task 

deadlines in time-sensitive applications can have severe consequences, such as 

compromising safety, system failures, or financial losses. Therefore, in fog 

computing environments, effective task scheduling algorithms are designed to 
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prioritize tasks based on their deadlines, optimizing resource allocation and ensuring 

timely task completion within the given constraints. 

Performance metrics in fog computing are instrumental in optimizing edge 

computing solutions. They facilitate informed decision-making, resource allocation, 

and system enhancements, ensuring that fog architectures deliver the required speed, 

efficiency, and responsiveness in the evolving digital landscape. 

3.10.3 Simulation Setup 

For the predictive construct, both supervised and unsupervised machine learning 

algorithms were used. A simulated environmental setup was constructed to evaluate 

and appraise the research model being proposed which is SMART FOG system 

which included an improvised task offloading approach. The experimental 

environment used is Anaconda Jupiter Python and R. The model is trained through 

various supervised and unsupervised learning algorithms which include KNN63, 

Decision Tree, MLP64, Logistic Regression algorithm, Lazy IBK, Naive Bayes, 

SVM65 being used. 

This research work aims to address various aspects of smart fog systems It 

encompasses a mixed methods approach, combining quantitative analysis and 

qualitative insights. The research objectives include studying commuting and cloud 

issues, analyzing technologies for enhancing computation, addressing 

implementation issues, and identifying the most appropriate machine learning 

approach for fog computing. The research begins with a comprehensive literature 

review to identify gaps in existing research and frameworks. Its performance is 

evaluated using various performance measures, comparing it with existing models. 

Recommendations and strategies are proposed to overcome these challenges. 

 

 

 

 

 
63K-Nearest Neighbor 
64Multilayer Perceptron 
65Support Vector Machine 
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Across the globe, billions of devices are today communicating and exchanging data 

with each other. IoT communication protocols protect and ensure the security of the 

data being exchanged between these devices. This research work covers the most 

popular protocols in use today. 

4.1 Analyzing IoT Infrastructure for Smart Fog Protocol Design 

The Smart Fog Protocol-Based Technique involves the utilization of intelligent fog 

nodes at the edge of the network to process data locally and reduce the burden on 

centralized cloud servers. To design this technique, various layers of communication 

protocols are essential. The physical layer focuses on selecting appropriate 

communication technologies for IoT devices, while the data link layer ensures 

reliable data transmission. The network layer facilitates efficient communication 

paths between fog nodes and IoT devices, while the transport layer ensures orderly 

data delivery and minimizes latency. At the top layer, the application layer enables 

seamless integration with fog-based services and applications, optimizing real-time 

data processing at the edge and offering advantages in latency reduction, bandwidth 

optimization, and scalability for IoT applications. 

4.1.1 Message Queue Telemetry Transport Protocol 

This publish/subscribe message transport protocol is open source and highly 

lightweight, making it a great choice for connecting tiny devices to restricted 

networks. It was developed to function in environments with low bandwidth, such as 

sensors and mobile devices, and on networks that are not completely stable. Because 

of this feature, it is the protocol of choice for connecting devices that have a tiny 

code footprint. It is also the protocol of choice for wireless networks that have 

different amounts of delay as a result of bandwidth limits or unstable connections. It 

accomplishes this by operating on top of TCP/IP66, which is the foundation of the 

Internet. MQTT is comprised of these three primary parts: Subscriber. Publisher and 

Broker in this protocol's most fundamental process, the publisher is responsible for 

creating and sending information to subscribers via a broker. This information is 

then received by the subscribers. The authorization of subscribers and publishers is 

checked by the broker as part of the broker's primary responsibility, which is to 

 
66Transmission Control Protocol and Internet Protocol 
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maintain data security. This protocol is favored for usage in IoT devices because it 

can deliver well-organized information routing features to low-bandwidth networks 

as well as tiny, low-cost, low-memory, and power devices. MQTT employs three 

different degrees of quality of service to assure the dependability of its messages. 

MQTT is a communication protocol that can go in both directions, meaning that 

clients may both generate and receive data through the process of publishing 

messages and subscribing to topics. IoT devices that are equipped with connectivity 

in both directions can concurrently deliver sensor data and receive configuration 

information and control commands. MQTT makes it considerably simpler to 

validate clients using contemporary authentication methods and encrypt 

communications using TLS67. 

CoAP message flows involve lightweight and efficient communication between IoT 

devices and servers. CoAP messages include GET, PUT, POST, and DELETE 

methods, enabling device data exchange. Devices send requests to servers, which 

respond with corresponding acknowledgments or data. CoAP's simplicity and low 

overhead make it ideal for resource-constrained IoT devices. 

4.1.2 Constrained Application Protocol 

CoAP is a Web transfer protocol designed for use in the IoT with restricted devices 

and networks. It is meant for applications that have a limited capacity to connect 

utilizing LWM2M68, such as smart energy and building automation, and it may be 

implemented through a UDP69.LWM2M makes it possible to remotely manage IoT 

devices and provides interfaces for safely monitoring and controlling those devices. 

The design of CoAP is based on the well-known REST70 paradigm. According to 

this model, servers make resources available under a URL71, and clients may access 

these resources by utilizing methods such as GET, PUT, POST, and DELETE. Both 

the CoAP and HTTP protocols have many similarities; however, the CoAP protocol 

has been improved for the IoT, and more especially for machine-to-machine 

communication. It has a minimal overhead, combined with the ability to proxy and 

 
67Transport Layer Security 
68Light-Weight Machine-To-Machine Communication 
69User Datagram Protocol 
70Representational State Transfer 
71Uniform Resource Locator 
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cache messages, and it asynchronously exchanges messages. The architecture of 

CoAP is broken down into two primary categories: messaging, which is in charge of 

the dependability and duplication of messages, and request/response, which is in 

charge of communication between clients and servers. 

The message layer sits above UDP and is in charge of the communication protocol 

that enables IoT devices and the internet to exchange messages with one another. 

Confirmable messages, non-confirmable messages, acknowledgment messages, and 

reset messages are the four distinct varieties of CoAP communications. When two 

endpoints communicate with one another, a CON72is a message that can be relied 

upon. It is repeated until the receiving end sends an acknowledgment message, at 

which point it is stopped. The message ID of an ACK73 the message is identical to 

the message ID of a CON message. If the server is unable to successfully manage 

the incoming request, it may respond with a RST rather than an ACK. Unreliable 

NON74 messages, in which the server does not acknowledge the message, can be 

used for transferring messages that are not vital to the operation of the system. To 

avoid sending duplicate messages, NON-messages are given unique message 

identifiers. 

The Request/Response layer is the second tier of the CoAP abstraction layer. 

Requests can be sent using either CON or NON-messages in this layer. In situations 

in which a server can instantly react to a request, the request is communicated using 

a CON message, followed by an ACK message that contains the answer or the error 

code that was generated by the server. The message ID is not included in either the 

request or the response's token, which means they have their unique token. When the 

server is in a position where it is unable to instantly react, it will send an ACK 

message that has no content as the response. After the response is complete, a new 

CON message that includes the response is sent back to the client. The client then 

acknowledges the response that it has received in this new CON message. 

 

 

 
72Confirmable Message 
73Acknowledgement 
74Non-confirmable 
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4.1.3 Advanced Message Queuing Protocol 
 

Figure 4.1, shows AMQP is an open standard application layer protocol that was 

developed with the goals of providing increased security and dependability while 

still being easy to deploy and interoperable. Because TCP is employed as a transport 

protocol, it is a connection-oriented protocol. This means that to transmit data, both 

the client and the broker need to first establish a connection with one another. 

AMQP provides two levels of quality of service for the dependable delivery of 

messages: the unsettle format, which is comparable to MQTT's QoS0, and the settle 

format. The primary distinction between AMQP and MQTT standards is that AMQP 

brokers are composed of two primary parts: exchange and queues. MQTT brokers 

only have one primary part. Exchange is in charge of both receiving messages from 

publishers and delivering them to the appropriate queues. Subscribers establish 

connections to the queues, which in essence stand in for the topics, and begin 

receiving sensory input as soon as it becomes available. 

 

Figure 4.1: AMQP Architecture (Macarulla, 2016) 

AMQP architecture is a messaging protocol designed for reliable and efficient 

message communication between distributed systems. It employs a client-server 

model with message brokers as intermediaries. Producers send messages to the 

broker, which then delivers them to appropriate consumers based on routing rules 

and message queues. 

4.1.4 Data Distribution Service 

DDS is a middleware protocol for data-centric connection that was developed by the 

object management group. It offers commercial and mission-critical IoT applications 

low-latency data communication, exceptional dependability, and a scalable design. 

This protocol enables the use of multicasting techniques during data transmission 

and enables high-quality QoS to be provided by applications and devices with a tiny 
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memory footprint. Both a DCPS75 layer and a data-local reconstruction layer make 

up DDS's communications paradigm. These levels are referred to as the interface 

layers. 

Throughout the publish/subscribe process, the DCPS layer is the one that is in 

charge of binding the values of data objects included inside an application. At the 

application level, the DLRL76 is a layer that is used for integrating DDS, but its use 

is optional. 

4.2 Task Scheduling and Allocation in Smart Fog Computing Nodes 

The previous survey results were analyzed and a detailed treatment of the 

fundamentals of scheduling and scheduling types, such as task scheduling, workflow 

scheduling, resource allocation, and the many optimization measures used to 

evaluate these methods. Classification and extensive assessment of existing 

scheduling algorithms, with a special emphasis on intelligent dynamic scheduling 

strategies based on machine learning, fuzzy logic, reinforcement learning, and deep 

reinforcement learning, with descriptions of their strengths and shortcomings. 

Identification of research gaps and problems for task scheduling and resource 

allocation in fog computing for future research efforts in this subject through the 

presentation of various simulation settings and tools utilized in diverse studies. 

 

 

 

 

 

 

 

 
75Data-Centric Publish-Subscribe 
76Data Local Reconstruction Layer 
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Comparison of Traditional Scheduling Algorithms 

Table 4.1, shows compares several traditional scheduling algorithms based on their 

type and the specific performance measures they optimize. 

Table 4.1: Comparison of Traditional Scheduling Algorithms 

Name 
Type of 

Scheduling 

Optimize the following Performance Measure 

Latency 
Execution 

Time 

Network 

Usage 

Energy 

Consumption 
Cost 

FCFS77 
Task 

Scheduling 
Optimized Unoptimized Optimized Optimized Unoptimized 

PERA78 
Task 

Scheduling 
Optimized Unoptimized Unoptimized Unoptimized Optimized 

WRR79 
Task 

Scheduling 
Optimized Unoptimized Unoptimized Unoptimized Unoptimized 

FCFS 
Resource 

Scheduling 
Optimized Unoptimized Optimized Optimized Unoptimized 

 

FCFS task scheduling algorithm when applied in Fog and cloud environment 

suggests that FCFS in Fog environment optimizes latency, total network usage, and 

energy consumption when compared with FCFS in cloud environment. PERA, a 

Priority-based task scheduling algorithm optimizes latency and cost. 

FCFS is a task-scheduling algorithm that optimizes latency, network usage, and 

energy consumption but does not focus on minimizing execution time or cost 

efficiency. Priority-based Scheduling also deals with task scheduling, optimizing 

latency and cost, while neglecting execution time, network usage, and energy 

consumption. Weighted Round Robin, another task scheduling algorithm, primarily 

optimizes latency without targeting execution time, network usage, energy 

consumption, or cost. The combined FCFS, Delay Priority, and Concurrent 

approach, a resource scheduling method, optimizes latency, network usage, and 

energy consumption but does not focus on execution time or cost efficiency. Each 

algorithm is tailored to enhance specific aspects of performance, demonstrating the 

trade-offs inherent in scheduling decisions 

 

 

 
77First-Come, First-Served 
78Packetized Ensemble Resource Allocation 
79Weighted Round Robin 
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Integer Linear Programming 

Table 4.2 compares various Integer Linear Programming scheduling algorithms 

based on their type and the performance measures they optimize.  

Table 4.2: Integer Linear Programming 

Name 
Type of 

Scheduling 

Optimize the following Performance Measure 

Latency Makespan QoS Cost 

ILP80 
Resource 

Scheduling 
Optimized Unoptimized Optimized Optimized 

MILP81 
Resource 

Scheduling 
Unoptimized Unoptimized Optimized Optimized 

 

ILP, a resource scheduling algorithm based on integer linear programming when 

used in Fog environment optimizes the latency, QoS, and cost when compared with 

a cloud environment. ILP is a resource scheduling algorithm that optimizes latency, 

Quality of Service, and cost but does not focus on minimizing makespan. Min-CCV 

and Min-V, also resource scheduling algorithms, prioritize QoS and cost efficiency, 

without optimizing latency or makespan.  

Comparison of Heuristic Scheduling Algorithms 

Table 4.3, shows compare various heuristic scheduling algorithms based on their 

type and optimized performance measures.  

Table 4.3: Comparison of Heuristic Scheduling Algorithms 

Name 
Type of 

Scheduling 

Optimize the following Performance Measure 

Latency Makespan QoS Cost 
Energy 

Consumption 

Network 

Usage 

SJF82 Task  Optimized Unoptimized Unoptimized Unoptimized Optimized Unoptimized 

PTPN83 Resource  Unoptimized Unoptimized Optimized Unoptimized Optimized Unoptimized 

MCCV 
84 

Resource  Unoptimized Unoptimized Optimized Optimized Unoptimized Unoptimized 

EDF 
&LFC85 

Resource  Optimized Optimized Unoptimized Optimized Unoptimized Unoptimized 

DOTS86 Resource  Optimized Unoptimized Unoptimized Optimized Unoptimized Unoptimized 

TIPS87 
Task / 

Resource  
Unoptimized Unoptimized Optimized Unoptimized Unoptimized Unoptimized 

 

 
80Integer Linear Programming 
81Mixed Integer Linear Programming 
82Shortest Job First  
83Preemptive Task Priority Network 
84Minimum Critical-Cycle Variance  
85Earliest Deadline First and Least Slack Time  
86Dynamic Optimization of Time Sequences  
87Time-Invariant Power Scheduling  
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SJF task scheduling algorithm optimizes latency and energy consumption. Similarly, 

PTPN resource allocation algorithm highly optimizes QoS and energy consumption. 

SJFfor task scheduling optimizes latency and energy consumption but not 

makespan, QoS, cost, or network usage. PTPN for resource scheduling focuses on 

optimizing QoS and energy consumption, neglecting other factors.  

Min-CCV and Min-V for resource scheduling enhance QoS and cost efficiency but 

do not optimize latency, makespan, energy consumption, or network usage. EDF & 

Static LFC for resource scheduling optimize latency, makespan, and cost, leaving 

QoS, energy consumption, and network usage unoptimized. DOTS for resource 

scheduling focuses on minimizing latency and cost but does not optimize makespan, 

QoS, energy consumption, or network usage. Finally, TIPS for both task and 

resource scheduling prioritizes QoS without addressing latency, makespan, cost, 

energy consumption, or network usage. 

Comparison of Fuzzy-Based Scheduling Algorithms 

Table 4.4, shows a Comparison of Fuzzy-Based Scheduling Algorithms Fog 

computing is not a replacement for cloud computing but instead, an extension of 

cloud computing that enhances the already established cloud architecture. Here’s 

how While the server nodes of cloud computing are located within the internet, fog 

computing has them at the edge of the networks. With this parameter, fog computing 

enhances cloud computing by functionally managing data from mobile devices thus 

reducing latency and improved response time. 

Table 4.4:  Comparison of Fuzzy-Based Scheduling Algorithms 

Name 
Type of 

Scheduling 

Optimize the following Performance Measure 

Latency Makespan QoS Cost 
Energy 

Consumption 

Network 

Usage 

RFN88 
Resource 

Scheduling 
Optimized Unoptimized Unoptimized Unoptimized Optimized Unoptimized 

FLPSO89 
Resource 

Scheduling 
Unoptimized Unoptimized Optimized Unoptimized Unoptimized Unoptimized 

FPFTS90 
Resource 

Scheduling 
Optimized Unoptimized Unoptimized Unoptimized Optimized Optimized 

EDA91 
Resource 

Scheduling 
Optimized Unoptimized Optimized Unoptimized Optimized Optimized 

 

 
88 Rule-based Fuzzy Network 
89 Fuzzy Logic and Particle Swarm Optimization 
90 Fuzzy-Possibilistic Fuzzy Time Series 
91 Estimation of Distribution Algorithm 
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RFN, a fuzzy-based scheduling algorithm is a resource scheduling algorithm that 

optimizes latency and energy consumption. Similarly, FLPSO algorithm highly 

optimizes QoS. 

Fog computing is not a replacement for cloud computing but instead, an extension of 

cloud computing that enhances the already established cloud architecture. Here’s 

how – While the server nodes of cloud computing are located within the internet, fog 

computing has them at the edge of the networks. With this parameter, fog computing 

enhances cloud computing by functionally managing data from mobile devices thus 

reducing latency and improved response time. 

4.3 Challenges in Implementing Fog Computing 

Implementing Fog computing faces challenges such as heterogeneous device 

integration, security concerns at the edge, resource optimization, reliability 

maintenance, and scalability issues. Ensuring seamless interoperability between 

diverse devices, managing security risks at the edge, and optimizing resource 

allocation are crucial tasks. Additionally, maintaining reliability in a decentralized 

environment and addressing scalability concerns pose significant challenges that 

require comprehensive solutions. Fog computing is really necessary. There are, 

however, many obstacles to overcome to put it into practice: 

Data Privacy 

By placing fog nodes in the network's periphery, fog computing makes them 

available to a wider audience of end users. This makes the fog nodes more of a 

target for cyber-attacks as they collect a greater volume of sensitive data than the 

distant cloud. 

Security 

As fog computing requires authentication of devices at several gateways, the 

possibility of a rogue user using a spoofed IP address to access the data stored in a 

specific fog node is the most crucial security concern. This resulted in the 

installation of intrusion detection systems throughout the whole platform. 
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Network Management 

Because they are linked to disparate hardware types, managing the fog's nodes, 

network, and inter-node connections can be arduous without software-defined 

networking and network function virtualization approaches. 

Positioning the FOG Servers 

Positioning Fog servers, or Fog nodes, is essential in Fog Computing architecture to 

enhance performance by bringing data processing closer to the data sources. This 

proximity reduces latency, conserves bandwidth, and improves network efficiency, 

particularly for real-time applications like autonomous vehicles, industrial 

automation, and smart grids. Effective placement involves a distributed and 

hierarchical network topology to balance load and prevent bottlenecks, considering 

workload characteristics and dynamically adjusting based on network conditions. It 

also requires modular and scalable deployment to accommodate varying demands, 

ensuring high availability through redundancy. Security is paramount, with robust 

measures to protect sensitive data and compliance with local regulations. 

Additionally, energy efficiency is critical, achieved through strategic placement with 

reliable power sources and green computing practices. Practical scenarios include 

smart cities for traffic management and public safety, industrial IoT for predictive 

maintenance and automation control, healthcare for remote monitoring and 

telemedicine, and retail for in-store analytics and reliable point-of-sale systems. To 

maximize the service provided by fog computing and reduce maintenance costs, it is 

necessary to analyze the work performed in each node of the servers before deciding 

where to arrange the group of fog servers. 

Positioning Fog servers effectively is a multifaceted challenge that requires careful 

consideration of proximity to data sources, network topology, workload distribution, 

scalability, security, and energy efficiency. By strategically placing these nodes, 

organizations can leverage the benefits of Fog computing, such as reduced latency, 

improved bandwidth utilization, enhanced data security, and greater overall network 

efficiency. This approach is particularly beneficial in applications requiring real-

time processing and analysis, making it a vital component of modern distributed 

computing architectures. 

 



123 
 

Energy consumption is a critical consideration in Fog Computing systems due to the 

extensive deployment of fog nodes across distributed environments. These fog 

nodes, which are responsible for processing and managing data at the edge of the 

network, often operate in resource-constrained settings with limited power sources. 

Energy consumption is significant because of the large number of fog nodes used in 

fog computing systems. Our research work focuses on the above-stated objective 

which aims to use the computational power of computation-enabled devices to 

collaboratively perform tasks and speed up the processing. 

4.4 Hypothesis Testing Results 

The null hypothesis H01 as stated Smart Fog protocol-based technique to create a 

Fog Computing environment will not share computational power with IoT devices 

with low computational power and other aspects are being categorized into various 

sub-hypotheses H01, H02, H03, H04, H05, and H06 to compare the impact of various 

aspects related to efficiency and various measures of SMART FOG protocol-based 

system with the cloud-based system. 

 

H01: There is no significant difference between SMART FOG protocol-based 

system and cloud-based system based on the performance measure execution time. 

 

An alternative hypothesis is as follows  

 

Ha1: There is a significant difference between SMART FOG protocol-based system 

and cloud-based system based on the performance measure execution time. 

 

When comparing Fog Computing to Cloud Computing in terms of average 

execution time, it's essential to consider how each architecture processes tasks and 

their implications for task completion speed. Fog Computing, which processes tasks 

closer to the edge of the network, can potentially reduce latency and speed up 

execution times, particularly for time-sensitive tasks, by minimizing the distance 

data needs to travel. However, the effectiveness of Fog Computing depends on 

factors such as task complexity, resource availability at the edge, and network 

efficiency. Cloud Computing, while offering scalability and computational power, 

may introduce latency due to the distance between edge devices and centralized data 

centers, impacting average execution time. The choice between Fog Computing and 
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Cloud Computing should be based on the specific requirements of the application, 

considering factors such as task type, network latency, resource availability, and 

scalability needs.  

 

Figure 4.2: Fog Vs Cloud System Based on Average Execution Time 

Figure 4.2, shows comparative analysis between Fog fog-based systems and Cloud 

cloud-based systems based on reduction in execution time as shown below confirms 

that there is a large reduction in execution time with the use of Smart Fog-based 

systems as compared to Cloud-based systems. 
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Table 4.5: Execution Time Reduced due to Fog Computing Environment 

 

Table 4.5 shows Execution Time Reduced due to Fog Computing Environment in 

Fog system 8:10, 9:9, 7:10, 6:10, 6:6, 4:10, and 2:6 there is a large reduction in 

execution time with values 9872, 3008, 7866, 5417, 4533, 4024, and 8703 

respectively. So, it is very clear that Fog layer plays an important role in the 

execution time reduction. The Smart Fog system 9:9 which means 9 areas and 9 

cameras takes a lower execution time of 7315 as compared to the cloud system 9:9 

with an execution time of 10323. The experimental outcomes are further represented 

or categorized into high and low as shown below in the crosstabulation table.   

Table 4.6 shows the FOG SYSTEM operates over two distinct execution time 

ranges, categorized into "Low" and "High." The "Low" range includes values from 0 

to 500, while the "High" range covers values from 501 to 10000. Similarly, the 
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CLOUD SYSTEM is categorized into "Low" and "High" ranges, with the "Low" 

range spanning from 0 to 250 and the "High" range covering 251 to 10000.  

Table 4.6: Classification of Fog and Cloud for Execution Time 

Obs 
Fog 

System 

Execution 

Time 
Rank 

Cloud 

System 

Execution 

Time 
Rank 

1 Fog-1:1 312 Low Cloud-1:1 684 High 

2 Fog-1:2 210 High Cloud-1:2 933 High 

3 Fog-1:3 359 High Cloud-1:3 1198 High 

4 Fog-1:4 502 High Cloud-1:4 1133 High 

5 Fog-1:5 692 High Cloud-1:5 1348 High 

6 Fog-2:2 384 High Cloud-2:2 1203 High 

7 Fog-2:3 525 Low Cloud-2:3 531 High 

8 Fog-2:4 494 High Cloud-2:4 690 High 

9 Fog-2:5 677 Low Cloud-2:5 1048 Low 

10 Fog-2:6 769 Low Cloud-2:6 8703 Low 

11 Fog-2:7 1122 Low Cloud-2:7 1153 High 

12 Fog-2:8 1032 High Cloud-2:8 1502 High 

13 Fog-2:9 1193 Low Cloud-2:9 1632 Low 

14 Fog-2:10 1278 Low Cloud-2:10 1547 High 

15 Fog-3:5 1010 Low Cloud-3:5 3429 High 

16 Fog-3:6 1253 Low Cloud-3:6 1877 Low 

17 Fog-3:10 2036 High Cloud-3:10 2237 High 

18 Fog-4:4 893 High Cloud-4:4 1328 High 

19 Fog-4:5 1121 High Cloud-4:5 1513 High 

20 Fog-4:10 1816 Low Cloud-4:10 4024 High 

21 Fog-5:5 1400 Low Cloud-5:5 1908 High 

22 Fog-5:10 2091 High Cloud-5:10 2686 High 

23 Fog-6:6 1648 High Cloud-6:6 6181 High 

24 Fog-6:10 1986 High Cloud-6:10 7403 High 

25 Fog-7:10 2229 High Cloud-7:10 10095 High 

26 Fog-8:10 2636 High Cloud-8:10 12508 High 

27 Fog-9:9 7315 High Cloud-9:9 10323 High 

28 Fog-10:5 2254 High Cloud-10:5 3373 High 

Table 4.7 shows specific ranges chosen to comprehensively understand each 

system's performance across varying operational scenarios. By distinguishing 

between lower and higher values, managing and optimizing the behaviours of the 

system becomes easier, ensuring they operate efficiently under different conditions. 

The "Low" range typically represents scenarios with minimal operational load, while 

the "High" range accounts for more intensive usage, allowing for tailored strategies 

to maintain optimal performance. 
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Table 4.7: Type of System (Fog or Cloud) and Average Execution Time  

Crosstabulation: Type of System (Fog or Cloud) and Average 

Execution Time  

Type 

 

Average Execution 

Time Total 

 High Low 

System 

(Fog or Cloud) 

Cloud-Based System 24 4 28 

Fog Based System 17 11 28 

Total 41 15 56 

 

Table 4.8 shows the approach for calculating the expected value from the row total 

of average execution time and column total of type of system (Fog or Cloud) also 

the total number of observations is 56. 

 Table 4.8: Expected Frequency 

Calculation of Expected Frequency 

Total Average 

Execution Time 

Total Type 

(Fog or Cloud) 

Expected 

Frequency 

Expected 

Frequency 

41 28 (41* 28) / 56 20.5 

15 28 (15* 28) / 56 7.5 

41 28 (41* 28) / 56 20.5 

15 28 (15* 28) / 56 7.5 

 

Table 4.9: 2 Calculation 

Observed and Expected Frequency for the calculation of 2 

Observed 

Frequency (OF) 

Expected 

Frequency (EF) 
(OF - EF)2 

(OF - EF)2 

/ EF 

24 20.5 12.25 0.5975 

4 7.5 12.25 1.6333 

17 20.5 12.25 0.5975 

11 7.5 12.5 1.6333 
  Total () 4.4616 

 

 

Degree of Freedom     = (r-1) * (c-1) 

     = (2-1) * (2-1) 

  = 1 

Table value @ 5% level of significance = 3.84 

Therefore, 
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The calculated value of Chi-Square is found to be 4.4616 

The tabulated value of Chi-Square is found to be 3.84 

Accordingly, table 4.9 represents the calculation of Chi-Square test value using the 

observed and expected frequencies. The results confirm that the calculated value of 

Chi-Square 4.4616 is greater than the tabulated value of 3.84 at a 5% level of 

significance. So, it is clear that the null hypothesis is rejected. 

It concludes that there is a significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure execution 

time. A notable contrast in performance, measured by execution time, emerged 

between the SMART FOG protocol-based and cloud-based systems. The findings 

reveal that the SMART FOG system exhibited superior performance with notably 

shorter execution times compared to its cloud-based counterpart. 

H02: There is a significant difference between SMART FOG protocol-based 

systems and cloud-based systems based on the performance measure latency. 

An alternative hypothesis is as follows  

Ha2: There is no significant difference between SMART FOG protocol-based 

system and cloud-based system based on the performance measure latency. 
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Figure 4.3: Fog Vs Cloud System Based on Latency 

Figure 4.2, shows a comparative analysis between Fog fog-based system and Cloud-

based system based on reduction in latency, as shown above, confirms that there is a 

large reduction in latency with use of Smart Fog based systems as compared to 

Cloud-based systems. In Fog system 10:5, 4:4, 2:5, 2:4, 2:3, 2:2, 1:5, 1:4, 1:3, 1:2, 

and 1:1 there is a large reduction in latency value such as 453. 523, 198.926, 

190.698, 198.131, 199.715, 201.366, 191.913, 197.730, 199.413, 201.161, and 

194.086 respectively. So, it is very clear that Fog layer plays an important role in 

latency reduction.  
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Table 4.10: Latency Reduced due to Fog Computing Environment 

 

Table 4.10, shows that Smart Fog system 10:5 which means 10 areas and 5 cameras 

takes a lower latency value of 218.62 as compared to the cloud system 10:5 with a 

latency value of 672.14.  The experimental outcomes are further represented or 

categorized into high and low as shown below in the crosstabulation table. 

Table 4.11 shows latency for the FOG SYSTEM is categorized into "Low" and 

"High" ranges, with the "Low" range including values from -5600.0000 to 1.0000 

and the "High" range covering values from 1.0001 to 2100.0000. Similarly, the 

CLOUD SYSTEM latency is divided into "Low" and "High" ranges, where the 

"Low" range spans from 1.0001 to 15000.0000, and the "High" range includes 

values from -55000 to 1.0000.  

System Latency (Fog) Latency (Cloud)

Latency Reduced Using 

Fog System

Fog/Cloud-1:1 16.414 210.499 194.086

Fog/Cloud-1:2 9.493 210.654 201.161

Fog/Cloud-1:3 11.278 210.692 199.413

Fog/Cloud-1:4 13.064 210.794 197.730

Fog/Cloud-1:5 18.946 210.859 191.913

Fog/Cloud-2:2 9.493 210.859 201.366

Fog/Cloud-2:3 11.278 210.993 199.715

Fog/Cloud-2:4 13.064 211.195 198.131

Fog/Cloud-2:5 20.707 211.405 190.698

Fog/Cloud-2:6 211.577 211.599 0.022

Fog/Cloud-2:7 211.787 211.857 0.070

Fog/Cloud-2:8 211.941 211.965 0.024

Fog/Cloud-2:9 212.107 212.184 0.077

Fog/Cloud-2:10 212.376 212.365 -0.011

Fog/Cloud-3:5 331.999 211.814 -120.186

Fog/Cloud-3:6 212.108 212.150 0.042

Fog/Cloud-3:10 366.026 365.965 -0.062

Fog/Cloud-4:4 13.064 211.990 198.926

Fog/Cloud-4:5 218.450 212.354 -6.096

Fog/Cloud-4:10 557.410 557.302 -0.108

Fog/Cloud-5:5 217.757 212.806 -4.952

Fog/Cloud-5:10 672.095 672.236 0.141

Fog/Cloud-6:6 493.522 493.557 0.035

Fog/Cloud-6:10 748.737 748.728 -0.008

Fog/Cloud-7:10 803.448 803.375 -0.073

Fog/Cloud-8:10 844.404 844.350 -0.054

Fog/Cloud-9:9 847.908 847.990 0.083

Fog/Cloud-10:5 218.625 672.148 453.523
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Table 4.11: Classification of Fog and Cloud for Latency 

Obs 
Fog 

System 
Latency Rank  

Cloud 

System 
Latency Rank  

1 Fog-1:1 16.41 Low Cloud-1:1 210.50 High 

2 Fog-1:2 9.49 Low Cloud-1:2 210.65 High 

3 Fog-1:3 11.28 Low Cloud-1:3 210.69 High 

4 Fog-1:4 13.06 Low Cloud-1:4 210.79 High 

5 Fog-1:5 18.95 Low Cloud-1:5 210.86 High 

6 Fog-2:2 9.49 Low Cloud-2:2 210.86 High 

7 Fog-2:3 11.28 Low Cloud-2:3 210.99 High 

8 Fog-2:4 13.06 Low Cloud-2:4 211.19 High 

9 Fog-2:5 20.71 Low Cloud-2:5 211.41 High 

10 Fog-2:6 211.58 High Cloud-2:6 211.60 High 

11 Fog-2:7 211.79 Low Cloud-2:7 211.86 High 

12 Fog-2:8 211.94 Low Cloud-2:8 211.97 High 

13 Fog-2:9 212.11 Low Cloud-2:9 212.18 High 

14 Fog-2:10 212.38 High Cloud-2:10 212.37 Low 

15 Fog-3:5 332.00 High Cloud-3:5 211.81 Low 

16 Fog-3:6 212.11 Low Cloud-3:6 212.15 High 

17 Fog-3:10 366.03 High Cloud-3:10 365.96 Low 

18 Fog-4:4 13.06 Low Cloud-4:4 211.99 High 

19 Fog-4:5 218.45 High Cloud-4:5 212.35 Low 

20 Fog-4:10 557.41 High Cloud-4:10 557.30 Low 

21 Fog-5:5 217.76 High Cloud-5:5 212.81 Low 

22 Fog-5:10 672.10 Low Cloud-5:10 672.24 High 

23 Fog-6:6 493.52 Low Cloud-6:6 493.56 High 

24 Fog-6:10 748.74 High Cloud-6:10 748.73 High 

25 Fog-7:10 803.45 High Cloud-7:10 803.37 Low 

26 Fog-8:10 844.40 High Cloud-8:10 844.35 Low 

27 Fog-9:9 847.91 Low Cloud-9:9 847.99 High 

28 Fog-10:5 218.62 Low Cloud-10:5 672.15 High 

 

Table 4.12 shows specific ranges are chosen to provide a comprehensive 

understanding of each system's performance across various latency conditions. By 

distinguishing between lower and higher latency values, it becomes easier to 

optimize the systems' behaviors, ensuring they operate efficiently under different 

scenarios. This categorization aids in tailoring strategies to maintain optimal 

performance by addressing minimal and intensive latency conditions separately. 
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Table 4.12: Type of System (Fog or Cloud) and Latency 

Crosstabulation: Type of System (Fog or Cloud) and Latency 

Type 
Latency 

Total 
High Low 

System 

(Fog or 

Cloud) 

Cloud-Based System 20 8 28 

Fog Based System 10 18 28 

Total 30 26 56 

 

Table 4.13 shows the approach for calculating the expected value from the row total 

of latency and column total type of system (Fog or Cloud) also the total number of 

observations is 56. 

 Table 4.13: Expected Frequency 

Calculation of Expected Frequency 

Total of 

Latency 

Total Type 

(Fog or Cloud) 

Expected 

Frequency 

Expected 

Frequency 

30 28 (30 * 28) / 56 15 

26 28 (26 * 28) / 56 13 

30 28 (30 * 28) / 56 15 

26 28 (26 * 28) / 56 13 

 

Table 4.14:2 Calculation 

Observed and Expected Frequency for the calculation of 2 

Observed 

Frequency (OF) 

Expected 

Frequency (EF) 
(OF - EF)2 

(OF - EF)2 / 

EF 

20 15 25 1.67 

8 13 25 1.92 

10 15 25 1.67 

18 13 25 1.92 
  Total () 7.18 

 

Degree of Freedom = (r-1) * (c-1) 

           = (2-1) * (2-1) 

                                 = 1 

Table value @ 5% level of significance = 3.841 

Therefore, 

The calculated value of Chi-Square is found to be 7.18. 

The tabulated value of Chi-Square is found to be 3.841. 
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Accordingly, table 4.14 represents the calculation of Chi-Square test value using the 

observed and expected frequencies. The results confirm that the calculated value of 

Chi-Square 7.18 is greater than the tabulated value of 3.841 at a 5% level of 

significance. So, it is clear that the null hypothesis is accepted. 

It concludes that there is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure latency. A 

notable contrast in performance, measured by latency, emerged between the 

SMART FOG protocol-based and cloud-based systems. The findings reveal that the 

SMART FOG system exhibited superior performance with notably shorter latency 

compared to its cloud-based counterpart. 

H03: There is no significant difference between SMART FOG protocol-based 

system and cloud-based system based on the performance measure energy 

consumed. 

An alternative hypothesis is as follows  

Ha3: There is significant difference between SMART FOG protocol-based system 

and cloud-based system based on the performance measure energy consumed. 
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Figure 4.4: Fog Vs Cloud System Based on Energy Consumption (Joules)

Figure 4.4, shows a comparative analysis between Fog fog-based system and Cloud-

based system based on reduction in energy consumption as shown below confirming 

that there is a large reduction in energy consumption with the use of a Smart Fog 

based system as compared to Cloud-based systems. In Fog system 10:5, 5:5, 4:5, 

4:4, 3:5, 2:5, 2:4, 2:3, 2:2, 1:5, 1:4, 1:3, 1:2, and 1:1 there is a large reduction in 

energy consumption such as 273694.729, 384391.984, 316112.779, 331766.905, 

211288.876, 177375.370, 137333.715, 96247.432, 129245.955, 96035.138, 

103230.811, 53272.127 and 36660.736 respectively.  
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Table 4.15: Energy Consumption Reduced due to Fog Computing Environment 

 

 

Table 4.15 shows that The Smart Fog system 10:5 which means 10 areas and 5 

cameras takes a lower energy consumption of 2903894.713 as compared to the cloud 

system 10:5 with an energy consumption of 3177589.443. The experimental 

outcomes are further represented or categorized into very high to very low as shown 

below in the crosstabulation table. 

Table 4.16 shows that energy consumption ranges for both FOG SYSTEM and 

CLOUD SYSTEM are tailored to categorize their respective usage levels 

effectively. FOG SYSTEM's categories range from "Very High" (below -1150.0000) 

for extremely low consumption to "Very Low" (400.0000 to 400000.0000) for 

higher usage scenarios. In contrast, CLOUD SYSTEM starts with "Very Low" 

(below -1550.0000) and goes up to "Very High" (400.0000 to 400000.0000). 

System

Energy Consumed 

(Fog)

Energy Consumed 

(Cloud)

Energy Consumption Reduced 

Using Fog

Fog/Cloud-1:1 2666906.9783 2703567.7143 36660.736

Fog/Cloud-1:2 2670956.3531 2724228.4804 53272.127

Fog/Cloud-1:3 2668402.4564 2771633.2679 103230.811

Fog/Cloud-1:4 2668904.0258 2764939.1634 96035.138

Fog/Cloud-1:5 2669934.3309 2799180.2862 129245.955

Fog/Cloud-2:2 2668603.1406 2764850.5729 96247.432

Fog/Cloud-2:3 2670441.5028 2807775.2177 137333.715

Fog/Cloud-2:4 2671749.8597 2849125.2299 177375.370

Fog/Cloud-2:5 2675762.8380 2887051.7140 211288.876

Fog/Cloud-2:6 2928104.6330 2926944.7498 -1159.883

Fog/Cloud-2:7 2969367.4582 2968703.5879 -663.870

Fog/Cloud-2:8 3009438.8046 3007902.8161 -1535.989

Fog/Cloud-2:9 3048411.7523 3048899.5858 487.834

Fog/Cloud-2:10 3089402.5999 3088658.5915 -744.008

Fog/Cloud-3:5 2677098.6434 2993796.5055 316697.862

Fog/Cloud-3:6 3049029.0903 3048668.7878 -360.303

Fog/Cloud-3:10 3178035.5090 3176881.5438 -1153.965

Fog/Cloud-4:4 2676983.1865 3008750.0915 331766.905

Fog/Cloud-4:5 2773838.5932 3089951.3720 316112.779

Fog/Cloud-4:10 3177518.9069 3177179.7693 -339.138

Fog/Cloud-5:5 2792816.8478 3177208.8314 384391.984

Fog/Cloud-5:10 3177556.9957 3177196.9814 -360.014

Fog/Cloud-6:6 3176917.6581 3177369.9354 452.277

Fog/Cloud-6:10 3177409.1509 3177226.8895 -182.261

Fog/Cloud-7:10 3177797.6631 3177507.3385 -290.325

Fog/Cloud-8:10 3177042.9305 3177065.2212 22.291

Fog/Cloud-9:9 3177160.0221 3177118.2621 -41.760

Fog/Cloud-10:5 2903894.7132 3177589.4426 273694.729
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Table 4.16: Classification of Fog and Cloud for Energy Consumption 

O

bs

. 

Fog 

System 

Energy 

Consum-

ption 

Rank 
Cloud 

System 

Energy 

Consum-

ption 

Rank 

1 Fog-1:1 2666906.98 Very Low Cloud-1:1 2703567.71 Very High 

2 Fog-1:2 2670956.35 Very Low Cloud-1:2 2724228.48 Very High 

3 Fog-1:3 2668402.46 Very Low Cloud-1:3 2771633.27 Very High 

4 Fog-1:4 2668904.03 Very Low Cloud-1:4 2764939.16 Very High 

5 Fog-1:5 2669934.33 Very Low Cloud-1:5 2799180.29 Very High 

6 Fog-2:2 2668603.14 Very Low Cloud-2:2 2764850.57 Very High 

7 Fog-2:3 2670441.50 Very Low Cloud-2:3 2807775.22 Very High 

8 Fog-2:4 2671749.86 Very Low Cloud-2:4 2849125.23 Very High 

9 Fog-2:5 2675762.84 Very Low Cloud-2:5 2887051.71 Very High 

10 Fog-2:6 2928104.63 High  Cloud-2:6 2926944.75 Low 

11 Fog-2:7 2969367.46 High  Cloud-2:7 2968703.59 Low 

12 Fog-2:8 3009438.80 Very High Cloud-2:8 3007902.82 Low 

13 Fog-2:9 3048411.75 Very Low Cloud-2:9 3048899.59 Very High 

14 Fog-2:10 3089402.60 High  Cloud-2:10 3088658.59 Low 

15 Fog-3:5 2677098.64 Very Low Cloud-3:5 2993796.51 Very High 

16 Fog-3:6 3049029.09 High  Cloud-3:6 3048668.79 Low 

17 Fog-3:10 3178035.51 High  Cloud-3:10 3176881.54 Low 

18 Fog-4:4 2676983.19 Very Low Cloud-4:4 3008750.09 Very High 

19 Fog-4:5 2773838.59 Very Low Cloud-4:5 3089951.37 Very High 

20 Fog-4:10 3177518.91 High  Cloud-4:10 3177179.77 Low 

21 Fog-5:5 2792816.85 Very Low Cloud-5:5 3177208.83 Very High 

22 Fog-5:10 3177557.00 High  Cloud-5:10 3177196.98 Low 

23 Fog-6:6 3176917.66 Very Low Cloud-6:6 3177369.94 Very High 

24 Fog-6:10 3177409.15 High  Cloud-6:10 3177226.89 Low 

25 Fog-7:10 3177797.66 High  Cloud-7:10 3177507.34 Low 

26 Fog-8:10 3177042.93 Low Cloud-8:10 3177065.22 High  

27 Fog-9:9 3177160.02 High  Cloud-9:9 3177118.26 Low 

28 Fog-10:5 2903894.71 Very Low Cloud-10:5 3177589.44 Very High 

 

Table 4.17 shows, specific ranges are chosen to provide a comprehensive 

understanding of each system's performance across various Energy Consumption 

conditions. By distinguishing between Very Low, Low, High, Very High values, it 

becomes easier to optimize the systems' behaviors, ensuring they operate efficiently 

under different scenarios. 
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Table 4.17: Type of System (Fog or Cloud) and Energy Consumption 

Crosstabulation: Type of System (Fog or Cloud) and Energy 

Consumption 

Count 

Type 

 

Energy Consumption 

Total 

 

Very 

Low Low High 

Very 

High 

System (Fog or 

Cloud) 

Cloud 0 11 1 16 28 

Fog 16 1 10 1 28 

Total 16 12 11 17 56 

 

Table 4.18, shows the approach for calculating the expected Frequency value from 

the row total of energy consumption and column total of type of system (Fog or 

Cloud) also the total number of observations is 56. 

 Table 4.18: Expected Frequency 

Calculation of Expected Frequency  

Total of Energy 

Consumption 

Total Type 

(Fog or Cloud) 

Expected 

Frequency  

Expected 

Frequency 

16 28 (16 * 28) / 56 8.0 

12 28 (12 * 28) / 56 6.0 

11 28 (11 * 28) / 56 5.5 

17 28 (17 * 28) / 56 8.5 

16 28 (16 * 28) / 56 8.0 

12 28 (12 * 28) / 56 6.0 

11 28 (11 * 28) / 56 5.5 

17 28 (17 * 28) / 56 8.5 

Table 4.19: 2 Calculation 

Observed and Expected Frequency for the calculation of 2 

Observed 

Frequency (OF) 

Expected 

Frequency (EF) 
(OF - EF)2 

(OF - EF)2 

/ EF 

0 8.0 64.00 8.00 

11 6.0 25.00 4.17 

1 5.5 20.25 3.68 

16 8.5 56.25 6.62 

16 8.0 64.00 8.00 

1 6.0 25.00 4.17 

10 5.5 20.25 3.68 

1 8.5 56.25 6.62 

  Total () 44.93 
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Degree of Freedom =(r-1) * (c-1) 

          = (2-1) * (4-1) 

                                = 3 

Table value @ 5% level of significance = 7.81 

Therefore, 

The calculated value of Chi-Square is found to be 44.93 

The tabulated value of Chi-Square is found to be 7.81 

Accordingly, table 4.19 represents the calculation of Chi-Square test value using the 

observed and expected frequencies. The results confirm that the calculated value of 

Chi-Square 44.93 is much greater than the tabulated value of 7.81 at a 5% level of 

significance. So, it is clear that the null hypothesis is rejected. 

It concludes that there is significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure energy 

consumed. A notable contrast in performance, measured by energy consumption, 

emerged between the SMART FOG protocol-based and cloud-based systems. The 

findings reveal that the SMART FOG system exhibited superior performance with 

notably lower energy consumption as compared to its cloud-based counterpart. 

H04: There is significant difference between SMART FOG protocol-based system 

and cloud-based system based on the performance measure cost of execution. 

An alternative hypothesis is as follows  

Ha4: There is no significant difference between SMART FOG protocol-based 

system and cloud-based system based on the performance measure cost of 

execution. 
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Figure 4.5: Fog Vs Cloud System Based on Cost of Execution (ms) 

Figure 4.5, shows comparative analysis between Fog based system and Cloud based 

system based on a reduction in cost of execution as shown below confirms that there 

is a large reduction in cost of execution with the use of a Smart fog-based system as 

compared to Cloud-based systems.  
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Table 4.20: Cost of Execution Reduced due to Fog Computing Environment 

 

Table 4.20 shows Fog system 10:5, 6:10, 5:5, 4:5, 4:4, 3:10, 3:5, 2:9, 2:8, 2:6, 2:5, 

2:4, 2:3, 2:2, 1:5, 1:4, 1:3,1:2 and 1:1 there is large reduction in cost of execution 

such as 288022.9075, 99741, 60402, 544960.7869, 448159.0806, 98363.99866, 

448989.3741, 500691.6121, 98355.60871, 399548.7862, 251468.8792, 

194700.9629, 136452.056, 183234.7721, 183234.7721, 136151.0813, 146352.5429, 

75525.04129 and 51974.7142 respectively. The Smart Fog system 10:5 which 

means 10 areas and 5 cameras takes a lower cost of execution of 340103.8971 as 

compared to the cloud system 10:5 with a cost of execution of 628126.8047. The 

experimental outcomes are further represented or categorized into very high to very 

low as shown below in the crosstabulation table. 

Table 4.21 shows the FOG SYSTEM's "Very High" (below -950.0000) indicates 

exceptionally low costs due to optimized processes. "High" (-950.0001 to 30.0000) 

System Cost of execution (Fog)

Cost of execution 

(Cloud)

Cost of execution Reduced Using 

Fog System

Fog/Cloud-1:1 4121.285714 56096 51974.71429

Fog/Cloud-1:2 9862.171429 85387.21272 75525.04129

Fog/Cloud-1:3 6241.457143 152594 146352.5429

Fog/Cloud-1:4 6952.542857 143103.6241 136151.0813

Fog/Cloud-1:5 8413.228571 191648.0007 183234.7721

Fog/Cloud-2:2 6525.971429 142978.0275 136452.056

Fog/Cloud-2:3 9132.257143 203833.2201 194700.9629

Fog/Cloud-2:4 10987.14286 262456.0221 251468.8792

Fog/Cloud-2:5 16676.42857 416225.2147 399548.7862

Fog/Cloud-2:6 374426.8214 472782.4301 98355.60871

Fog/Cloud-2:7 432926.0167 431984.8335 -941.1832586

Fog/Cloud-2:8 469736.0268 487558.4228 17822.39598

Fog/Cloud-2:9 44988.81339 545680.4254 500691.6121

Fog/Cloud-2:10 603102.4201 602047.6234 -1054.796652

Fog/Cloud-3:5 18570.22857 467559.6027 448989.3741

Fog/Cloud-3:6 545864.0268 545353.2181 -510.8087055

Fog/Cloud-3:10 728759.2027 827123.2013 98363.99866

Fog/Cloud-4:4 18406.54286 488759.6234 470353.0806

Fog/Cloud-4:5 155720.5371 603880.4261 448159.889

Fog/Cloud-4:10 728026.8047 727546.002 -480.8026788

Fog/Cloud-5:5 182626.4171 727587.204 544960.7869

Fog/Cloud-5:10 728080.804 727570.404 -510.3999999

Fog/Cloud-6:6 727174.4013 727815.6047 641.2033483

Fog/Cloud-6:10 727871.2013 827612.8054 99741.60402

Fog/Cloud-7:10 728422.0033 728010.404 -411.5993303

Fog/Cloud-8:10 727352.0027 727383.6047 31.60200911

Fog/Cloud-9:9 727518.006 727458.802 -59.20401781

Fog/Cloud-10:5 340103.8971 628126.8047 288022.9075
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suggests moderate expenses with efficient operations, while "Low" (30.0001 to 

90000.0000) represents typical costs within budget. "Very Low" (90001.0000 to 

600000.0000) signifies higher expenses possibly from less optimized setups.  

For the CLOUD SYSTEM, "Very Low" (below -950.0000) and "Low" (-950.0001 

to 31.0000) denote economical costs and efficient management. "High" (31.0001 to 

100000.0000) reflects standard expenses akin to FOG SYSTEM's "Low" range, 

while "Very High" (100000.0001 to 600000.0000) indicates higher costs due to 

complex tasks.  

Table 4.21: Classification of Fog and Cloud for Execution 

Obs. 
Fog 

System 

Cost of 

Execution 

Classi- 

fication 

Cloud 

System 

Cost of 

Execution 
Rank  

1 Fog-1:1 4121.29 Low Cloud-1:1 56096.00 High     

2 Fog-1:2 9862.17 Low Cloud-1:2 85387.21 High     

3 Fog-1:3 6241.46 Very Low Cloud-1:3 152594.00 Very High     

4 Fog-1:4 6952.54 Very Low Cloud-1:4 143103.62 Very High     

5 Fog-1:5 8413.23 Very Low Cloud-1:5 191648.00 Very High     

6 Fog-2:2 6525.97 Very Low Cloud-2:2 142978.03 Very High     

7 Fog-2:3 9132.26 Very Low Cloud-2:3 203833.22 Very High     

8 Fog-2:4 10987.14 Very Low Cloud-2:4 262456.02 Very High     

9 Fog-2:5 16676.43 Very Low Cloud-2:5 416225.21 Very High     

10 Fog-2:6 374426.82 Very Low Cloud-2:6 472782.43 Very High     

11 Fog-2:7 432926.02 High Cloud-2:7 431984.83 Low 

12 Fog-2:8 469736.03 Low Cloud-2:8 487558.42 High     

13 Fog-2:9 44988.81 Very Low Cloud-2:9 545680.43 Very High     

14 Fog-2:10 603102.42 Very High Cloud-2:10 602047.62 Very Low 

15 Fog-3:5 18570.23 Very Low Cloud-3:5 467559.60 Very High     

16 Fog-3:6 545864.03 High Cloud-3:6 545353.22 Low 

17 Fog-3:10 728759.20 Very Low Cloud-3:10 827123.20 Very High     

18 Fog-4:4 18406.54 Very Low Cloud-4:4 488759.62 Very High     

19 Fog-4:5 155720.54 Very Low Cloud-4:5 603880.43 Very High     

20 Fog-4:10 728026.80 High Cloud-4:10 727546.00 Low 

21 Fog-5:5 182626.42 Very Low Cloud-5:5 727587.20 Very High     

22 Fog-5:10 728080.80 High Cloud-5:10 727570.40 Low 

23 Fog-6:6 727174.40 Low Cloud-6:6 727815.60 High     

24 Fog-6:10 727871.20 Very Low Cloud-6:10 827612.81 Very High     

25 Fog-7:10 728422.00 High Cloud-7:10 728010.40 Low 

26 Fog-8:10 727352.00 Low Cloud-8:10 727383.60 High     

27 Fog-9:9 727518.01 High Cloud-9:9 727458.80 Low 

28 Fog-10:5 340103.90 Very Low Cloud-10:5 628126.80 Very High     
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Table 4.22 These classifications help ranges guide cost-effective strategies and 

resource allocation cost of execution based on operational needs. specific ranges are 

chosen to provide a comprehensive understanding of each system's performance 

across various Energy Consumption conditions. By distinguishing between Very 

Low, Low, High, Very High values, it becomes easier to optimize the systems' 

behaviors, ensuring they operate efficiently under different scenarios. 

Table 4.22: Type of System (Fog or Cloud) and Cost of Execution 

Crosstabulation: Type of System (Fog or Cloud) and 

Cost of Execution 

Count 

Type 

 

Cost of Execution 
Total 

 
Very 

Low 
Low High 

Very 

High 

System (Fog 

or Cloud) 

Cloud 1 6 5 16 28 

Fog 16 5 6 1 28 

Total 17 11 11 17 56 

 

Table 4.23 shows the approach for calculating the expected value from the row total 

of cost of execution and column total of type of system (Fog or Cloud) also the total 

number of observations is 56. 

 Table 4.23: Expected Frequency 

Calculation of Expected Frequency  

Total Cost of 

Execution 

Total Type 

(Fog or Cloud) 

Expected 

Frequency 

Expected 

Frequency 

17 28 (17 * 28) / 56 8.5 

11 28 (11 * 28) / 56 5.5 

11 28 (11 * 28) / 56 5.5 

17 28 (17 * 28) / 56 8.5 

17 28 (17 * 28) / 56 8.5 

11 28 (11 * 28) / 56 5.5 

11 28 (11 * 28) / 56 5.5 

17 28 (17 * 28) / 56 8.5 
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Table 4.24: 2 Calculation 

Observed and Expected Frequency for the calculation of 2 

Observed 

Frequency (OF) 

Expected 

Frequency (EF) 
(OF - EF)2 

(OF - EF)2 / 

EF 

1 8.5 56.25 6.62 

6 5.5 00.25 0.05 

5 5.5 00.25 0.05 

16 8.5 56.25 6.62 

16 8.5 56.25 6.62 

5 5.5 00.25 0.05 

6 5.5 00.25 0.05 

1 8.5 56.25 6.62 

  Total () 26.65 
 

Degree of Freedom = (r-1) * (c-1) 

            = (2-1) * (4-1) 

                                  = 3 

Table value @ 5% level of significance = 7.81 

Therefore, 

The calculated value of Chi-Square is found to be 26.65 

The tabulated value of Chi-Square is found to be 7.81 

Accordingly, table 4.24 represents the calculation of the Chi-Square test value using 

the observed and expected frequencies. The results confirm that the calculated value 

of Chi-Square 26.65 is greater than the tabulated value of 7.81 at a 5% level of 

significance. So, it is clear that the null hypothesis is accepted. 

It concludes that there is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure cost of 

execution. A notable contrast in performance, measured by cost of execution, 

emerged between the SMART FOG protocol-based and cloud-based systems. The 

findings reveal that the SMART FOG system exhibited superior performance with a 

notably lower cost of execution as compared to its cloud-based counterpart. 
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H05: There is no significant difference between SMART FOG protocol-based 

system and cloud-based system based on the performance measure of total network 

usage. 

An alternative hypothesis is as follows  

Ha5: There is a significant difference between SMART FOG protocol-based system 

and cloud-based system based on the performance measure of total network usage. 

 

 

Figure 4.6: Fog Vs Cloud System Based on Total Network Usage (B/s) 

Figure 4.6, shows that comparative analysis between Fog-based system and Cloud 

based system based on reduction in total network usage as shown confirms that there 

is large reduction in total network usage with use of Smart Fog based system as 

compared to Cloud-based systems.  
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Table 4.25: Total Network Usage Reduced due to Fog Computing Environment 

 

 

Table 4.25 Total Network Usage Reduced due to Fog Computing Environment Fog 

system10:5, 9:9, 8:10, 5:5, 4:10, 4:5, 4:4, 3:10, 3:5, 2:8, 2:7, 2:5, 2:4, 2:3, 2:2, 1:5, 

1:4, 1:3, 1:2 and 1:1 there is large reduction in total network usage such as 813124, 

100000, 100000, 889585, 100000, 717690, 600582.6, 100000, 560311.2, 200000, 

100000, 376389.8, 300487.8, 226130, 151466.2, 187988.4, 150136.4, 112806.6, 

75270.6, and 38142.7 respectively.  

The Smart Fog system 10:5 which means 10 number of areas and 5 cameras reduces 

total network usage of 233479 as compared to the cloud system 10:5 with high total 

System

Total network 

usage (Fog)

Total network usage 

(Cloud)

Reduction in Total 

Network Usage 

Using Fog System

Fog/Cloud-1:1 2309.9 40452.6 38142.7

Fog/Cloud-1:2 5537.8 80808.4 75270.6

Fog/Cloud-1:3 8357.7 121164.2 112806.5

Fog/Cloud-1:4 11383.6 161520 150136.4

Fog/Cloud-1:5 13887.4 201875.8 187988.4

Fog/Cloud-2:2 10055.6 161521.8 151466.2

Fog/Cloud-2:3 16103.4 242233.4 226130

Fog/Cloud-2:4 22457.2 322945 300487.8

Fog/Cloud-2:5 27266.8 403656.6 376389.8

Fog/Cloud-2:6 484368.2 484368.2 0

Fog/Cloud-2:7 464879.8 564879.8 100000

Fog/Cloud-2:8 545391.4 745391.4 200000

Fog/Cloud-2:9 725903 725903 0

Fog/Cloud-2:10 806414.6 806414.6 0

Fog/Cloud-3:5 44826.2 605137.4 560311.2

Fog/Cloud-3:6 725904.8 725904.8 0

Fog/Cloud-3:10 1015474.4 1115474.4 100000

Fog/Cloud-4:4 44812.4 645395 600582.6

Fog/Cloud-4:5 88728.2 806418.2 717690

Fog/Cloud-4:10 1031034.2 1131034.2 100000

Fog/Cloud-5:5 118114 1007699 889585

Fog/Cloud-5:10 1046594 1046594 0

Fog/Cloud-6:6 1024814.6 1024814.6 0

Fog/Cloud-6:10 1062153.8 1062153.8 0

Fog/Cloud-7:10 1077713.6 1077713.6 0

Fog/Cloud-8:10 1093273.4 1193273.4 100000

Fog/Cloud-9:9 994831 1094831 100000

Fog/Cloud-10:5 233479 1046603 813124
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network usage of 1046603. The experimental outcomes are further represented or 

categorized into very high to very low as shown below in the crosstabulation table.  

Table 4.26 shows the network usage ranges for both FOG SYSTEM and CLOUD 

SYSTEM effectively categorize their activity levels. In FOG SYSTEM, "No 

Change" denotes 0 usage, typical during idle periods. "Low" (38000.0001 to 

150000.0000) indicates moderate usage for regular data exchanges. "Very Low" 

(150000.0001 to 900000.0000) suggests increased activity, possibly due to extensive 

data processing. "High" (900000.0001 to 1000000.0000) represents intensified data 

transfer or operational demands. "Very High" (above 1000000.0000) indicates 

extensive network activity or intensive data processing.  

 

Similarly, in CLOUD SYSTEM, "No Change" signifies 0 usage, "High" 

(38000.0001 to 150000.0000) denotes typical activity levels, "Very High" 

(150000.0001 to 900000.0000) indicates significant traffic, "Low" (900000.0001 to 

1000000.0000) suggests reduced activity, and "Very Low" (above 1000000.0000) 

signifies minimal network use or efficient management. 
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Table 4.26: Classification of Fog and Cloud for Total Network Usage 

Obs 
Fog 

System 

Total 

Network 

Usage 

Rank 
Cloud 

System 

Total 

Network 

Usage 

Rank 

1 Fog-1:1 2309.90 Low Cloud-1:1 40452.60 High 

2 Fog-1:2 5537.80 Low Cloud-1:2 80808.40 High 

3 Fog-1:3 8357.70 Low Cloud-1:3 121164.20 High 

4 Fog-1:4 11383.60 Very Low Cloud-1:4 161520.00 Very High 

5 Fog-1:5 13887.40 Very Low Cloud-1:5 201875.80 Very High 

6 Fog-2:2 10055.60 Very Low Cloud-2:2 161521.80 Very High 

7 Fog-2:3 16103.40 Very Low Cloud-2:3 242233.40 Very High 

8 Fog-2:4 22457.20 Very Low Cloud-2:4 322945.00 Very High 

9 Fog-2:5 27266.80 Very Low Cloud-2:5 403656.60 Very High 

10 Fog-2:6 484368.20 No Change Cloud-2:6 484368.20 No Change 

11 Fog-2:7 464879.80 Low Cloud-2:7 564879.80 High 

12 Fog-2:8 545391.40 Very Low Cloud-2:8 745391.40 Very High 

13 Fog-2:9 725903.00 No Change Cloud-2:9 725903.00 No Change 

14 Fog-2:10 806414.60 No Change Cloud-2:10 806414.60 No Change 

15 Fog-3:5 44826.20 Very Low Cloud-3:5 605137.40 Very High 

16 Fog-3:6 725904.80 No Change Cloud-3:6 725904.80 No Change 

17 Fog-3:10 1015474.40 Low Cloud-3:10 1115474.40 High 

18 Fog-4:4 44812.40 Very Low Cloud-4:4 645395.00 Very High 

19 Fog-4:5 88728.20 Very Low Cloud-4:5 806418.20 Very High 

20 Fog-4:10 1031034.20 Low Cloud-4:10 1131034.20 High 

21 Fog-5:5 118114.00 Very Low Cloud-5:5 1007699.00 Very High 

22 Fog-5:10 1046594.00 No Change Cloud-5:10 1046594.00 No Change 

23 Fog-6:6 1024814.60 No Change Cloud-6:6 1024814.60 No Change 

24 Fog-6:10 1062153.80 No Change Cloud-6:10 1062153.80 No Change 

25 Fog-7:10 1077713.60 No Change Cloud-7:10 1077713.60 No Change 

26 Fog-8:10 1093273.40 Low Cloud-8:10 1193273.40 High 

27 Fog-9:9 994831.00 Low Cloud-9:9 1094831.00 High 

28 Fog-10:5 233479.00 Very Low Cloud-10:5 1046603.00 Very High 

 

Table 4.27 These classifications help ranges guide cost-effective strategies and 

resource allocation cost of execution based on Total Network Usage. specific ranges 

are chosen to provide a comprehensive understanding of each system's performance 

across various Energy Consumption conditions. By distinguishing between Very 

Low, Low, High, Very High values, it becomes easier to optimize the systems' 

behaviors, ensuring they operate efficiently under different scenarios. 
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Table 4.27: Type of System (Fog or Cloud) and Total Network Usage 

Crosstabulation: Type of System (Fog or Cloud) and Total Network Usage 

Count 

Type 

Total Network Usage 

Total Very 

Low 
Low 

No 

Change 
High 

Very 

High 

System (Fog or 

Cloud) 

Cloud 0 0 8 8 12 28 

Fog 12 8 8 0 0 28 

Total 12 8 16 8 12 56 

 

Table 4.28 shows the approach for calculating the expected value from the row total 

of total network usage and column total of type of system (Fog or Cloud) also the 

total number of observations is 56. 

 Table 4.28: Expected Frequency 

Calculation of Expected Frequency 

Total Network 

Usage 

Total Type 

(Fog or Cloud) 

Expected 

Frequency 

Expected 

Frequency 

12 28 (12 * 28) / 56 6 

8 28 (8 *28) / 56 4 

16 28 (16 * 28) / 56 8 

8 28 (8 * 28) / 56 4 

12 28 (12 * 28) / 56 6 

12 28 (12 * 28) / 56 6 

8 28 (8 * 28) / 56 4 

16 28 (16 * 28) / 56 8 

8 28 (8 * 28) / 56 4 

12 28 (12 * 28) / 56 6 

 

Table 4.29: 2 Calculation 

Observed and Expected Frequency for the calculation of 2 
Observed 

Frequency (OF) 
Expected 

Frequency (EF) 
(OF - EF)2 

(OF - EF)2 / 

EF 

0 6 36 6.00 

0 4 16 4.00 

8 8 0 0.00 

8 4 16 4.00 

12 6 36 6.00 

12 6 36 6.00 

8 4 16 4.00 

8 8 0 0.00 

0 4 16 4.00 

0 6 36 6.00 

    Total () 30.00 
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Degree of Freedom = (r-1) * (c-1) 

           = (2-1) * (5-1) 

                                 = 4 

Table value @ 5% level of significance = 9.49 

Therefore, 

The calculated value of Chi-Square is found to be 30.00. 

The tabulated value of Chi-Square is found to be 9.49 

Accordingly, table 4.29 represents the calculation of the Chi-Square test value using 

the observed and expected frequencies. The results confirm that the calculated value 

of Chi-Square 30 is much greater than the tabulated value of 9.49 at a 5% level of 

significance. So, it is clear that the null hypothesis is rejected. 

It concludes that there is a significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure of total 

network usage. A notable contrast in performance, measured by total network usage, 

emerged between the SMART FOG protocol-based and cloud-based systems. The 

findings reveal that the SMART FOG system exhibited superior performance with 

notably lower total network usage as compared to its cloud-based counterpart. 

H06: There is a significant difference between SMART FOG protocol-based system 

and cloud-based system based on the performance measure computational power 

consumed. 

An alternative hypothesis is as follows  

Ha6: There is no significant difference between SMART FOG protocol-based 

system and cloud-based system based on the performance measure computational 

power consumed. 

The comparative analysis between Fog based system and Cloud based system based 

on a reduction in computational power consumed as shown below confirms that 

there is large reduction in computational power consumed with use of Smart Fog 

based system as compared to cloud-based systems.  
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Figure 4.7: Fog Vs Cloud System Based on Computational Power (W) 

 

Figure 4.7, shows there is a large reduction in computational power consumed in all 

cases for Fog system as compared to cloud-based system so based on the results it 

can be concluded that there is a significant difference between SMART FOG 

protocol-based system and cloud-based system based on the performance measure 

computational power consumed by Fog devices in comparison to Cloud devices. 
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Table 4.30: Computational Power Reduced due to Fog Computing Environment 

 

Figure 4.30 shows that The Smart Fog system 10:5 which means 10 areas and 5 

cameras reduces computational power of 198917.0991 as compared to the cloud 

system 10:5 with a high computational power of 251982.8428. The experimental 

outcomes are further represented or categorized into very high to very low as shown 

below in the crosstabulation table.  

 

 

 

System Devices

Computational Power 

Consumed (Cloud)

Computational Power 

Consumed (Fog)

Reduction in 

Computational Power by 

Fog  

Fog/Cloud-1:1 214499.73 166866.599 47633.131

Fog/Cloud-1:2 216031.3185 170536.7029 45494.61562

Fog/Cloud-1:3 219790.5181 166867.599 52922.91914

Fog/Cloud-1:4 219259.6757 173085.1916 46174.48403

Fog/Cloud-1:5 221974.9967 166868.599 55106.39769

Fog/Cloud-2:2 219252.6504 173079.6459 46173.00457

Fog/Cloud-2:3 222656.5748 166869.599 55786.97577

Fog/Cloud-2:4 225935.6307 178355.2394 47580.39134

Fog/Cloud-2:5 228943.2009 166870.599 62072.60192

Fog/Cloud-2:6 232106.7187 183226.7413 48879.97732

Fog/Cloud-2:7 235418.1945 166871.599 68546.59552

Fog/Cloud-2:8 238526.6933 188294.7163 50231.97703

Fog/Cloud-2:9 241777.7372 166872.599 74905.13815

Fog/Cloud-2:10 244930.6263 193350.0278 51580.59848

Fog/Cloud-3:5 237408.0629 166873.599 70534.46388

Fog/Cloud-3:6 241759.4349 190846.6661 50912.76876

Fog/Cloud-3:10 251926.7064 166874.599 85052.10742

Fog/Cloud-4:4 238593.8823 188347.7557 50246.12653

Fog/Cloud-4:5 245033.1438 166875.599 78157.5448

Fog/Cloud-4:10 251950.3557 198891.4536 53058.90215

Fog/Cloud-5:5 251952.6603 166876.599 85076.06133

Fog/Cloud-5:10 251951.7206 198892.531 53059.18959

Fog/Cloud-6:6 251965.4359 166877.599 85087.83688

Fog/Cloud-6:10 251954.0923 198894.4033 53059.68905

Fog/Cloud-7:10 251976.3319 166878.599 85097.73295

Fog/Cloud-8:10 251941.272 198884.2828 53056.98919

Fog/Cloud-9:9 251945.4782 166879.599 85065.87919

Fog/Cloud-10:5 251982.8428 198917.0991 53065.74369
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Table 4.31 shows that the computational power consumed ranges for both FOG 

SYSTEM and CLOUD SYSTEM effectively categorize their operational intensity. In 

FOG SYSTEM, "Low" (45000.0000 to 48000.0000) signifies modest computational 

demands, likely involving basic processing tasks. "Very Low" (48000.0001 to 

86000.0000) indicates slightly higher power consumption, potentially due to more 

complex computations or increased workload. Moving to "High" (86000.0001 to 

100000.0000), it denotes significant computational power usage, indicative of 

intensive processing requirements or larger-scale operations. "Very High" (above 

100000.0000) suggests extensive power consumption, possibly involving complex 

simulations or heavy data analytics.  

Similarly, in CLOUD SYSTEM, "High" (45000.0000 to 48000.0000) and "Very 

High" (48000.0001 to 86000.0000) reflect varying degrees of computational intensity. 

"Low" (86000.0001 to 100000.0000) suggests reduced demands, while "Very Low" 

(above 100000.0000) indicates minimal power usage or highly efficient 

computational management.  
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Table 4.31: Classification of Fog and Cloud for Computational Power 

Obs. 
Fog 

System 

Compu-

tational 

Power 

Rank 
Cloud 

System 

Compu-

tational 

Power 

Rank 

1 Fog-1:1 166866.60 Low  Cloud-1:1 214499.73 High 

2 Fog-1:2 170536.70 Low  Cloud-1:2 216031.32 High 

3 Fog-1:3 166867.60 Very Low Cloud-1:3 219790.52 Very High 

4 Fog-1:4 173085.19 Low  Cloud-1:4 219259.68 High 

5 Fog-1:5 166868.60 Very Low Cloud-1:5 221975.00 Very High 

6 Fog-2:2 173079.65 Low  Cloud-2:2 219252.65 High 

7 Fog-2:3 166869.60 Very Low Cloud-2:3 222656.57 Very High 

8 Fog-2:4 178355.24 Low  Cloud-2:4 225935.63 High 

9 Fog-2:5 166870.60 Very Low Cloud-2:5 228943.20 Very High 

10 Fog-2:6 183226.74 Very Low Cloud-2:6 232106.72 Very High 

11 Fog-2:7 166871.60 Very Low Cloud-2:7 235418.19 Very High 

12 Fog-2:8 188294.72 Very Low Cloud-2:8 238526.69 Very High 

13 Fog-2:9 166872.60 Very Low Cloud-2:9 241777.74 Very High 

14 Fog-2:10 193350.03 Very Low Cloud-2:10 244930.63 Very High 

15 Fog-3:5 166873.60 Very Low Cloud-3:5 237408.06 Very High 

16 Fog-3:6 190846.67 Very Low Cloud-3:6 241759.43 Very High 

17 Fog-3:10 166874.60 Very Low Cloud-3:10 251926.71 Very High 

18 Fog-4:4 188347.76 Very Low Cloud-4:4 238593.88 Very High 

19 Fog-4:5 166875.60 Very Low Cloud-4:5 245033.14 Very High 

20 Fog-4:10 198891.45 Very Low Cloud-4:10 251950.36 Very High 

21 Fog-5:5 166876.60 Very Low Cloud-5:5 251952.66 Very High 

22 Fog-5:10 198892.53 Very Low Cloud-5:10 251951.72 Very High 

23 Fog-6:6 166877.60 Very Low Cloud-6:6 251965.44 Very High 

24 Fog-6:10 198894.40 Very Low Cloud-6:10 251954.09 Very High 

25 Fog-7:10 166878.60 Very Low Cloud-7:10 251976.33 Very High 

26 Fog-8:10 198884.28 Very Low Cloud-8:10 251941.27 Very High 

27 Fog-9:9 166879.60 Very Low Cloud-9:9 251945.48 Very High 

28 Fog-10:5 198917.10 Very Low Cloud-10:5 251982.84 Very High 

 

Table 4.32 These classifications help ranges guide cost-effective strategies and 

resource allocation cost of execution based on Computational Power. specific ranges 

are chosen to provide a comprehensive understanding of each system's performance 

across various Energy Consumption conditions. By distinguishing between Very 

Low, Low, High, Very High values, it becomes easier to optimize the systems' 

behaviors, ensuring they operate efficiently under different scenarios. 
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Table 4.32: Type of System (Fog or Cloud) and Computational Power 

Type of System (Fog or Cloud) and Computational Power 

Crosstabulation 

Count 

Type 

Computational Power 

Total Very 

Low 
Low High 

Very 

High 

System (Fog 

or Cloud) 

Cloud 0 0 5 23 28 

Fog 23 5 0 0 28 

Total 23 5 5 23 56 

 

Table 4.33 shows the approach for calculating the expected value from the row total 

of computational power and column total of type of system (Fog or Cloud) also the 

total number of observations is 56. 

 Table 4.33: Expected Frequency 

Calculation of Expected Frequency 

Total of Total 

Computational 

Power 

Total Type 

(Fog or 

Cloud) 

Expected 

Frequency 

Expected 

Frequency 

23 28 (23 * 28) / 56 11.50 

5 28 (5 * 28) / 56 02.50 

5 28 (5 * 28) / 56 02.50 

23 28 (23 * 28) / 56 11.50 

23 28 (23 * 28) / 56 11.50 

5 28 (5 * 28) / 56 02.50 

5 28 (5 * 28) / 56 02.50 

23 28 (23 * 28) / 56 11.50 

 

Table 4.34: 2 Calculation 

Observed and Expected Frequency for the calculation of 2 
Observed 

Frequency (OF) 
Expected 

Frequency (EF) 
(OF - EF)2 

(OF - EF)2 

/ EF 

0 11.5 132.25 11.50 

0 2.5 6.25  02.50 

5 2.5 6.25  02.50 

23 11.5 132.25 11.50 

23 11.5 132.25 11.50 

5 2.5 6.25  02.50 

0 2.5 6.25  02.50 

0 11.5 132.25 11.50 

    Total () 56.00 
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Degree of Freedom =(r-1) * (c-1) 

          = (2-1) * (4-1) 

                                = 3 

Table value @ 5% level of significance = 7.81 

Therefore, 

The calculated value of Chi-Square is found to be 56.00 

The tabulated value of Chi-Square is found to be 7.81 

Accordingly, table 4.34 represents the calculation of Chi-Square test value using the 

observed and expected frequencies. The results confirm that the calculated value of 

Chi-Square 56 is greater than the tabulated value of 7.81 at a 5% level of significance. 

So, it is clear that the null hypothesis is accepted. 

This concludes that there is no significant difference between SMART FOG protocol-

based system and cloud-based system based on the performance measure 

computational power. A notable contrast in performance, measured by computational 

power, emerged between the SMART FOG protocol-based and cloud-based systems. 

The findings reveal that the SMART FOG system exhibited superior performance 

with notably lower computational power as compared to its cloud-based counterpart. 

4.5 Multiple Regression Model 

To find the association between energy consumed and several devices, execution 

time, average loop delay, CPU92 delay, latency, cost execution, and total network 

usage multiple regression analysis is being conducted the results of the analysis are 

shown below in the tables. 

The descriptive analysis is shown below in the table 

Table 4.35 shows that the dataset constructed from experimental values encompasses 

comprehensive metrics across fog and cloud computing environments. It includes data 

points for latency, execution time, energy consumption, power consumption, cost of 

execution, and total network usage. Each metric is recorded under varying 

experimental conditions, such as different numbers of tasks and nodes. The dataset is 

 
92 Central Processing Unit 



156 
 

designed to facilitate thorough analysis and evaluation of system performance and 

resource utilization in both fog and cloud computing scenarios. Utilizing 10-fold 

cross-validation ensures rigorous testing and validation of models trained on this 

dataset, enhancing reliability and robustness in assessing the effectiveness of 

computational frameworks in real-world applications. Descriptive and multiple 

regression analyses conducted using Excel provide valuable insights into relationships 

between variables in the dataset.  

Table 4.35: Descriptive Summary of Various Measures 

Descriptive Statistics 

 Mean Std. Deviation N 

Energy Consumed 2906053.09 220658.21 28 

No. of Areas 3.57 00002.54 28 

Number of Cameras Per Area 6.21 00002.89 28 

Execution Time 2686.17 5335.31 28 

Average Loop Delay:  

Motion Object Detector 

 

197.06 

 

0255.13 

 

28 

Average Loop Delay:  

Object Tracker, PTZ93 Control 

 

065.26 

 

0050.46 

 

28 

CPU Delay: Motion Video Stream 001.61 0001.65 28 

CPU Delay: Detected Object 000.15 0000.09 28 

CPU Delay: Object Location 011.93 0059.39 28 

CPU Delay: Camera 002.10 0 28 

Latency 276.03 0283.45 28 

Cost of execution 325306.73 315146.58 28 

Total network usage 466288.21 455181.89 28 

 

The mean value of energy consumed is found to be 2906053.0944 and the standard 

deviation is found to be 220658.21578. 

Table 4.36 shows the energy consumed is considered a dependent variable and No. of 

Area, Number of Cameras Per Area, Execution Time, Average Loop Delay: Motion 

Detector, Object Detector, Object Tracker, Average Loop Delay: Object Tracker, PTZ 

Control, CPU Delay: Motion Video Stream, CPU Delay: Detected Object, CPU 

Delay: Object Location, CPU Delay: Camera, Latency, Cost of execution and Total 

network usage are the independent variables. 

 
93Pan-Tilt-Zoom 
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Table 4.36: Variables Considered & Removed 

Variables Entered/ Removed a 

Model Variables Entered 
Variables 

Removed 
Method 

1 Total network usage, Execution Time, 

CPU Delay: Detected Object, No. of 

Areas, Average Loop Delay: Object 

Tracker, PTZ Control, CPU Delay: 

Motion Video Stream, Number of 

Cameras Per Area, Latency, Cost of 

execution, CPU Delay: Object Location b 

. 

 

Time 

 

 

Enter 

a. Dependent Variable: Energy Consumed 

b. Tolerance = .00 limit reached. 
 

Table 4.37, shows the developed model is shown below in the table which confirms 

there is a strong correlation between the dependent and independent variables as the 

calculated R-Square value is 0.99. 

Table 4.37: Regression Model Summary 

Model Summary b 

M
o
d

el
 

R 
R 

Square 

Adjusted 

R 

Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R 

Square 

Change 

F Change df1 df2 
Sig. F 

Change 

1 .99a .99 .99 9579.24 .99 1430.95 10 17 .00 

a. Predictors: (Constant), Total network usage, Execution Time, CPU Delay: Detected 

Object, No. of Areas, Average Loop Delay: Object Tracker, PTZ Control, CPU Delay: 

Motion Video Stream, Number of Cameras Per Area, Latency, Cost of execution, CPU 

Delay: Object Location 

b. Dependent Variable: Energy Consumed 
 

The statistical analysis of the model shows high goodness-of-fit measures, indicating 

a strong relationship between the dependent variable and the independent variables. 

The coefficient of determination R Square is 0.99, indicating that approximately 

99.9% of the variability in the dependent variable can be explained by the 

independent variables in the model. The adjusted R Square, which accounts for the 

number of predictors in the model, is 0.99, suggesting that the model is a good fit and 

not overfitting the data. The standard error of the estimate is 9579.24, indicating the 

average difference between the observed values and the predicted values by the 

model. 
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Table 4.38: ANOVA Statistics 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1e Regression 1313071347215.98 10 131307134721.59 1430.95 .00b 

Residual 0001559953982.11 17 000091761998.94 1430.91 .00b 

Total 1314631301198.09 27 0131398896720.55 1430.95 .00b 

a. Dependent Variable: Energy Consumed 

b. Predictors: (Constant), Total network usage, Execution Time, CPU Delay: 

Detected Object, No. of Areas, Average Loop Delay: Object Tracker, PTZ 

Control, CPU Delay: Motion Video Stream, Number of Cameras Per Area, 

Latency, Cost of execution, CPU Delay: Object Location 
 

 

Table 4.38 shows the ANOVA Statistics table presents the results of the analysis of 

variance for the model. The mean square for the model is 131,307,134,721.598, which 

represents the variance explained by the independent variables in the model. The F-

statistic is 1430.953, indicating that the variance explained by the model is 

significantly greater than what would be expected by chance alone. The p-value (Sig. 

= .000) is less than the typical significance level of 0.05, indicating that the model's 

overall effect is statistically significant. 

Model 1 

The model finds the association between energy consumed and number of areas, 

number of cameras per area, execution time, average loop delay, CPU delay, latency, 

cost of execution, and total network usage as shown below in the coefficient table and 

model summary table. 

Energy Consumed                            No. of Areas 

Energy Consumed                            No. of Cameras per Area 

Energy Consumed                            Execution Time 

Energy Consumed                            Average Loop Delay 

Energy Consumed                            CPU Delay 

Energy Consumed                            Latency 

Energy Consumed                            Cost of Execution 

Energy Consumed                            Total Network Usage 
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Table 4.39 shows that the coefficient Values represent the impact of each independent 

variable on the dependent variable (Energy Consumed). Among the predictors, 

"Average Loop Delay: Object Tracker, PTZ Control" and "Total network usage" 

exhibit the most substantial influence, with positive coefficients indicating a positive 

relationship with energy consumption. Conversely, "Execution Time" and "Latency" 

demonstrate significant but negative coefficients, suggesting that higher values of 

these variables are associated with lower energy consumption. Other predictors show 

relatively weaker associations with energy consumption. 

Table 4.39: Coefficient Values 

Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standar

dized 

Coefficie

nts 

t Sig. 

B 
Std. 

Error 
Beta   

1 

(Constant) 2647256.69 9801.57 0.007 270.08 0.00 

No. of Areas (X1) 1161.67 2503.32 0.013 .46 0.64 

Number of Cameras 

Per Area (X2) 
-164.37 1693.19 -0.002 -.09 0.92 

Execution Time (X3 4.02 1.58 0.09 2.53 0.02 

Average Loop Delay 

Object Tracker, PTZ 

Control (X4) 

 

731.35 

 

86.66 

 

0.16 

 

8.43 

 

0.00 

CPU Delay: Motion 

Video Stream (X5) 
3779.44 2591.37 0.02 1.45 0.16 

CPU Delay: 

Detected Object (X6) 
7324.10 26165.35 0.01 0.28 0.78 

CPU Delay: Object 

Location (X7) 
-288.19 142.47 -0.07 -2.02 0.06 

Latency (X8) -87.49 26.41 -0.11 -3.31 0.01 

Cost of execution 

(X9) 
0.01 0.02 0.02 0.72 0.48 

Total network usage 

(X10) 
0.45 0.02 0.94 18.54 0.00 

a. Dependent Variable: Energy Consumed (Y) 

 

The variables Execution Time, Average Loop Delay: Object Tracker, PTZ Control, 

Latency, and total network usage are found to be significant as the calculated p-value 

is greater than the standard alpha value of 0.05. 
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Table 4.40: Excluded Measures 

Excluded Variables a 

Model Beta In t Sig. 
Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 Average Loop Delay: Motion 

Detector, Object Detector, Object 

Tracker 

 

b 

 

- 

 

- 

 

- 

 

.00 

a. Dependent Variable: Energy Consumed 

b. Predictors in the Model: (Constant), Total network usage, Execution Time, CPU Delay: 

Detected Object, No. of Areas, Average Loop Delay: Object Tracker, PTZ Control, CPU 

Delay: Motion Video Stream, Number of Cameras Per Area, Latency, Cost of execution, 

CPU Delay: Object Location 
 

Table 4.40 shows that collinearity statistics section shows a tolerance value of 0.00 

for the "Average Loop Delay" variable. A tolerance value of 0 indicates that there is 

perfect collinearity between this independent variable and other variables in the 

model. This suggests a high degree of correlation between "Average Loop Delay" and 

other predictors, which may lead to multicollinearity issues. 

Table 4.41: Residual Statistics of Model 

Residuals Statistics a 

 Minimum Maximum Mean 
Std. 

Deviation 
N 

Predicted 

Value 
2659408.50 3199812.25 2906053.09 220527.25 28 

Residual -22652.21 11547.76 .00 7601.05 28 

Std. Predicted 

Value 
-1.11 1.33 .00 1.00 28 

Std. Residual -2.36 1.21 .00 0.79 28 

a. Dependent Variable: Energy Consumed 
 

Table 4.41 shows that Overall residual statistics provide an understanding of the 

accuracy and variability of the predictions for the "Energy Consumed" dependent 

variable in the model. The model seems to have a reasonably accurate prediction with 

minor variations between observed and predicted values. 
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The mathematical representation of the model: 

Y (Energy Consumption) = 1161.675X1 (No. of Areas) -164.373 X2 (Number of 

Cameras Per Area) + 4.023 X3 (Execution Time) + 731.359 X4 (Average Loop 

Delay: Object Tracker, PTZ Control) + 3779.441 X4 (CPU Delay: Motion Video 

Stream) +7324.104X5 (CPU Delay: Detected Object) - 288.190 X6 (CPU Delay: 

Object Location)-87.494 X7 (Latency) + 0.015 X8 (Cost of execution) +0.456 X9 

(Total network usage) 

4.6 Use of Machine Learning Approaches in Task Scheduling 

Machine learning approaches are playing an increasingly vital role in task scheduling, 

revolutionizing the efficiency and performance of task allocation and resource 

management in cloud computing, edge computing, and IoT environments. These 

techniques offer the ability to predict and forecast task demands, enabling proactive 

resource allocation and reducing bottlenecks. Dynamic task scheduling becomes 

possible with real-time data analysis, ensuring agile adaptations to changing 

conditions. Load balancing benefits from machine learning's insights to distribute 

tasks optimally across resources. Task prioritization becomes smarter, and energy 

efficiency is enhanced by choosing energy-conscious resources. Multi-objective 

optimization enables simultaneous consideration of conflicting objectives, and 

learning from user behaviour facilitates personalized task scheduling. In essence, the 

integration of machine learning in task scheduling empowers intelligent, adaptive, and 

efficient resource allocation, leading to superior system performance, minimized 

response times, and optimal resource utilization across diverse computing 

environments. Mainly in supervised learning classification-based algorithms were 

being used for task scheduling. The algorithms being considered for task scheduling 

were Logistic Regression, IBK, K-Star, and AdaBoostM1. 

Experiment 1: Number of Tasks: 40 and Nodes: 4 

In Experiment 1, the number of tasks was set to 40, and the number of nodes was set 

to 4. The evaluation of the model was performed using 10-fold cross-validation, a 

common technique to assess the performance of machine learning algorithms. In this 

approach, the dataset is divided into 10 subsets, and the model is trained and tested 10 

times, each time using a different subset as the test set and the remaining subsets as 

the training set.  
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4.6.1 Logistic Regression 

Table 4.42, shows that the evaluation of logistic regression through 10-fold cross-

validation, performance measures provide valuable insights into the model's 

classification accuracy and predictive capabilities. Accuracy, precision, recall 

(sensitivity), and F1 score offer comprehensive assessments of the model's correctness 

in classifying instances and its ability to avoid false positives and negatives. 

Table 4.42: Performance Measures for Logistic Regression (LR94) at 10-fold 

Cross-Validation 
 

Measures Values 

Correctly Classified Instances 176 (88%) 

Incorrectly Classified Instances 24 (12%) 

Kappa statistic 0.83 

Mean absolute error 0.0599 

Root mean squared error 0.2353 

Relative absolute error 16.64% 

Root relative squared error 55.47% 

Total Number of Instances 200 

Time taken to build a model: 0.01 seconds 

Table 4.43 Detailed Accuracy by Class: Accuracy class-wise for the LR classifier 

refers to the accuracy of the model in classifying instances within each individual 

class. It provides insights into how well the model performs for each specific class in 

the classification task. 

Table 4.43: Accuracy Class Wise (LR Classifier) 

Sr. 

No. 

TP 

Rate 

FP 

Rate 
Precision Recall 

F-

Measure 
MCC95 

ROC96 

Area 

PRC97 

Area 
Class 

1 0.95 0.04 0.93 0.95 0.94 0.91 0.99 0.99 Node1 

2 0.50 0.02 0.83 0.50 0.63 0.59 0.96 0.78 Node2 

3 1 0.09 0.72 1 0.84 0.81 0.99 0.99 Node3 

4 1 0 1 1 1 1 1 1 Node4 

Wt. 

Avg. 
0.88 0.04 0.89 0.88 0.88 0.84 0.98 0.95  

Table 4.44 shows Confusion Matrix: The confusion matrix provides a detailed and 

clear evaluation of the model's accuracy and misclassification patterns for each class, 

offering valuable insights into the model's classification capabilities for the given 

dataset. 

 
94Logistic Regression 
95Matthews Correlation Coefficient 
96Receiver Operating Characteristic 
97Precision-Recall Curve  
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Table 4.44: Confusion Matrix (LR) 

        a b c d     classified as 

 76 4 0 0 | a = Node1 

5 20 15 0 | b = Node2 

  0 0 40 0 | c = Node3 

  0 0 0 40 | d = Node4 

 

It was found that in case of logistic regression, the correctly classified instances were 

about 88% which was quite higher than the considered classification techniques such 

as IBK and AdaBoostM1. Similarly, the precision, recall, and F-measure values of 

0.89, 0.88, and 0.88 respectively and the FP rate value 0.04. 

4.6.2 IBK (Stratified Cross-Validation: 10-fold) 

The performance of IBK classification algorithm at configuration setting: stratified 

10-fold cross-validation. Accordingly, the performance measures included are 

correctly classified instances, incorrectly classified instances, kappa statistic, mean 

absolute error, root mean squared error, relative absolute error, root relative squared 

error, total number of instances, and time taken to build a model. 

 Table 4.45: Performance Measures for IBK at 10-fold Cross-Validation 

Measures Values 

Correctly Classified Instances 117 (58.5%) 

Incorrectly Classified Instances 83 (41.5%) 

Kappa statistic 0.39 

Mean absolute error 0.21 

Root mean squared error 0.45 

Relative absolute error 58.65% 

Root relative squared error 106.44% 

Total Number of Instances 200 

Time taken to build model:  0.001 seconds 
 

Table 4.45 IBK model was built using 10-fold cross-validation on a dataset containing 

a total of 200 instances. The time taken to build the model was 0.001 seconds, 

indicating the model's efficiency in training. 
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Detailed Accuracy by Class 

Based on table 4.46 which shows accuracy class-wise shown below it can be 

concluded that Node 3 and Node 4 have shown higher precision as compared to other 

two nodes. Similarly, the recall value is found to be higher in case of Node 4 and 

Node 1 with values 1, and 0.95 respectively. 

Table 4.46: Accuracy Class Wise (IBK) 

Sr. No. 
TP 

Rate 

FP 

Rate 
Precision Recall 

F-

Measure 
MCC 

ROC 

Area 

PRC 

Area 
Class 

1 0.95 0.35 0.64 0.95 0.77 0.59 0.66 0.63 Node1 

2 0 0.26 0 0 0 -0.25 0.09 0.16 Node2 

3 0.03 0 1 0.02 0.05 0.14 0.58 0.24 Node3 

4 1 0 1 1 1 1 1 1 Node4 

Wt.Avg. 0.59 0.19 0.65 0.59 0.52 0.41 0.60 0.53  

 

Table 4.47 shows Confusion Matrix: The confusion matrix for the IBK (Instance-

Based k-nearest Neighbor) model shows its performance in classifying instances into 

different classes (Node1, Node2, Node3, and Node4). It reveals that Node1 has 76 

true positives and 4 false positives, while Node2 has all 40 instances misclassified as 

Node1 (false negatives). Node3 has 1 true positive, 2 false positives, and 37 false 

negatives, and Node4 has all 40 instances correctly classified as true positives. The 

matrix provides a comprehensive evaluation of the model's accuracy and 

misclassification patterns for each class, offering valuable insights into its 

classification capabilities using the IBK algorithm. 

                                     Table 4.47: Confusion Matrix (IBK) 

        a b c d     classified as 

 76 4 0 0 | a = Node1 

40 0 0 0 | b = Node2 

  2 37 1 0 | c = Node3 

  0 0 0 40 | d = Node4 
 

Accordingly, it was found that in case of IBK, the correctly classified instances were 

about 58.5% which is quite less showing low level of accuracy as compared with 

other classification techniques such as Logistic Regression, K-Star, and AdaBoostM1. 

Similarly, the precision, recall, and F-measure values of 0.65, 0.58, and 0.51 
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respectively were lower in comparison to other classifiers being considered also the 

mean absolute error value was found to be 0.21, and FP rate value 0.19. 

4.6.3 K-Star (Stratified Cross-Validation: 10-fold) 

The performance measures for the K-Star model at 10-fold cross-validation provide 

valuable insights into its classification accuracy and predictive capabilities. Common 

metrics such as accuracy, precision, recall (sensitivity), and F1 score offer a 

comprehensive assessment of the model's correctness in predicting class labels and its 

ability to avoid false positives and negatives. 

Table 4.48: Performance Measures for K-Star at 10-fold Cross-Validation 
 

Measures Values 

Correctly Classified Instances 182(91%) 

Incorrectly Classified Instances 18 (9%) 

Overall Accuracy 91% 

Kappa statistic 0.87 

Mean absolute error 0.04 

Root mean squared error 0.19 

Relative absolute error 13.54% 

Root relative squared error 44.24% 

Total Number of Instances 200 

Time taken to build model: 0.001 seconds 

 

Table 4.48 shows K-Star model was built using 10-fold cross-validation on a dataset 

containing a total of 200 instances. The time taken to build the model was 0.001 

seconds, indicating the model's efficiency in training. 

Detailed Accuracy by Class 

Based on the table 4.49 accuracy class-wise shown below it can be concluded that 

Node 2, Node 3, and Node 4 have shown higher precision as compared to Node 1. 

Similarly, the recall value is found to be higher in case of Node 1 and Node 2 with 

values 1 and, 1 respectively. 
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Table 4.49: Accuracy Class Wise (K-Star) 

S. 

No. 

TP 

Rate 

FP 

Rate 
Precision Recall 

F-

Measure 
MCC 

ROC 

Area 

PRC 

Area 
Class 

1 1 0.15 0.81 1 0.90 0.83 1 1 Node1 

2 0.575 0 1 0.57 0.73 0.72 1 1 Node2 

3 0.975 0 1 0.97 0.98 0.98 1 1 Node3 

4 1 0 1 1 1 1 1 1 Node4 

Wt. 

Avg. 

0.91 0.06 0.92 0.91 0.90 0.87 1 1  

 

 

Table 4.50 shows Confusion Matrix: The K-Star model's confusion matrix shows 

excellent performance in correctly classifying instances into their respective classes, 

particularly for Node4, with all 40 instances correctly classified. It has minimal 

misclassifications for Node1 and Node3. However, there are 17 misclassifications for 

Node2, where 17 instances were classified as Node1 instead. 

Table 4.50: Confusion Matrix (K-Star) 

a b c d     classified as 

80 0 0 0 | a = Node1 

17 23 0 0 | b = Node2 

1 0 39 0 | c = Node3 

0 0 0 40   | d = Node4 
 

It was found that in case of K-Star classifier being used for task scheduling correctly 

classified instances were about 91% which was quite higher than the considered 

classification techniques such as IBK, Logistic Regression, and AdaBoostM1. 

Similarly, the precision, recall, and F-measure values of 0.927, 0.91, and 0.903 

respectively were higher in comparison to IBK, Logistic Regression, and 

AdaBoostM1 also the mean absolute error value was found to be 0.05 and FP rate 

value 0.04. 

4.6.4 AdaBoostM1 (Stratified Cross-Validation: 10-fold) 

AdaBoostM1 is an ensemble learning method based on table 4.51, AdaBoost 

algorithm, and stratified 10-fold cross-validation is a popular technique used to 

evaluate its performance. In this evaluation, the dataset is divided into ten subsets, 

ensuring that each subset has a similar distribution of classes as the original dataset. 

The AdaBoostM1 model is trained and tested ten times, each time using a different 

subset as the test set and the remaining nine subsets as the training set. 
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Table 4.51: Performance Measures forAdaBoostM1 at 10-fold Cross-Validation 
 

Measures Values 

Correctly Classified Instances 120(60%) 

Incorrectly Classified Instances 80 (40%) 

Kappa statistic 0.41 

Mean absolute error 0.32 

Root mean squared error 0.38 

Relative absolute error 88.46% 

Root relative squared error 88.54% 

Total Number of Instances 200 

Time taken to build a model: 0.03 seconds 

 

The AdaBoostM1 model was built using 10-fold cross-validation on a dataset 

containing a total of 200 instances. The time taken to build the model was 0.03 

seconds which is higher than IBK and K-Star. 

Detailed Accuracy by Class 

Based on table 4.52 shows accuracy class-wise below it can be concluded that Node 

1, Node 2, Node 3, and Node 4 have shown higher precision with value 1. Similarly, 

the recall value is found to be higher in case of Node 1 and Node 2 with values 1 and, 

1 respectively. 

Table 4.52: Accuracy Class Wise (AdaBoostM1) 

S. No. 
TP 

Rate 

FP 

Rate 
Precision Recall 

F-

Measure 
MCC 

ROC 

Area 

PRC 

Area 
Class 

1 1 0.33 0.66 1 0.8 0.66 1 1 Node1 

2 1 0.25 0.5 1 0.66 0.61 1 1 Node2 

3 0 0 - 0 - - 1 1 Node3 

4 0 0 - 0 - - 1 1 Node4 

Weighted 

Avg. 
0.60 0.18 - 0.6 - - 1 1  

 

Table 4.53 shows Confusion Matrix: The confusion matrix for the AdaBoostM1 

model shows perfect performance in correctly classifying instances into their 

respective classes, with 80 instances correctly classified as Node1, 40 instances as 

Node2, 40 instances as Node3, and 40 instances as Node4. There are no 

misclassifications observed in the model's predictions for any of the classes. 
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Table 4.53: Confusion Matrix (AdaBoostM1) 

        ab c d     classified as 

80 0 0 0 | a = Node1 

0 40 0 0 | b = Node2 

 40 0 0 0 | c = Node3 

 0 40 0 0 | d = Node4 

 

Accordingly, it was found that in case of AdaBoostM1 the correctly classified 

instances were about 60% which is quite less showing low level of accuracy as 

compared with other classification techniques such as Logistic Regression and K-Star. 

Similarly, the precision, recall, and F-measure were lower in comparison to other 

classifiers such as Logistic Regression and K-Star and FP rate value 0.18. 

4.6.5 Comparative Analysis of Classification Algorithms 

In the performance-wise analysis of classification algorithms using 10-fold cross-

validation with 40 tasks and 4 nodes, various performance metrics were evaluated to 

assess the effectiveness of the algorithms in classifying instances.  

Experiment 1: Number of Tasks: 40 and Nodes: 4: 

In Experiment 1, the number of tasks was set to 40, and the number of nodes was set 

to 4. The evaluation of the model was performed using 10-fold cross-validation, a 

common technique to assess the performance of machine learning algorithms. In this 

approach, the dataset is divided into 10 subsets, and the model is trained and tested 10 

times, each time using a different subset as the test set and the remaining subsets as 

the training set.  
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Table 4.54: Performance-Wise Analysis of Classification Algorithms  

(10 folds, Number of Tasks: 40 and Nodes: 4) 

Performance 

Measure 

Logistic 

Regression 

K-

Star 
IBK AdaBoostM1 

Accuracy 0.88 0.91 0.58 0.60 

Precision 0.88 0.92 0.65 - 

Recall 0.88 0.91 0.58 0.60 

F-Measure 0.87 0.90 0.51 - 

ROC Area 0.98 1.00 0.60 1.00 

Mean 

absolute error 
0.05 0.04 0.21 0.32 

Execution 

Time Model  
15ms 10ms 10ms 30ms 

 

Based on table 4.54, which provided performance measures, K-Star appears to be the 

best-performing algorithm, achieving the highest accuracy and precision among the 

four. Logistic Regression also shows respectable performance with high accuracy and 

precision. On the other hand, IBK and AdaBoostM1 have lower accuracy scores, 

making them less suitable choices for the given classification tasks. 
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Figure 4.8:  Evaluation of Classifier at 10-fold Cross-Validation based on 

Various Performance Measures 

From the above Figure 4.8, it is clear that Logistic Regression and K-star are the most 

appropriate algorithms for task scheduling while considering the configuration 

setting; cross-validation 10 folds. 
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Cross-validation – 25-fold: In the performance-wise analysis of classification 

algorithms for task allocation and resource management in an IoT environment with 

40 tasks and 4 nodes, using 25-fold cross-validation, the evaluation provides a 

comprehensive understanding of the effectiveness of different algorithms in this 

specific scenario. 

Table 4.55: Performance-Wise Analysis of Classification Algorithms (25 folds, 

Number of Tasks: 40 and Nodes: 4) 
 

Performance 

Measure 

Logistic 

Regression 
K-Star IBK AdaBoostM1 

Accuracy 0.89 0.92 0.64 0.52 

Precision 0.91 0.94 0.68 0.46 

Recall 0.89 0.93 0.64 0.53 

F-Measure 0.89 0.92 0.56 0.46 

ROC Area 0.99 1.00 0.48 0.95 

Mean 

absolute error 
0.05 0.04 0.18 0.32 

Execution 

Time Model 

Building 

15ms 10ms 10ms 35ms 

 

Table 4.55 shows the 25-fold cross-validation involves dividing the dataset of 40 

tasks into 25 equal subsets (folds). Each classification algorithm is trained on 24 folds 

and then tested on the remaining fold. This process is repeated 25 times, with each 

fold serving as the testing set once.  
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Figure 4.9:  Evaluation of Classifier at 25-fold Cross-Validation based on various 

Performance Measures  

 

From the above Figure 4.9, it is clear that Logistic Regression and K-star are the most 

appropriate algorithms for task scheduling with a mean absolute error of 0.044 while 

considering the configuration setting; cross-validation 25 folds. 
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Figure 4.10:  Average Execution Time (ms): 25 folds 

From Figure 4.10, the average execution time of the most appropriate algorithms is 

found to be IBK, K-Star, and Logistic Regression while considering 40 tasks and 4 

nodes and cross-validation 25 folds. These three algorithms as the most appropriate 

ones are based on their ability to achieve satisfactory classification performance while 

offering faster average execution times. The 25-fold cross-validation ensures a robust 

evaluation of the algorithms' performance, considering different subsets of the data for 

training and testing.  

By considering execution time as an important criterion, the analysis aims to select 

algorithms that can handle task allocation and resource management efficiently in 

real-time IoT environments with 40 tasks and 4 nodes. 
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Experiment 2: Number of Tasks: 160 and Nodes: 4 

Cross-validation – 10 folds: The performance-wise analysis of classification 

algorithms for task allocation and resource management in an IoT environment with 

10-fold cross-validation, 160 tasks, and 4 nodes provides valuable insights into the 

effectiveness of different algorithms in this specific scenario. Using the 10-fold cross-

validation, the dataset of 160 tasks is divided into ten equal subsets (folds).  

Table 4.56: Performance-Wise Analysis of Classification Algorithms  

(10 folds,160number of tasks and Nodes: 4) 

Performance 

Measure 

Logistic 

Regression 
K-Star IBK AdaBoostM1 

Accuracy 0.81 0.90 0.25 0.50 

Precision 0.83 0.91 0.26 - 

Recall 0.81 0.90 0.26 0.50 

F-Measure 0.82 0.90 0.26 - 

ROC Area 0.95 0.96 0.50 0.83 

Mean absolute error 0.09 0.07 0.37 0.25 

Execution Time 

Model Building 
1660ms 20ms 20ms 25ms 

 

Each algorithm is trained on 10 folds and tested on the remaining fold. This process is 

repeated ten times, with each fold serving as the testing set once and the results are 

shown above in table 4.56. 
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Figure 4.11:  Evaluation of Classifier at 10-fold Cross-Validation Based on 

Various Performance Measures (Number of Tasks: 160 and Nodes: 4) 
 

Figure 4.11, it is clear that Logistic Regression and K-star are the most appropriate 

algorithms for task scheduling while considering the configuration setting; cross-

validation 10 folds and 160 tasks and 4 nodes. 
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Figure 4.12:  Average Execution Time (ms): 10 folds  

(Number of Tasks: 160 and Nodes: 4) 
 

 

From the Figure 4.12, for average execution time, the most appropriate algorithms are 

found to be IBK and K-Star while considering 160 number of tasks and 4 nodes and 

cross validation 10 folds. In a Fog Computing environment with 160 tasks across 4 

nodes and using 10-fold cross-validation, IBK, and K-Star algorithms are identified as 

optimal based on average execution time known for efficiency in classification tasks, 

both algorithms demonstrate effective task processing and classification with 

relatively low execution times, making them suitable choices for distributed Fog 

Computing scenarios.  
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Cross-validation - 25 folds: In Table 4.34, the performance-wise analysis of 

classification algorithms is presented using 25-fold cross-validation with 160 tasks 

and 4 nodes.  

Table 4.57: Performance-Wise Analysis of Classification Algorithms 

(25 folds, 160 number of tasks and Nodes: 4) 

Performance 

Measure 

Logistic 

Regression 
K-Star IBK AdaBoostM1 

Accuracy 0.89 0.90 0.25 0.47 

Precision 0.90 0.91 0.25 0.47 

Recall 0.89 0.91 0.25 0.47 

F-Measure 0.89 0.91 0.25 0.45 

ROC Area 0.98 0.96 0.50 0.80 

Mean absolute 

error 
0.05 0.07 0.38 0.29 

Execution 

Time Model 

Building 

1860ms 20ms 20ms 25ms 

 

Table 4.57 shows updated performance measures, K-Star remains the best-performing 

algorithm, achieving the highest accuracy and precision among the four. Logistic 

Regression also shows respectable performance with high accuracy and precision 

scores. However, both IBK and AdaBoostM1 have significantly lower accuracy and 

precision values, making them less suitable choices for the given classification tasks. 
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Figure 4.13:  Evaluation of classifier at 25-fold Cross-Validation based on 

Various Performance Measures (Number of Tasks: 160 and Nodes: 4) 
 

Figure 4.13, it is clear that Logistic Regression and K-star are the most appropriate 

algorithms for task scheduling while considering the configuration setting; cross-

validation 25 folds and 160 tasks and 4 nodes. 
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Figure 4.14:  Average Execution Time (ms): 25 folds  

(Number of Tasks: 160 and Nodes: 4) 
 

Based on the above Figure 4.14, average execution time the most appropriate 

algorithms are found to be K-Star and IBK while considering 160 number of tasks and 

4 nodes and cross-validation 25 folds. The consistent performance in minimizing 

average execution time underscores their suitability for real-time task execution and 

classification in resource-constrained environments. This reinforces their selection as 

optimal choices for achieving efficient task processing in Fog Computing systems. 
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4.7 Clustering Algorithms Used for Task Scheduling 

Cloud computing offers several benefits, including immense processing power, ample 

storage, a massive network connecting processing nodes and data sources, and a pay-

per-use approach. Cloud computing is a strong technology that provides these 

paradigms as well as many other benefits such as flexibility, cheaper costs, scalability, 

and ease of software installation. However, despite these benefits, Cloud computing 

has certain disadvantages. Some of the disadvantages include: the client and Cloud 

layer may be geographically separated, which can cause transmission delays; there 

may be a scarcity of resources for task execution; many resources may be idle even if 

tasks must be performed instantly and so on.  

Virtualized Fog computing technology is used to solve these issues. Fog is a layer that 

sits between end users and cloud data centers. Fog computing can be useful for 

executing applications that require low latency and real-time responses, depending on 

the location of the data producer. This layer can include a large number of virtual 

servers to handle incoming requests. "Resource allocation is the systematic approach 

of allocating available resources to the needed Cloud clients over the Internet," 

according to Agarwal, Yadav, and Yadav. The timing and order in which resources 

are allotted are critical for maximizing the benefits of employing a virtual server, 

since the system's throughput may be increased while customers are not overcharged. 

The availability of resources should ensure that high-priority jobs do not wind up at 

the bottom of the task queue. This might result in inefficient utilization of virtual 

servers and possibly company loss. As a result, allocating resources in a prioritized 

manner to maximize profit is a critical and promising study topic. Furthermore, ML, 

an important field, has made significant advances in a variety of academic areas, 

including robotics, neuromorphic computing, computer graphics, NLP98, decision-

making, and speech recognition. Several researches have been presented to look at 

ways to use machine learning to solve fog computing issues. In recent years, there has 

been an increase in the use of ML to improve fog computing applications and deliver 

fog services, such as efficient resource management, security, latency and energy 

reduction, and traffic modeling.  

 
98 Natural Language Processing 



181 
 

There are many different types of fog computing devices, sensors, and objects, and 

each one generates a large amount of data that must be processed. Real-time 

processing has the potential to improve efficiency. In some cases, it may be necessary. 

Sensors, devices, and by sending requests, objects will completely utilize resources. 

As a result, fog computing requires resource management and should be implemented 

with caution. In this section, we looked at studies that used ml algorithms to manage 

fog computing resources. This paper proposes a Scheduling Algorithm which is used 

to schedule tasks at fog level. A task is scheduled to the VM that plays a role in the 

execution of request / response model in fog computing. We use a K-means clustering 

algorithm for scheduling fog devices. The default resource scheduler in the simulator 

equally divides fog device’s resources among all active application modules. 

Clustering makes it easy to find a set of tasks for VM with minimum cost. Therefore, 

the integration of ML method i.e. Clustering in scheduling tasks in fog computing will 

give a better quality of services (QoS) with low execution cost and low network 

usage. The study includes: 

1. Presentation of Clustering Scheduling in Fog Computing.  

2. Implementation of proposed algorithm in iFogsim.  

3. Reduction of Execution Cost.  

Clustering algorithms group data points based on their similarity or proximity. 

Common types include K-means, which partitions data into K clusters; DBSCAN, 

which identifies clusters based on density; and Hierarchical clustering, which builds a 

tree-like structure of nested clusters.  

4.7.1 Canopy Clustering 

Table 4.58 shows that Canopy Clustering is a pre-processing technique used in data 

clustering to reduce the computational complexity of subsequent clustering 

algorithms. It acts as a data summarization step by creating overlapping regions 

(canopies) that cover subsets of data points based on a similarity threshold. Data 

points falling within each canopy are then passed to another clustering algorithm for 

further refinement. 
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Table 4.58: Accuracy Canopy Clustering 

Measures Values 

Correctly Classified Instances 149 (74.5%) 

Incorrectly Classified Instances 51 (25.5%) 

Overall Accuracy 74.5% 

Total Number of Instances 200 

Time taken to build a model 0.001 seconds 
 

Figure 4.15, shows that the accuracy results for Canopy Clustering show that the 

model correctly classified 149 instances, representing 74.5% of the total instances in 

the dataset. There were 51 instances misclassified, amounting to 25.5% error. The 

overall accuracy of 74.5% indicates its effectiveness in classifying data points, and the 

model was built efficiently in just 0.001 seconds for a total of 200 instances. 

 

Figure 4.15:  Overall Accuracy Canopy Clustering 

Accordingly, Figure 4.15, it was found that in case of Canopy Clustering the correctly 
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accuracy as compared with other clustering techniques such as Hierarchical 

Clustering and Density-Based Clustering. Similarly, the precision, recall, and F-

measure values of 0.75, 0.70, and 0.70 respectively were higher in comparison to 

other clustering techniques such as Hierarchical Clustering and Make Density Based 

Clustering.  

Table 4.59: Performance Measure Class Wise (Canopy Clustering) 

S. 

No. 

n 

(truth) 

n 

(classified) 
Accuracy Precision Recall 

F1 

Score 
Class 

1 86 80 0.77 0.75 0.70 0.72 Node1 

2 30 40 0.76 0.28 0.37 0.31 Node2 

3 44 40 0.96 0.95 0.86 0.90 Node3 

4 40 40 1.00 1.00 1.00 1.00 Node4 

 

Based on the above table 4.59, it can be concluded that Node 4 has shown higher 

precision with value 1. Similarly, the recall value is found to be higher in case of 

Node 1. 

 

Figure 4.16: Class-wise performance measures 
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As shown in Figure 4.16, Class-wise performance measures the accuracy of the Node 

4 is found to be highest with the value of 1 whereas the accuracy of Node 2 is found 

to be lowest with the value of 0.28. 

                                Table 4.60: Confusion Matrix (Canopy Clustering) 

0 1 2 3   assigned to cluster 

 60 18 2 0 | Cluster 0: Node1 

 25 11 4 0 | Cluster 1: Node2 

  1 1 38 0 | Cluster 2: Node3 

0 0 0 40 | Cluster 3: Node4 
 

From Table 4.60 the confusion matrix for Canopy Clustering shows the distribution of 

data points across clusters. It reveals correct and incorrect cluster assignments, 

helping assess the algorithm's performance. Cluster 0 (Node1) has 60 correct, 18, and 

2 incorrect assignments; Cluster 1 (Node2) has 25 correct, 11 and 4 incorrect; Cluster 

2 (Node3) has 1 correct, 1 and 38 incorrect; and Cluster 3 (Node4) has 40 correct 

assignments. 

4.7.2 Hierarchical Clustering 

Table 4.61: Overall Accuracy Hierarchical Clustering 

Measures Values 

Correctly Classified Instances 118 (59%) 

Incorrectly Classified Instances 82 (41%) 

Overall Accuracy 38.14% 

Total Number of Instances 200 

Time taken to build a model 0.03 seconds 
 

Table 4.61 the overall accuracy of Hierarchical Clustering is 38.14%, indicating that 

only 38.14% of the instances were correctly classified, while the remaining instances 

were misclassified. This relatively low accuracy suggests that the clustering algorithm 

may not be performing well on the given dataset.  

Table 4.62: Class or Node-wiseHierarchical Clustering Performance Measures 

S. 

No. 

n 

(truth) 

n 

(classified) 
Accuracy Precision Recall 

F1 

Score 
Class 

1 150 74 58 0.97 0.48 0.64 Node1 

2 4 40 78 0.03 0.25 0.05 Node2 

3 39 40 59 0.00 0.00 0.00 Node3 

4 1 40 79 0.03 1.00 0.05 Node4 
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Table 4.62 shows performance metrics for different classes in a classification task. 

Node1 achieved high accuracy 58% and precision 0.97 but lower recall 0.48 and F1 

Score 0.64. Node2 had good accuracy 78% but low precision of 0.03 and recall 0.25.  

 

Figure 4.17:  Class or Node-wiseHierarchical Clustering Performance Measures 

As shown in Figure 4.17, Node3 showed moderate accuracy 59% but had no 

precision, recall, or F1 Score due to zero true positives. Node4 had high accuracy 

79% and recall 1 but low precision 0.03 and F1 Score 0.05. The evaluation highlights 

the varying strengths and weaknesses of each class's classification performance. 

Confusion Matrix: It was found that in case of Hierarchical Clustering the correctly 

classified instances were about 59% which is quite less and shows a low level of 

accuracy as compared with other clustering techniques such as Canopy Clustering. 
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                        Table 4.63: Confusion Matrix (Hierarchical Clustering) 

0 1 2 3   assigned to cluster 

  7220 0 | Cluster 0: Node1 

39 1 0 0 | Cluster 1: Node2 

39 1 0 0 | Cluster 2: Node3 

0 0 391| Cluster 3: Node4 
 

Similarly, From Table 4.63 the precision and F-measure values of 0.02 and 0.04 

respectively were lower in comparison to other clustering techniques.  

4.8.3 Make Density-Based Clustering 

The overall accuracy of Density-Based Clustering is 19.5%, indicating that only 

19.5% of the instances were correctly classified. 

Table 4.64: Overall Accuracy Make Density-Based Clustering 

Measures Values 

Correctly Classified Instances 97 (48.5%) 

Incorrectly Classified Instances 103 (51.5%) 

Overall Accuracy 19.5% 

Total Number of Instances 200 

Time taken to build model 0.01 seconds 

 

From Table 4.64 the classification model achieved an accuracy of 19.5%, with 97 

instances correctly classified and 103 instances incorrectly classified out of a total of 

200 instances. This indicates that the model's performance is relatively poor, as it 

correctly classified less than half of the instances. This low accuracy suggests that the 

clustering algorithm may not be performing well on the given dataset. 



187 
 

 

Figure 4.18:  Overall Accuracy Make Density-Based Clustering 

As shown in Figure 4.18, The Density-Based Clustering model has a relatively high 

error rate, with 103 instances and 51.5% being incorrectly classified. However, it is 

important to note that the model was built quickly, taking only 0.01 seconds to 

complete. 

Table 4.65: Class or Node wise Make Density-Based Clustering Performance 

Measures 

S. 

No. 

n 

(truth) 

n 

(classified) 
Accuracy Precision Recall 

F1 

Score 
Class 

1 50 80 61 0.33 0.52 0.40 Node1 

2 40 40 60 0.00 0.00 0.00 Node2 

3 55 40 65 0.33 0.24 0.27 Node3 

4 55 40 52 0.00 0 0.00 Node4 
 

Table 4.65 Node1 achieved moderate accuracy 61% with relatively low precision 0.33 

and recall 0.52, resulting in an F1 Score of 0.40. Node2 had a similar accuracy 60%, 

but it had no precision, recall, or F1 Score due to zero true positives.  
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Figure 4.19:  Class or Node wise Make Density-Based Clustering Performance 

Measures 
 

As shown in Figure 4.19, it observes that Node3 performed slightly better with higher 

accuracy 65% and precision 0.33, but its recall 0.24, and F1 Score 0.27 remained 

relatively low. Node4 had the lowest accuracy 52%, and its precision, recall, and F1 

Score were all zero.  

Confusion Matrix 

The confusion matrix for the Density-Based Clustering shows the distribution of data 

points across clusters. Cluster 0 (Node1) contains 2,602,628 data points correctly 

assigned to it. Cluster 1 (Node2) contains 1, 101, and 613 data points correctly 

assigned to it. Cluster 2 (Node3) has 130 data points correctly assigned, but 1, 314 

data points were mistakenly placed in other clusters. Cluster 3 (Node4) contains 40 

data points correctly assigned to it. The matrix provides valuable insights into the 

clustering performance, with most data points correctly clustered in Cluster 0 and 

Cluster 1, but some misclassifications in Cluster 2. 
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                     Table 4.66: Confusion Matrix (Make Density-Based Clustering) 

0 1 2 3   assigned to cluster 

2602628 | Cluster 0:  Node1 

1101613 | Cluster 1:  Node2 

130 1314| Cluster 2: Node3 

0 40 0 0| Cluster 3:  Node4 
 

Accordingly, Table 4.66 found that in case of Make Density Clustering the correctly 

classified instances were about 48.5% which is quite low and shows a low level of 

accuracy as compared with other clustering techniques such as Hierarchical 

Clustering and Canopy Clustering. Similarly, the precision, recall, and F-measure 

values were lower in comparison to other clustering techniques such as Hierarchical 

Clustering and Canopy Clustering.  
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Chapter-5 
Allocation and Scheduling of Computational Power 

INTROD UCT ION 

 

5.1 Task Offloading  

5.2 Task Offloading and Resource Management System  

5.3 Comparative Analysis Based on Cross-Validation 10 Folds  

5.4 Comparative Analysis Based on Cross-Validation 20 Folds  

5.5 Comparative Analysis Based on Split 33%  

5.6 Overall Performance of Classification Algorithms   

 

  



191 
 

The task offloading & allocation and scheduling of computational power is going to 

go through the process of allocating and scheduling the computing resources that are 

shared among IoT devices. The many different categorization algorithms that are 

based on machine learning are now being investigated, and the most effective 

methods that are most suitable for fog computing are being identified. During testing, 

the impact that the proposed work would have on the latency issue that the existing 

system is experiencing will be evaluated. The implementation of a SMART FOG 

protocol-based approach to the creation of a fog environment that enables the sharing 

of computing resources with IoT devices is the major emphasis of this research work. 

5.1 Task Offloading 

Intelligent systems and smart applications that are self-sufficient, adaptable, and 

knowledge-based are currently being created. Among them are aerospace, healthcare, 

IoT, emergency and disaster management, and mobile apps, which are revolutionizing 

the computer industry. Applications with a high number of expanding devices have 

made the centralized cloud existing design unworkable. Despite the usage of 5G 

technology, delay-sensitive apps and the cloud cannot operate simultaneously owing 

to certain characteristics, such as latency, bandwidth, reaction time, etc., surpassing 

threshold levels. The use of middleware demonstrates that it is a more effective way 

to address these problems and yet adhere to the strict rules for job offloading. 

Middleware that uses fog computing is advised in this due to the services being 

offered at the network's edge, delay-sensitive applications can be efficiently used with 

this study article. Contrarily, fog nodes have a finite number of resources, which 

means they might not be able to handle all jobs, particularly those from computation-

intensive applications. Moreover, fog is not a replacement for the cloud but rather an 

addition to it. Both technologies function similarly and provide services by job 

requirements, although fog computing is closer to the devices than the cloud is. The 

issue occurs when a decision must be made on what should be offloaded: data, 

particularly where to offload the computer or application in the cloud or the fog as 

well as how much to offload. When it comes to task-related characteristics like task 

size, duration, arrival rate, and needed resources, fog-cloud collaboration is stochastic. 
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Figure 5.1: Proposed Task Offloading Management System (Li, 2019) 

To better utilize the resources at the fog and cloud to improve QoS, dynamic task 

offloading becomes essential. Due to the complexity of this job-offloading policy 

creation, the research work addresses this issue and suggests an intelligent task-

offloading model.  

5.2 Task Offloading and Resource Management System 

The Task Offloading & Resource Management System is a sophisticated framework 

designed to optimize task allocation and resource distribution within an IoT and fog 

computing environment. By leveraging real-time monitoring, machine learning-based 

analysis, and a policy repository for offloading criteria, the system intelligently 

determines when and where to offload computational tasks from IoT devices to fog 

nodes. Efficient resource management ensures that tasks are allocated to the most 

suitable nodes based on factors such as task urgency and available resources, leading 

to reduced latency and improved overall system performance. Through rigorous 

performance evaluation, the system ensures the reliability and effectiveness of the 

classification algorithms used for task allocation, contributing to seamless task 

distribution and optimal resource utilization throughout the network. The system 

consists of the following five main characteristics 
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The system consists of the following five main characteristics: 

1. Task offloading criteria details: policy repository 

2. Status of Fog layer: devices 

3. Analysing the offloading and resource allocation using ML – approaches like 

various classification algorithms. 

4. Using various performance measures to evaluate classification algorithms. 

5. Suggest the best predictive construct. 

The system comprises five main characteristics: a policy repository for task 

offloading criteria details, real-time monitoring of the fog layer status through 

devices, machine learning-based analysis using various classification algorithms to 

determine task offloading and resource allocation decisions, evaluation of 

classification algorithms using multiple performance measures, and the suggestion of 

the best predictive construct. These features together enable efficient task allocation, 

resource utilization, and decision-making in IoT and fog computing environments, 

optimizing system performance and improving overall efficiency. 

Experimental Setup 

The iFogSim simulator is being used for developing the Smart Fog environment. The 

dataset is being constructed recording the various values of attributes like No. of Fog 

system, Areas, Number of Cameras Per Area, Execution Time, ALD: 

motion_detector, object_detector, object_tracker, ALD: object_tracker, 

PTZ_CONTRO, CPU Delay: MOTION_VIDEO_STREAM, CPU Delay: 

DETECTED_OBJECT, CPU Delay: OBJECT_LOCATION, CPU Delay: CAMERA, 

Latency, Energy Consumed, Cost of execution, Total network usage, MIPS Million 

instructions per second, Number of processing elements, RAM, Priority, Previous 

Time etc.  

Algorithm Executed 

1) Load D 

2) Pre-processing D 

3) Train D, test D, split D 

4) Classification modeling (IBK, K-Star, MLP, Logistic Regression, Bagging…) 

i) Task offloading prediction 

for i =0 to EOF () 
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for j = 0 to (X. length-1) 

calculate Z 

return Z 

p = f (z) 

if (p == 1) 

{ 

offloads to Fog 

}  

Else 

{  

offloads to Cloud  

} 

} 

ii) Evaluation of predictive model using: 

Accuracy ( ) 

 Confusion matrix ( ) 

Average Execution Time ( ) 

 iii) Comparative Analysis: 

  Comparative Eval (IBK, K-Star, MLP, Logistic Regression, 

Bagging…) 

 iv) Identify the most appropriate classifier or predictive model. 

5) Implement the Constructed Predictive Model. 

The suggested fog-cloud intelligent task offloading paradigm is evaluated and 

assessed using a simulated environment for machine learning Weka 3.8.4, a data 

science platform for data scientists, IT specialists, and business executives, has been 

used to carry out the simulation. A variety of machine learning techniques are used to 

train the model, with the recommended approach being LR, along with K-Nearest 

Neighbor, Nave Bayes, Decision Tree, Support Vector Machine, and MLP99. 

 

 

 

 

 
99Multiple Layer Perceptron 
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5.3 Comparative Analysis Based on Cross-Validation 10-Folds 

 

Cross-validation – 10-fold: The 10-fold cross-validation provides a robust estimation 

of each classifier's generalization ability, as it tests the algorithms on different subsets 

of data, ensuring that the results are less sensitive to the specific data partitioning. For 

each fold, the classifiers are trained on nine folds and then tested on the remaining 

fold. This process is repeated ten times, with each fold serving as the testing set 

exactly once.  

Table 5.1: Comparative Analysis of Classifiers Used for Task Offloading and 

Resource Allocation: 10-fold Cross Validation 

Performance 

Measure 

Logistic 

Regression 

K-

Star 
IBK J48 Bagging MLP 

Accuracy 0.82 0.53 0.55 0.75 0.69 0.91 

Kappa Statistic 0.64 0.07 0.10 0.50 0.39 0.82 

TP Rate 0.82 0.54 0.55 0.75 0.35 0.91 

FP Rate 0.18 0.46 0.45 0.25 0.69 0.09 

Precision 0.83 0.54 0.76 0.79 0.30 0.91 

Recall 0.82 0.54 0.55 0.75 0.71 0.91 

F-Measure 0.82 0.53 0.44 0.74 0.69 0.91 

ROC Area 0.81 0.60 0.57 0.79 0.69 0.98 

Mean Absolute 

Error 
0.22 0.44 0.44 0.28 0.85 0.11 

Execution Time 

Model Building 
60ms 20ms 20ms 30ms 30ms 80ms 

 

The performance metrics, such as accuracy, precision, recall, F1 score, and area under 

the receiver operating characteristic ROC curve, are calculated for each fold as shown 

in table 5.1. 

Comparing the performance of the classifier based on Accuracy, Kappa statistics, TP 

rate, FP Rate, Precision, Recall, F-Measure, ROC Area, Mean Absolute Error, and 

Execution Time Model Building used for task offloading and resource allocation 

confirms that at configuration setting of cross-validation 10 folds in case of SMART 

FOG environment. 
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Figure 5.2: Accuracy Value for Classifiers Used in Task Offloading and 

Resource Management (Configuration Setting: Cross Validation-10 folds) 

Figure 5.2, confirms that at configuration setting of cross-validation 10 folds the 

accuracy of MLP classifier with value 0.91 is found to be highest followed by 

Logistic Regression with value 0.82. The other classification algorithms had an 

accuracy of about 0.75 in case of J48 classifier, 0.69, 0.55, and 0.53 in case of 

Bagging, IBK, and K-Star. The most appropriate classifiers based on performance 

measure accuracy were found to be MLP and LR. 
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Figure 5.3: Kappa Statistic Value for Classifiers Used in Task Offloading and 

Resource Management (Configuration Setting: Cross Validation-10 folds) 

 

Figure 5.3, shows the Comparison the performance of the classifier based on Kappa 

statistics used for task offloading and resource allocation in case of SMART FOG 

environment it can be interpreted that a higher Kappa statistics value of 0.82 in case 

of MLP and 0.64 in case of Logistic Regression suggests that they are the better 

classifiers as compared to other classification techniques. 
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Figure 5.4: TP Rate Value for Classifiers Used in Task Offloading and Resource 

Management (Configuration Setting: Cross Validation-10 folds) 

According to figure 5.4, it can be concluded that at the configuration setting of cross-

validation, 10-fold the TP Rate of MLP classifier with value 0.91 is found to be 

highest followed by Logistic Regression with a value of 0.82. The other classification 

algorithms had to have TP Rate of about 0.75 in case of J48 classifier, 0.35, 0.55, and 

0.54 in case of Bagging, IBK, and K-Star. The most appropriate classifiers based on 

performance measure TP rate were found to be MLP and LR.  
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Figure 5.5: FP Rate Value for Classifiers Used in Task Offloading and Resource 

Management (Configuration Setting: Cross Validation-10 folds) 

Figure 5.5, it can be concluded that at the configuration setting of cross-validation 10 

folds the FP Rate of MLP classifier with value 0.09 is found to be lowest followed by 

Logistic Regression with value 0.18. The other classification algorithms had to have 

an FP Rate of about 0.25 in case of J48 classifier, 0.69, 0.45, and 0.46 in case of 

Bagging, IBK, and K-Star which were found to be quite higher. The most appropriate 

classifiers based on performance measure FP rate were found to be MLP and Logistic 

Regression having lesser FP rate values as compared to others. 
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Figure 5.6: Precision Value for Classifiers Used in Task Offloading and Resource 

Management (Configuration Setting: Cross Validation-10 folds) 

Figure 5.6, it can be concluded that at the configuration setting of cross-validation 10 

folds the Precision of MLP classifier with value 0.91 is found to be highest followed 

by Logistic Regression with value 0.83. The other classification algorithms had to 

have a Precision of about 0.79 in case of J48 classifier, 0.30, 0.76, and 0.53 in case of 

Bagging, IBK, and K-Star. The most appropriate classifiers based on performance 

measure Precision were found to be MLP and LR. 

 

0.828

0.537

0.764
0.787

0.304

0.911

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logistic

Regression

K-Star IBK J48 Bagging MLP

Precision



201 
 

 

Figure 5.7: Recall Value for Classifiers Used in Task Offloading and Resource 

Management (Configuration Setting: Cross Validation-10 folds) 

Results as shown in figure 5.7, confirm that at configuration setting of cross-

validation 10 folds the Recall of MLP classifier with value 0.91 is found to be highest 

followed by Logistic Regression with value 0.82. The other classification algorithms 

had to have a Recall of about 0.75 in case of J48 classifier, 0.71, 0.55, and 0.53 in 

case of Bagging, IBK, and K-Star. The most appropriate classifiers based on 

performance measure Recall were found to be MLP and LR.  
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Figure 5.8: F-Measure Value for Classifiers Used in Task Offloading and 

Resource Management (Configuration Setting: Cross Validation-10 folds) 

According the figure 5.8, it can be concluded that at the configuration setting of cross-

validation, 10 folds the F-Measure of MLP classifier with value 0.91 is found to be 

highest followed by Logistic Regression with value 0.82. The other classification 

algorithms had to have an F-Measure of about 0.74 in case of J48 classifier, 0.69, 

0.44, and 0.53 in case of Bagging, IBK, and K-Star. The most appropriate classifiers 

based on performance measure F-Measure were found to be MLP and LR.  
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Figure 5.9: ROC Area Value for Classifiers Used in Task Offloading and 

Resource Management (Configuration Setting: Cross Validation-10 folds) 

Figure 5.9, it can be concluded that at configuration setting of cross-validation 10 

folds, the ROC Area of MLP classifier with value 0.97 is found to be highest followed 

by Logistic Regression with value 0.80. The other classification algorithms had to 

have a ROC Area of about 0.78 in case of J48 classifier, 0.69, 0.57, and 0.60 in case 

of Bagging, IBK, and K-Star. The most appropriate classifiers based on performance 

measure ROC Area were found to be MLP and LR.  
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Figure 5.10: MAE Value for Classifiers Used in Task Offloading and Resource 

Management (Configuration Setting: Cross Validation-10 folds) 

Figure 5.10, it can be concluded that at the configuration setting of cross-validation, 

10 folds the mean absolute error value of MLP classifier with 0.10 is found to be 

lowest followed by Logistic Regression with value 0.21. The other classification 

algorithms had mean absolute error values of about 0.28 in case of J48 classifier, 0.85, 

0.45, and 0.43 in case of Bagging, IBK, and K-Star were found to be quite high. The 

most appropriate classifiers based on performance measure mean absolute error value 

were found to be MLP and LR having lesser mean absolute error values as compared 

to others. 
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Figure 5.11: Average Execution Time for Classifiers Used in Task Offloading 

and Resource Management (Configuration Setting: Cross Validation-10 folds) 

Figure 5.11, it can be concluded that at the configuration setting of cross-validation 10 

folds the average execution time of model building of K-Star and IBK classifier is 

found to be 20 milliseconds which is quite less as compared with other classifiers. 

The other classification algorithms had to have an average execution time of model 

building of about 30ms in case of J48 classifier, 30, 60, and 80ms in case of Bagging, 

LR, and MLP. The most appropriate classifiers based on performance measure 

average execution time of model building were found to be K-Star and IBK.  
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5.4 Comparative Analysis Based on Cross-Validation 20 Folds 

 

In the performance analysis of classification algorithms used for task offloading based 

on 20-fold cross-validation, the evaluation provides a comprehensive understanding 

of each algorithm's effectiveness in handling the task offloading problem. Cross-

validation is a re-sampling technique that partitions the dataset into 20 subsets (folds), 

where each fold serves as both a training set and a testing set.  

Table 5.2: Performance Analysis of Classification Algorithms Used for Task 

Offloading: 20fold Cross-validation 

Performance 

Measure 

Logistic 

Regression 

K-

Star 
IBK J48 Bagging MLP 

Accuracy 0.82 0.48 0.55 0.76 0.64 0.91 

Kappa Statistic 0.64 -0.03 0.10 0.53 0.28 0.82 

TP Rate 0.82 0.48 0.55 0.76 0.64 0.91 

FP Rate 0.17 0.51 0.44 0.23 0.35 0.08 

Precision 0.82 0.48 0.76 0.78 0.65 0.91 

Recall 0.82 0.48 0.55 0.76 0.64 0.91 

F-Measure 0.82 0.47 0.44 0.76 0.63 0.91 

ROC Area 0.79 0.56 0.56 0.80 0.73 0.97 

Mean Absolute 

Error 
0.24 0.47 0.44 0.25 0.36 0.09 

Execution Time 

Model Building 
70ms 20ms 25ms 35ms 40ms 90ms 

Table 5.2, shows that evaluation metrics, such as accuracy, precision, recall, F1 score, 

and area under the receiver operating characteristic ROC curve, are computed for each 

fold to assess the algorithm's performance consistently across different subsets of the 

data. The average performance metrics across all 20 folds provide a robust estimate of 

how well each algorithm generalizes to unseen data as shown in the figure below. 
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Figure 5.12: Accuracy Value for Classifiers Used in Task Offloading and 

Resource Management (Configuration Setting: Cross Validation-20 folds) 

Figure 5.12, confirms that at the configuration setting of cross-validation, 20 folds the 

accuracy of MLP classifier with value 0.91 is found to be highest followed by 

Logistic Regression with value 0.82. The other classification algorithms had to have 

an accuracy of about 0.76 in case of J48 classifier, 0.64, 0.55, and 0.48 in case of 

Bagging, IBK, and K-Star. The most appropriate classifiers based on performance 

measure accuracy were found to be MLP and LR.  
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Figure 5.13: Kappa Statistics Value for Classifiers Used in Task Offloading and 

Resource Management (Configuration Setting: Cross Validation-20 folds) 

Figure 5.13, it shows comparing the performance of classifiers based on Kappa 

statistics used for task offloading and resource allocation in case of SMART FOG 

environment it can be interpreted that a higher Kappa statistics value of 0.82 in case 

of MLP and 0.64 in case of Logistic Regression suggests that they are the better 

classifiers as compared to other classification techniques. 
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Figure 5.14: TP Rate Value for Classifiers Used in Task Offloading and 

Resource Management (Configuration Setting: Cross Validation-20 folds) 

According to figure 5.14, it can be concluded that at configuration setting of cross-

validation 20 folds the TP Rate of MLP classifier with value 0.91 is found to be 

highest followed by Logistic Regression with value 0.82. The other classification 

algorithms had to have a TP Rate of about 0.76 in the J48 classifier, 0.64, 0.55, and 

0.48 in Bagging, IBK, and K-Star. The most appropriate classifiers based on 

performance measure TP rate were found to be MLP and LR.  
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Figure 5.15: TP Rate Value for Classifiers Used in Task Offloading and 

Resource Management (Configuration Setting: Cross Validation-20 folds) 

Figure 5.15, it can be concluded that at the configuration setting of cross-validation, 

20 folds the FP Rate of MLP classifier with value 0.08 is found to be lowest followed 

by Logistic Regression with value 0.17. The other classification algorithms had to 

have an FP Rate of about 0.23 in case of J48 classifier, 0.35, 0.44, and 0.51 in case of 

Bagging, IBK, and K-Star which were found to be quite higher. The most appropriate 

classifiers based on performance measure FP rate were found to be MLP and LR 

having lesser FP rate values as compared to others. 
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Figure 5.16: Precision Value for Classifiers Used in Task Offloading and 

Resource Management (Configuration Setting: Cross Validation-20 folds) 

Figure 5.16, it can be concluded that at the configuration setting of cross-validation 20 

folds the Precision of MLP classifier with value 0.91 is found to be the highest 

followed by Logistic Regression with value 0.82. The other classification algorithms 

had to have a Precision of about 0.78 in case of J48 classifier, 0.65, 0.76, and 0.48 in 

case of Bagging, IBK, and K-Star. The most appropriate classifiers based on 

performance measure Precision were found to be MLP and LR.  
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Figure 5.17: Recall Value for Classifiers Used in Task Offloading and Resource 

Management (Configuration Setting: Cross Validation-20 folds) 

Results as shown in figure 5.17 confirm that at configuration setting of cross-

validation 20 folds the Recall of MLP classifier with value 0.91 is found to be highest 

followed by Logistic Regression with value 0.821. The other classification algorithms 

had to have a Recall of about 0.76 in case of J48 classifier, 0.64, 0.55, and 0.48 in 

case of Bagging, IBK, and K-Star. The most appropriate classifiers based on 

performance measure Recall were found to be MLP and LR.  
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Figure 5.18: F-Measure Value for Classifiers Used in Task Offloading and 

Resource Management (Configuration Setting: Cross Validation-20 folds) 

According to figure 5.18, it can be concluded that at the configuration setting of cross-

validation 20 folds the F-Measure of MLP classifier with value 0.91 is found to be 

highest followed by Logistic Regression with value 0.82. The other classification 

algorithms had to have an F-Measure of about 0.76 in case of J48 classifier, 0.63, 

0.44, and 0.47 in case of Bagging, IBK, and K-Star. The most appropriate classifiers 

based on performance measure F-Measure were found to be MLP and LR.  
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Figure 5.19: ROC Area Value for Classifiers Used in Task Offloading and 

Resource Management (Configuration Setting: Cross Validation-20 folds) 

Figure 5.19, it can be concluded that at the configuration setting of cross-validation 20 

folds, the ROC Area of MLP classifier with value 0.97 is found to be highest followed 

by Logistic Regression with value 0.79. The other classification algorithms have ROC 

Area of about 0.8 in case of J48 classifier, 0.73, 0.56, and 0.56 in case of Bagging, 

IBK, and K-Star. The most appropriate classifiers based on performance measure 

ROC Area were found to be MLP and LR.  
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Figure 5.20: MAE Value for Classifiers Used in Task Offloading and Resource 

Management (Configuration Setting: Cross Validation-20 folds) 

Figure 5.20, it can be concluded that at the configuration setting of cross-validation, 

20 folds the mean absolute error value of MLP classifier with 0.09 is found to be the 

lowest followed by Logistic Regression with value 0.24. The other classification 

algorithms were having mean absolute error value of about 0.25 in case of J48 

classifier, 0.36, 0.44, and 0.47 in case of Bagging, IBK, and K-Star were found to be 

quite high. The most appropriate classifiers based on performance measure mean 

absolute error value were found to be MLP and LR having lesser mean absolute error 

values as compared to others. 
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Figure 5.21: Average Execution Time for Classifiers Used in Task Offloading 

and Resource Management (Configuration Setting: Cross Validation-20 folds) 

Figure 5.21, it can be concluded that at the configuration setting of cross-validation 20 

folds, the average execution time of model building of K-Star and IBK classifier is 

found to be 20 and 25 milliseconds respectively which is quite less as compared with 

other classifiers. The other classification algorithms had to have an average execution 

time of model building of about 35ms in case of J48 classifier, 40, 70, and 90 ms in 

case of Bagging, Logistic Regression, and MLP. The most appropriate classifiers 

based on performance measure average execution time of model building were found 

to be K-Star and IBK.  
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5.5 Comparative Analysis Based on Split 33% 

Classifier mode – Percentage Split Method – 33%: In the performance analysis of 

classification algorithms used for task offloading with the Percentage Split Method 

(also known as the Holdout Method) using a split ratio of 33%, the dataset is divided 

into a training set comprising 67% of the data and a testing set comprising 33% of the 

data. The training set is used to train the classification algorithm, and the testing set is 

used to evaluate its performance.  

Table 5.3: Performance Analysis of Classification Algorithms Used for Task 

Offloading: Percentage Split Method – 33% 

Performance 

Measure 

Logistic 

Regression 

K-

Star 
IBK J48 Bagging MLP 

Accuracy 0.76 0.44 0.73 0.73 0.47 0.68 

Kappa Statistic 0.52 -0.10 0.47 0.47 -0.05 0.36 

TP Rate 0.76 0.44 0.73 0.73 0.47 0.68 

FP Rate 0.23 0.55 0.26 0.26 0.52 0.31 

Precision 0.83 0.44 0.74 0.78 0.47 0.72 

Recall 0.76 0.44 0.73 0.73 0.47 0.68 

F-Measure 0.74 0.43 0.73 0.72 0.47 0.67 

ROC Area 0.86 0.57 0.73 0.73 0.45 0.77 

Mean absolute 

error 
0.23 0.44 0.28 0.26 0.51 0.30 

Execution Time 

Model Building 
30ms 35ms 30ms 35ms 30ms 60ms 

 

Table 5.3, shows that by using a 33% split, a larger portion of the data is allocated to 

training, which allows the algorithm to learn patterns and relationships within the 

data. However, the testing set is still substantial enough to provide a good assessment 

of the algorithm's generalization and performance on unseen data. The results of the 

evaluation are shown below in the figure. 
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Figure 5.22: Accuracy Value for Classifiers Used in Task Offloading and 

Resource Management (Configuration Setting: Split-33%) 

Figure 5.22, confirms that at the configuration setting of split 33% the accuracy of the 

Logistic Regression classifier with value 0.76 is found to be highest followed by IBK 

and J48 with values 0.73 respectively. The other classification algorithms had to have 

an accuracy of about 0.47 in case of Bagging classifier, 0.44 in case of K-Star. The 

most appropriate classifier based on performance measure accuracy was found to be 

Logistic Regression is 0.76 as compared with others. 
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Figure 5.23: Kappa Statistics Value for Classifiers Used in Task Offloading and 

Resource Management (Configuration Setting: Split-33%) 

Figure 5.23, shows that comparing the performance of classifiers used for task 

offloading and resource allocation in SMART FOG environment based on Kappa 

statistics it was found that Logistic Regression with value 0.52 was better as 

compared to other classifiers with Kappa statistics values 0.47, 0.47, 0.36, -0.05, and -

0.10 for IBK, J48, MLP, Bagging, and K-Star respectively. 
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Figure 5.24: TP Rate Value for Classifiers Used in Task Offloading and 

Resource Management (Configuration Setting: Split-33%) 

According to figure 5.24, it can be concluded that at configuration setting spilt 33%, 

the TP Rate of Logistic Regression classifier with value 0.76 is found to be highest 

followed by IBK and J48 with value 0.73. The other classification algorithms had to 

have a TP Rate of about 0.68 in case of MLP classifier, 0.47 and 0.44 for Bagging, 

and K-Star respectively. The most appropriate classifier based on performance 

measure TP rate was found to be Logistic Regression is 0.76.  
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Figure 5.25: FP Rate Value for Classifiers Used in Task Offloading and Resource 

Management (Configuration Setting: Split-33%) 

Figure 5.25, it can be concluded that at a configuration setting split 33%, the FP Rate 

of the Logistic Regression classifier with a value 0.23 is found to be the lowest 

followed by IBK and J48 with a value 0.26. The other classification algorithms had to 

have an FP Rate of about 0.31 in case of MLP classifier, 0.52, and 0.55 in case of 

Bagging and K-Star had to be quite high. The most appropriate classifiers based on 

performance measure FP rate were found to be Logistic Regression, IBK and J48 

having lesser FP rate is 0.55 values as compared to others. 
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Figure 5.26: Precision Value for Classifiers Used in Task Offloading and 

Resource Management (Configuration Setting: Split-33%) 

 

According to figure 5.26, it can be concluded that at the configuration setting spilt 

33%, the Precision score of the Logistic Regression classifier with value 0.83 is found 

to be highest followed by IBK and J48 with value 0.74 and 0.78 respectively. The 

other classification algorithms had to have a Precision of about 0.72 in case of MLP 

classifier, 0.47 and 0.44 for Bagging, and K-Star respectively. The most appropriate 

classifier based on performance measure Precision was found to be Logistic 

Regression is 0.83.  
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Figure 5.27: Recall Value for Classifiers Used in Task Offloading and Resource 

Management (Configuration Setting: Split-33%) 

Figure 5.27, it can be concluded that at configuration setting spilt 33%, the Recall 

score of the Logistic Regression classifier with value 0.76 is found to be highest 

followed by IBK and J48 with value 0.73. The other classification algorithms had to 

have a Recall of about 0.68 in case of MLP classifier, 0.47 and 0.44 for Bagging, and 

K-Star respectively. The most appropriate classifier based on performance measure 

Recall was found to be LR is 0.76.  

 

0.763

0.447

0.737 0.737

0.474

0.684

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Logistic

Regression

K-Star IBK J48 Bagging MLP

Recall



224 
 

 

Figure 5.28: F-Measure Value for Classifiers Used in Task Offloading and 

Resource Management (Configuration Setting: Split-33%) 

According to figure 5.28, it can be concluded that at configuration setting spilt 33%, 

the F-Measure score of the Logistic Regression classifier with value 0.74 is found to 

be highest followed by IBK and J48 with value 0.73 and 0.72 respectively. The other 

classification algorithms had to have an F-Measure of about 0.67 in case of MLP 

classifier, 0.47 and 0.43 for Bagging, and K-Star respectively. The most appropriate 

classifier based on performance measure F-Measure was found to be LR is 0.74.  
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Figure 5.29: ROC Area Value for Classifiers Used in Task Offloading and 

Resource Management (Configuration Setting: Split-33%) 

 

Figure 5.29, it can be concluded that at configuration setting spilt 33%, the ROC Area 

score of the Logistic Regression classifier with value 0.86 is found to be highest 

followed by MLP, IBK and J48 with value 0.77, 0.73 and 0.73 respectively. The other 

classification algorithms had ROC Area scores of about 0.57, 0.45 for K-Star and 

Bagging respectively. The most appropriate classifier based on performance measure 

ROC Area score was found to be LR is 0.86.  
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Figure 5.30: MAE Value for Classifiers Used in Task Offloading and Resource 

Management (Configuration Setting: Split-33%) 

Figure 5.30, it can be concluded that at the configuration setting split 33%, the Mean 

Absolute Error of the Logistic Regression classifier with value 0.23 is found to be the 

lowest followed by IBK and J48 with value 0.28 and 0.26 respectively. The other 

classification algorithms had MAE value of about 0.30 in case of MLP classifier, 0.44 

and 0.51 in case of Bagging and K-Star had to be quite high. The most appropriate 

classifiers based on performance measure MAE value were found to be LR, IBK and 

J48 having lesser MAE values as compared to others. 
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Figure 5.31: Average Execution Time for Classifiers Used in Task Offloading 

and Resource Management (Configuration Setting: Split-33%) 

Figure 5.31, it can be concluded that at configuration setting spilt 33% the average 

execution time of model building of Logistic Regression, IBK and Bagging classifier 

were found to be 30 milliseconds for each which is quite less as compared with other 

classifiers. The other classification algorithms had to have an average execution time 

of model building of about 35ms in case of J48 and K-Star classifier, and 60ms in 

case of MLP. The most appropriate classifiers based on performance measure average 

execution time of model building were found to be Logistic Regression, IBK and 

Bagging. 
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5.6 Overall Performance of Classification Algorithms  

The overall performance of classification algorithms in task offloading and resource 

allocation for IoT and fog computing is an active area of research and development. 

Various algorithms, including decision trees, random forest, support vector machines, 

K-nearest neighbors, neural networks, naive Bayes, and logistic regression, have been 

explored for these tasks, each with its strengths and weaknesses.  

Table 5.4: Overall Performance of Classification Algorithms Used for 

Task Offloading 

Type of 

Performance 

Measure 

Logistic 

Regression 
K-Star IBK J48 Bagging MLP 

Accuracy 0.80 0.48 0.61 0.75 0.60 0.83 

Kappa Statistic 0.60 -0.02 0.23 0.50 0.21 0.67 

TP Rate 0.80 0.49 0.62 0.75 0.49 0.84 

FP Rate 0.20 0.51 0.39 0.25 0.53 0.16 

Precision 0.83 0.49 0.76 0.79 0.48 0.85 

Recall 0.80 0.49 0.62 0.75 0.61 0.84 

F-Measure 0.80 0.48 0.54 0.74 0.60 0.83 

ROC Area 0.82 0.58 0.62 0.77 0.63 0.91 

Mean Absolute 

Error 
0.23 0.45 0.39 0.27 0.58 0.17 

Execution Time 

Model Building  
53.33 25.00 25.00 33.33 33.33 76.67 

Table 5.4, shows that in terms of the Kappa statistic, MLP had the highest value of 

0.67, indicating good agreement between predicted and actual classes. J48 and 

Logistic Regression also showed substantial agreement with Kappa values of 0.50 and 

0.60, respectively. However, IBK 0.23 and Bagging 0.21 had a moderate agreement, 

and K-Star had a negative Kappa statistic -0.02, suggesting lower agreement and 

potential issues with its performance. The evaluation demonstrates the varying 

success and limitations of each algorithm, with Logistic Regression and MLP 

performing relatively well in both accuracy and agreement metrics. 
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Figure 5.32: Overall Accuracy for Classifiers Used in Task Offloading and 

Resource Management  

Figure 5.32, confirms that the overall accuracy of MLP classifier with value 0.83 is 

found to be the highest followed by Logistic Regression with value 0.80. The other 

classification algorithms had to have an overall accuracy of about 0.75 in case of J48 

classifier, 0.60, 0.61, and 0.48 in case of Bagging, IBK, and K-Star. The most 

appropriate classifiers based on performance measure overall accuracy were found to 

be MLP and LR.  
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Figure 5.33: Overall, Kappa Statistics for Classifiers Used in Task Offloading 

and Resource Management  

Figure 5.33, shows a comparison of the performance of classifiers based on overall 

Kappa statistics used for task offloading and resource allocation in case of SMART 

FOG environment it can be interpreted that higher overall Kappa statistics value of 

0.67 in case of MLP and 0.6 in case of MLP and LR suggests that they are the better 

classifiers as compared to other techniques. 
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Figure 5.34: Overall TP Rate for Classifiers Used in Task Offloading and 

Resource Management  

According to figure 5.34, it can be concluded that the overall TP Rate of MLP 

classifier with value 0.84 is found to be the highest followed by Logistic Regression 

with value 0.80. The other classification algorithms had to have an overall TP Rate of 

about 0.75 in case of J48 classifier, 0.49, 0.62, and 0.49 in case of Bagging, IBK, and 

K-Star. The most appropriate classifiers based on performance measure overall TP 

rate were found to be MLP and LR.  
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Figure 5.35: Overall FP Rate for Classifiers Used in Task Offloading and 

Resource Management  

Figure 5.35, it can be concluded that the overall FP Rate of MLP classifier with value 

0.16 is found to be lowest followed by Logistic Regression with value 0.2. The other 

classification algorithms had to have an overall FP Rate of about 0.25 in case of J48 

classifier, 0,53, 0.39, and 0.51 in case of Bagging, IBK, and K-Star which were found 

to be quite higher. The most appropriate classifiers based on performance measure FP 

rate were found to be MLP and LR having lesser overall FP rate values as compared 

to others. 
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Figure 5.36: Overall Precision for Classifiers Used in Task Offloading and 

Resource Management  

Figure 5.36, it can be concluded that the overall Precision of MLP classifier with 

value 0.85 is found to be highest followed by Logistic Regression with value 0.83. 

The other classification algorithms had to have an overall Precision of about 0.79 in 

case of J48 classifier, 0.48, 0.76, and 0.49 in case of Bagging, IBK, and K-Star. The 

most appropriate classifiers based on performance measure overall Precision were 

found to be MLP and LR.  
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Figure 5.37: Overall Recall for Classifiers Used in Task Offloading and Resource 

Management  

Results as shown in figure 5.37 confirm that the overall Recall of MLP classifier with 

value 0.84 is found to be the highest followed by Logistic Regression with value 0.80. 

The other classification algorithms had to have an overall Recall of about 0.75 in case 

of J48 classifier, 0.61, 0.62, and 0.49 in case of Bagging, IBK, and K-Star. The most 

appropriate classifiers based on performance measure overall Recall were found to be 

MLP and LR. 
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Figure 5.38: Overall F-Measure for Classifiers Used in Task Offloading and 

Resource Management  

According to figure 5.38, it can be concluded that the overall F-Measure score of 

MLP classifier with value 0.83 is found to be the highest followed by Logistic 

Regression with value 0.8. The other classification algorithms had to have an overall 

F-Measure score of about 0.74 in case of J48 classifier, 0.6, 0.54, and 0.48 in case of 

Bagging, IBK, and K-Star. The most appropriate classifiers based on performance 

measure overall F-Measure score were found to be MLP and LR.  
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Figure 5.39: Overall, ROC Area for Classifiers Used in Task Offloading and 

Resource Management  

Figure 5.39, It can be concluded that the overall ROC Area of MLP classifier with 

value 0.91 is found to be the highest followed by Logistic Regression with value of 

0.82. The other classification algorithms had to have an overall ROC Area of about 

0.77 in the J48 classifier, 0.63, 0.62, and 0.58 in Bagging, IBK, and K-Star. The most 

appropriate classifiers based on performance measure overall ROC Area were found 

to be MLP and LR.  
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Figure 5.40: Overall, MAE for Classifiers Used in Task Offloading and Resource 

Management  

Figure 5.40, It can be concluded that overall, the mean absolute error value of MLP 

classifier with 0.17 is found to be the lowest followed by Logistic Regression with 

value 0.23. The other classification algorithms had to have mean absolute error values 

of about 0.27 in case of J48 classifier, 0.58, 0.39, and 0.45 in case of Bagging, IBK, 

and K-Star were found to be quite high. The most appropriate classifiers based on 

performance measure mean absolute error value were found to be MLP and LR 

having lesser mean absolute error values as compared to others. 
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Figure 5.41: Overall Average Execution Time for Classifiers Used in Task 

Offloading and Resource Management  

Figure 5.41, it can be concluded that at configuration setting split 33% the average 

execution time of model building of K-Star and IBK classifier is found to be 25 

milliseconds which is quite less as compared with other classifiers. The other 

classification algorithms had to have an average execution time of model building of 

about 33.33 ms in case of J48 classifier, 33.33, 53.33, and 76.67 ms in case of 

Bagging, LR, and MLP. The most appropriate classifiers based on performance 

measure average execution time of model building were found to be K-Star and IBK.  
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In this study, a classification-based intelligent job offloading model is developed in 

the fog-cloud collaboration network. Initially, an optimization issue involving 

offloading is solved by considering the threshold values of the relevant cloud data 

center-related factors. Several application kinds, such as delay-sensitive and 

computation-intensive ones, must precisely complete their intended duties by the 

computing resources they demand, which must be provided accordingly. Second, the 

suggested model uses an intelligent task offloading management system that 

anticipates the incoming tasks produced by various IoT and mobile devices that are 

scattered over several remote sites. Simulation findings show that the suggested 

model can correctly forecast the task delegated to either a fog network or a cloud 

network with the greatest overall accuracy of 83% and 80% in case of MLP and LR 

construct. Finally, comparing all the classification algorithms based on various 

accuracy parameters it can be concluded that MLP and LR are the most appropriate 

classification algorithms for resource allocation and task offloading although the 

execution time is higher in both the cases. 
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This chapter describes the research activity and its outcomes versus the predicted 

results as thought throughout the design phase. A complete analysis is being carried 

out to estimate future possibilities and enhancement to the system gained as a 

consequence of the suggested study. The study also discusses the important 

challenges/issues that could be investigated further to move it ahead. 

6.1 Findings and Conclusions 

By comparing the results of using the FCFS task scheduling algorithm in a Fog and 

cloud context, it appears that FCFS in the Fog environment better optimizes latency, 

total network utilization, and energy consumption. In contrast to cloud environments, 

latency, quality of service, and cost are all improved by using the fuzzy series parallel 

preprocessing resource scheduling algorithm in a Fog setting. 

Latency and power consumption can be minimized by using the Shortest Job First 

Heuristic approach to schedule work. Much like the preemptive task priority network, 

the resource allocation technique greatly improves both QoS and efficiency. 

Rule-based fuzzy network often known as fuzzy logic, is a resource scheduling 

technique that optimizes both latency and energy usage. In a similar vein, the QoS 

may be significantly optimized with the Fault, Configuration, Accounting, 

Performance, and Security methods. 

6.2 Summarization of Hypotheses Testing Results 

The comparison between fog-based and cloud-based systems based on execution time 

(H01) demonstrates that using smart fog-based systems results in a significant 

decrease in execution time when compared to cloud-based systems. With values of 

9872, 3008, 7866, 5417, 4533, 4024, and 8703, respectively, there is a significant 

reduction in execution time in the Fog systems 8:10, 9:9, 7:10, 6:10, 6:6, 4:10, and 

2:6. It is therefore abundantly evident that the Fog layer is crucial to cutting down on 

execution time. 

The comparison of Fog-based and Cloud-based systems based on latency (H02) 

reveals that there is a significant reduction in latency with the usage of Smart Fog-

based systems as opposed to Cloud-based systems. There is a significant reduction in 

latency value in the Fog system 10:5, 4:4, 2:5, 2:4, 2:3, 2:2, 1:5, 1:4, 1:3, 1:2, and 1:1, 
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such as 453.52, 198.92, 190.69, 198.13, 199.71, 201.36, 191.91, 197.73, 199.41, 

201.16, and 194.08. As a result, the fog layer plays a crucial role in latency reduction. 

The evaluation between Fog-based and Cloud-based systems based on energy 

consumption reveals a significant reduction in energy consumption when using Smart 

Fog-based systems against Cloud-based systems (H03). There is a significant 

reduction in energy consumption in the fog systems 10:5, 5:5, 4:5, 4:4, 3:5, 2:5, 2:4, 

2:3, 2:2, 1:5, 1:4,1:3, 1:2 and 1:1. Hence, based on the performance measure energy 

used, it is apparent that there is a considerable difference between the SMART FOG 

protocol-based system and the cloud-based system. 

The analysis of Fog fog-based systems and Cloud cloud-based systems based on cost 

of execution reveals that there is a significant cost of execution decrease with the 

usage of Smart Fog-based systems as compared to Cloud-based systems (H04). There 

is a significant cost reduction in the Fog system 10:5, 6:10, 5:5, 4:5, 4:4, 3:10, 3:5, 

2:9, 2:8, 2:6, 2:5, 2:4, 2:3, 2:2, 1:5, 1:4, 1:3, 1:2, and 1:1. Hence, based on the 

performance measure cost of execution, it is evident that there is a considerable 

difference between the SMART FOG protocol-based system and the cloud-based 

system. 

The comparison between Fog-based system and Cloud cloud-based system based 

on total network usage reveals that there is a significant decrease in total network 

usage when using a Smart Fog-based system against Cloud-based systems (H05).In 

the fog system, there is a significant reduction in overall network utilization such as 

813124, 100000, 100000, 889585, 100000, 717690, 600582.6, 100000, 560311.2, 

200000, 100000, 376389.8, 300487.8, 226130, 151466.2, 187988.4, 150136.4,  

112806.6, 75270.6, and 38142.7. Hence, based on the performance measure of total 

network use, it is apparent that there is a considerable difference between the SMART 

FOG protocol-based system and the cloud-based system. 

The analysis of Fog-based and Cloud-based systems based on computational power 

consumed reveals a significant reduction in computational power consumed when 

using Smart Fog-based systems against Cloud-based systems (H06). There is a 

significant reduction in computational power consumed by Fog systems in all cases 

when compared to cloud-based systems, implying that there is a significant difference 

between SMART FOG protocol-based systems and cloud-based systems based on the 
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performance measure computational power consumed by Fog devices in comparison 

to Cloud devices. For statistical validation of our findings, various null hypotheses 

were tested and the outcomes of these tests are as follows: 

Table 6.1: Chi-Square (2) Test for Awareness Level 

Sr. 

No. 
Hypothesis 

Result @ 

5 % Level 

H01 

There is no significant difference between SMART FOG 

protocol-based system and cloud-based system based on 

the performance measure execution time. 

Rejected 

Ha2 

There is a significant difference between SMART FOG 

protocol-based System and cloud-based systems based 

on the performance measure latency. 

Accepted 

H03 

There is no significant difference between SMART FOG 

protocol-based system and cloud-based system based on 

the performance measure energy consumed. 

Rejected 

Ha4 

There is significant difference between SMART FOG 

protocol-based system and cloud-based system based on 

the performance measure cost of execution. 

Accepted 

H05 

There is no significant difference between SMART FOG 

protocol-based system and cloud-based system based on 

the performance measure of total network usage. 

Rejected 

Ha6 

There is a significant difference between SMART FOG 

protocol-based system and cloud-based system based on 

the performance measure computational power 

consumed. 

Accepted 

Table 6.1, can be concluded that the hypothesis “SMART FOG protocol-based 

technique to create Fog Computing environment will share computational power to 

IoT devices with low computational power and other aspects” is being accepted which 

suggests that SMART FOG protocol-based technique reduces computational power 

consumption for the Fog devices and share computational power with IoT devices by 

lower the total consumption. 

 

Finally, the hypothesis "Ha1: SMART FOG protocol-based technique to create Fog 

Computing environment will share computational power to IoT devices with low 

computational power and other aspects" is accepted, implying that the SMART FOG 

protocol-based technique reduces computational power consumption for Fog devices 

and shares computational power with IoT devices by lowering total consumption. 
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6.3 Use of Machine Learning Techniques for Task Scheduling 

It was discovered that when the K-Star classifier was employed for task scheduling, it 

properly identified around 91% of the cases, which was much higher than the other 

classification approaches tested, such as IBK, Logistic Regression, and AdaBoostM1. 

Similarly, the accuracy, recall, and F-measure values of 0.92, 0.91, and 0.90 were 

greater in comparison to IBK, Logistic Regression, and AdaBoostM1; also, the mean 

absolute error value was 0.05, and the FP rate value was 0.04. 

In logistic regression, the correctly categorized examples were about 88%, which was 

much higher than the other classification approaches investigated, such as IBK and 

AdaBoostM1. Similarly, the accuracy, recall, and F-measure values of 0.88, 0.88, and 

0.87 were greater in comparison to IBK and AdaBoostM1, as was the mean absolute 

error value of 0.05 and the FP rate value of 0.04. 

Overall K-star is the best classification algorithm that can be used for task scheduling 

followed by Logistic Regression as in the majority of observations at different 

configuration settings the Accuracy, Precision, Recall, F-Measure, etc. are higher in 

case of algorithms mentioned above. 

6.4 Classification   Algorithms   in   Task   Offloading   and Resource       

      Allocation 

 

The results confirm that the MLP classifier has the best overall accuracy value 0.83, 

followed by the Logistic Regression value 0.80. The other classification methods had 

an overall accuracy of roughly 0.75 in the case of the J48 classifier, 0.60, 0.61, and 

0.48 in the case of Bagging, IBK, and K-Star, respectively. MLP and Logistic 

Regression were discovered to be the best acceptable classifiers based on performance 

measure total accuracy. Comparing classifiers based on overall Kappa statistics used 

for task offloading and resource allocation in SMART FOG environment, MLP and 

Logistic Regression have higher overall Kappa statistics values of 0.67 and 0.6, 

respectively, indicating that they are superior classifiers. 

MLP classifier has the best precision at 0.85, followed by Logistic Regression at 0.83. 

J48 had 0.79 Precision, Bagging 0.48, IBK 0.76, and K-Star 0.49. MLP and Logistic 

Regression were the most precise classifiers. 
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MLP classifier has the greatest recall overall with 0.84, followed by Logistic 

Regression with 0.80. Bagging, IBK, and K-Star had Recalls of 0.61, 0.62, and 0.49, 

respectively, while J48 had 0.75. MLP and Logistic Regression were the best 

classifiers for total Recall. 

MLP classifier has the lowest mean absolute error value of 0.17, followed by Logistic 

Regression with 0.23. J48, Bagging, IBK, and K-Star had mean absolute error values 

of 0.27, 0.58, 0.39, and 0.45, respectively. MLP and Logistic Regression were the best 

classifiers based on performance metric mean absolute error value. 

In conclusion, after examining each classification algorithm based on a variety of 

accuracy parameters, one can conclude that MLP and Logistic Regression are the 

classification algorithms that are best suited for resource allocation and task 

offloading. 

6.5 Future Scope 

In this section, the key issues, future difficulties, and future research prospects for task 

scheduling in fog computing are discussed. 

Resource Utilization of Fog Node 

The fog devices have limited storage, processing, and energy capabilities due to their 

lack of resources. They receive dynamic workloads from applications that are 

sensitive to latency as well as apps that are tolerant of delay. As a result, the difficult 

aspect is to schedule the unpredictability of the arrival of activities on these fog nodes 

to make the best possible use of the available resources. 

Optimal Resource Allocation 

IoT devices produce a large number of tasks, which have to be appropriately 

distributed between fog nodes to achieve a quicker reaction time. This is especially 

important for applications that are sensitive to latency. Since fog computing makes it 

possible for fog nodes and Internet of Things devices to move about freely, the 

resources that are reachable at any given time may be inaccessible at other times. 

Because of this, the process of allocating resources is a difficult endeavor. The 

problems that need to be addressed are long latency for real-time applications, a lack 

of generalization, and rapid adaptation of the algorithms that are currently available. 
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Parallel Scheduling 

In the method known as parallel processing, one operation is broken down into 

several smaller tasks, all of which are then carried out at the same time. Another 

unresolved problem that requires attention is the division of activities into subtasks 

that can decrease delays through the use of distributed computing. 

Privacy 

Several different fog applications, such as smart healthcare, send a significant amount 

of personally identifiable information to fog nodes. As a result, protecting the 

confidentiality of such data is of the utmost importance to users. Even while some 

researchers use methods that protect users' privacy on fog nodes, there is yet no 

authentication solution that can be considered satisfactory. Because the fog nodes are 

more susceptible to possible dangers, authenticating users can be a difficult and time-

consuming process.  

Security 

Fog nodes are vulnerable to attacks. As a result, developing a safety algorithm that is 

not only lightweight but also has a fast speed and is trustworthy is still a tough issue. 

At the moment, only a small number of academics are focusing their attention on the 

security concerns associated with fog computing; nonetheless, there are still several 

outstanding challenges, such as dynamic authentication, access controls, external 

threats, and intrusion detection. 

Context-aware Service Provisioning 

The context is made up of the many runtime elements that have the potential to 

influence the applications. The currently available approaches to context-aware 

service provisioning are less flexible and scalable, and they are unable to manage a 

significant number of Internet of Things applications. Because of this, more 

approaches to context-aware service delivery should be researched so that the 

aforementioned restrictions may be solved. 

Energy Consumption 

Energy-aware computing in fog is still an open question that has to be answered since 

fog devices are limited in their ability to use energy due to their usage of low-power 

batteries. Several academics are concentrating their efforts on energy optimization, 
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but several problems still need to be addressed, including improper utilization of 

bandwidth during data transfer, energy waste, and battery-draining concerns. 

6.6 Limitations 

Fog computing faces several limitations, including high latency compared to edge 

computing, increased complexity in network management, potential security 

vulnerabilities, and limited scalability. It can also suffer from resource constraints due 

to dependency on intermediate devices and challenges in data processing efficiency. 

Additionally, ensuring consistent connectivity and handling diverse data types can 

pose significant difficulties in fog computing environments. 

1. Scope and Generalizability: The study may have focused on specific IoT 

architectures, protocols, and technologies, which might limit its 

generalizability to other IoT scenarios or environments. 

2. Real-world Implementation Challenges: The study might not have addressed 

the practical challenges associated with implementing the SMART FOG 

protocol-based technique, such as hardware compatibility, software 

integration, security considerations, and deployment complexities. 

3. Benchmarking and Comparison: The study might lack comprehensive 

benchmarking or comparison with existing IoT architectures, protocols, or 

alternative solutions. Comparative analysis would provide a better 

understanding of the advantages and limitations of the proposed SMART FOG 

approach. 

4. Limited Testing Scenarios: The evaluation of the SMART FOG technique 

might have been conducted under specific testing scenarios or simulated 

environments, which may not fully capture the complexities and dynamics of 

real-world IoT deployments. 

5. Time Constraints: The study might have faced time limitations, which could 

impact the depth of analysis, experimentation, and validation of the proposed 

techniques. 

6. Lack of Real-world Deployment Validation: The proposed SMART FOG 

technique might not have been validated in real-world IoT deployments or 

scenarios, which may limit the assessment of its practical applicability and 

performance. 

In conclusion, fog computing's limitations include potential latency issues, increased 

network complexity, and security vulnerabilities. It also faces scalability challenges, 

resource constraints from intermediary devices, and inefficiencies in data processing.  
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